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Abstract:    The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case 
can be transformed into two Volterra integral equations of the second kind about two functions with respect to time. Interpolation 
functions were introduced to approximate two unknown functions in each time subinterval and two new recursive formulae are 
derived. By using the recursive formulae, numerical results were obtained step by step. Under the same time step, the accuracy of 
the numerical results by the present method is much higher than that by the traditional quadrature method. 
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INTRODUCTION 
 

In scientific and engineering problems, Volterra 
integral equations are always encountered and have 
attracted much attention (Christopher and Baker, 
1977; Delves and Mohamed, 1985; Brunner and van 
der Houwen, 1986; Kress, 1989; Oja and Saveljeva, 
2002; Maleknejad and Shahrezaee, 2004; Maleknejad 
and Aghazadeh, 2005; Zerarka and Soukeur, 2005). 
Generally, exact solutions are very difficult to find 
and solutions have been obtained for only some few 
special cases (Yan and Cui, 1993; Li et al., 1995). 
While, for practical cases, approximate solutions are 
also useful if exact solutions cannot be obtained. It is 
noted that the numerical methods in many textbooks 
are usually described for the Volterra integral equa-
tions with general kernels and the calculating effi-
ciency is always imperfect for practical problems. 
Recently, Ding et al.(2004) found that the elastody-
namic problems for piezoelectric and pyroelectric 

hollow cylinders under radial deformation can be 
successfully transformed into a second kind Volterra 
integral equation with respect to a function of time. 
The numerical method for such problem had been 
discussed detailedly. In very recent study, the elas-
todynamic problems for magneto-electro-elastic 
hollow cylinders in the state of axisymmetric plane 
strain case can be transformed into two second kind 
Volterra integral equations with respect to two func-
tions of time in the form below (Hou and Leung, 
2004) 
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where η(τ) and f(τ) are two undetermined functions of 
time. χ(τ) and ψ(τ) are functions about time τ, related 
to the mechanical, electric and magnetic boundary 
conditions on the internal and external surfaces. ωi 
(i=1,2,…,m), arranged in an increasing order, are 
related to the positive roots of an eigenequation. 
Usually, the number of ωi is infinite, and m represents 
the number of the terms for calculation. Z1, Z2, E1, E2 
and Z3i, Z4i, E3i, E4i (i=1,2,…,m) are constants which 
can be determined beforehand. 

Noticing that the kernel of Eq.(1) is a triangular 
function, so the integration can be obtained explicitly 
if η(τ) and f(τ) are polynomial functions of time τ. By 
using this property, we can derive the recursive for-
mulae by using of an interpolation polynomial to 
approximate the unknown functions at each of the 
time subintervals. Then the numerical results can be 
obtained by the recursive formulae step by step. 

If χ(τ) and ψ(τ) in Eq.(1) are differentiable func-
tions, then we have 
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where a dot over the quantity denotes its derivative 
with respect to time. Setting τ=0 in Eqs.(1) and (2), 
we can determine η(0), f(0), )0(η  and )0(f  as 
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In the following, two interpolation functions, 

linear interpolation function and cubic Hermite 
polynomial, are employed to construct the recursive 
formulae. 

NUMERICAL APPROACH 
 

Recursive formula: the first kind 
In each time subinterval [τj−1, τj] (j=1,2,…,n), the 

linear interpolation function is introduced to ap-
proximate the unknown functions η(τ) and f(τ) as 
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The substitution of Eq.(5) into Eq.(1) yields 
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Then a recursive formula can be obtained from 

Eq.(7) as 
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As η(0) and f(0) have been obtained in Eq.(3), we can 
determine η(τj) and f(τj) (j=1,2,…,n) step by step by 
virtue of Eq.(9). 
 
Recursive formula: the second kind 

Cubic Hermite polynomials are adopted here to 
approximate the unknown functions η(τ) and f(τ) as 
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Substitution of Eq.(11) into Eqs.(1) and (2) yields 
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From Eqs.(13) and (14), the recursive formula about 
η(τj), f(τj), ( )jη τ  and ( )jf τ  can then be obtained. 

The specific form of the recursive formula is omitted 
here to reduce the length.  
 
 
NUMERICAL TESTS 
 

In the following, numerical test is presented to 
verify the validity of the recursive formulae. We 
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consider the exact solutions of η(τ) and f(τ) are 
η(τ)=100+10cos2τ and f(τ)=100+20e−0.1τ. The ana-
lytical expressions of χ(τ) and ψ(τ) are obtained by 
substituting the exact solutions of η(τ) and f(τ) into Eq. 
(1). In the demonstration, we take m=30, ωi={1.43, 
7.41, 14.61, 21.29, 29.23, 36.57, 43.87, 51.18, 58.94, 
65.67, 73.05, 80.36, 87.86, 94.96, 102.52, 109.45, 
116.68, 124.71, 131.84, 138.27, 146.14, 153.45, 
160.76, 168.70, 175.37, 182.68, 189.99, 197.02, 
204.05, 211.48}, Z1=−0.61, Z2=0.82, Z3i={0.12, 0.62, 
0.0034, 0.19, 0.01, 0.12, 0.0029, 0.084, 0.0021, 0.065, 
0.0017, 0.053, 0.0014, 0.04, 0.0012, 0.039, 0.001, 
0.034, 0.00091, 0.03, 0.00086, 0.028, 0.00078, 0.025, 
0.00072, 0.023, 0.00066, 0.021, 0.00061, 0.02}, 
Z4i={0.44, 1.86, 0.1, 0.58, 0.049, 0.34, 0.032, 0.24, 
0.024, 0.19, 0.019, 0.158,  0.016,  0.13,  0.013,  0.11, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.012, 0.1, 0.01, 0.09, 0.0096, 0.082, 0.0087, 0.075, 
0.008, 0.069, 0.0074, 0.064, 0.0069, 0.059}, 
E1=−0.99, E2=2.56, E3i={0.043, 0.1, 0.0058, 0.031, 
0.0026, 0.018, 0.0017, 0.013, 0.0012, 0.01, 0.001, 
0.0082, 0.00084, 0.0069, 0.00072, 0.006, 0.00063, 
0.0053, 0.00056, 0.0047, 0.0005, 0.0043, 0.00045, 
0.0039, 0.00042, 0.0036, 0.00038, 0.0033, 0.00036, 
0.0031}, E4i={0.078, 0.26, 0.05, 0.086, 0.023, 0.051, 
0.015, 0.036, 0.011, 0.028, 0.0091, 0.022, 0.0075, 
0.019, 0.0064, 0.016, 0.0056, 0.014, 0.005, 0.013, 
0.0045, 0.012, 0.0041 ,0.01, 0.0037, 0.01, 0.0034, 
0.0093, 0.0032, 0.0086}. It is noted here that uniform 
step is adopted in the calculation. Comparisons be-
tween the quadrature method (the trapezium rule) and 
the present two methods for different time steps are 
shown in Tables 1~4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Numerical results of η(τ) for time step length ∆τ=0.01 
The quadrature method 

(The trapezium rule) Present, the first kind Present, the second kind 
Time Theoretical 

results Numerical 
results 

Relative 
error 

Numerical 
results 

Relative 
error 

Numerical 
results 

Relative 
error 

0.0 110.0000 110.0000 0.000 110.0000 0.000 110.0000 0.000 
0.5 105.4030 100.9010 −4.271E-2 105.4024 −5.309E-6 105.4030   −2.596E-11
1.0  95.8385   87.9440 −8.237E-2   95.8379 −6.210E-6   95.8385   −5.724E-11
1.5  90.1001   74.1798 −1.767E-1   90.0993 −8.821E-6   90.1001   −1.272E-10
2.0  93.4636   56.0428 −4.004E-1   93.4612 −2.539E-5   93.4636 −4.612E-9 

 
Table 2  Numerical results f(τ) for time step length ∆τ=0.01 

The quadrature method 
(The trapezium rule) Present, the first kind Present, the second kind 

Time Theoretical 
results Numerical 

results 
Relative 

error 
Numerical 

results 
Relative 

error 
Numerical 

results 
Relative 

error 
0.0 120.0000 120.0000 0.000 120.0000 0.000 120.0000 0.000 
0.5 119.0246 117.3739 −1.387E-2 119.0244 −1.721E-6 119.0246   −8.447E-12
1.0 118.0967 115.2187 −2.437E-2 118.0965 −1.822E-6 118.0967   −1.676E-11
1.5 117.2142 111.4259 −4.938E-2 117.2139 −2.436E-6 117.2142   −3.549E-11
2.0 116.3746 102.7563 −1.170E-1 116.3738 −7.420E-6 116.3746 −1.360E-9 

 
Table 3  Numerical results of η(τ) for time step length ∆τ=0.02 
The quadrature method 

(The trapezium rule) Present, the first kind Present, the second kind 
Time Theoretical 

results Numerical 
results 

Relative 
error 

Numerical 
results 

Relative 
error 

Numerical 
results 

Relative 
error 

0.0 110.0000 110.0000 0.000 110.0000 0.000 110.0000 0.000 
0.5 105.4030   85.9447 −1.846E-1 105.4008 −2.132E-5 105.4030   −5.790E-10
1.0   95.8385   62.9179 −3.435E-1   95.8361 −2.490E-5   95.8385   −6.605E-10
1.5   90.1001   24.4640 −7.285E-1   90.0969 −3.541E-5   90.1001   −6.028E-10
2.0   93.4636 −57.8244 −1.619   93.4540 −1.019E-4   93.4636 −3.313E-9 
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CONCLUSION 
 

From Tables 1~4, we find that both of the two 
recursive formulae have very high accuracy for nu-
merical computation. And for the same time step, the 
numerical results for the second kind recursive for-
mula are more accurate than those for the first kind. 
For the quadrature method (the trapezium rule), the 
relative errors are about −10−1~−10−2 for ∆τ=0.01, 
which can be accepted constrainedly in engineering. 
While the relative errors increase significantly for 
∆τ=0.02. Thus, to obtain satisfactory results, small 
time step must be employed for the quadrature 
method. We also notice that for the two presented 
recursive formulae, the numerical results still keep 
very high accuracy after 100 times computation for 
∆τ=0.02. That is to say, the computation by using the 
present recursive formulae is very stable, and a rela-
tively large time step can further be adopted in the 
calculation. It is noted that the present methods pro-
vide a powerful way for solving some practical en-
gineering cases such as the transient responses of 
magneto-electro-elastic media.  
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Table 4  Numerical results f(τ) for time step length ∆τ=0.02 
The quadrature method 

(The trapezium rule) Present, the first kind Present, the second kind 
Time Theoretical 

results Numerical 
results 

Relative 
error 

Numerical 
results 

Relative 
error 

Numerical 
results 

Relative 
error 

0.0 120.0000 120.0000 0.000 120.0000 0.000 120.0000 0.000 
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1.0 118.0967 106.0977 −1.016E-1 118.0959 −7.306E-6 118.0967 −1.939E-10
1.5 117.2142   93.3562 −2.035E-1 117.2130 −9.781E-6 117.2142 −1.637E-10
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