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Abstract:    An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear defor-
mation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approach for mechanical dis-
placements and a layerwise-type modelling of the electric potential. Particular attention is devoted to the boundary conditions on 
the outside faces and to the interface continuity conditions of the bimorphs for the electromechanical variables. Shear correction 
factor (k) is introduced to modify both the shear stress and the electric displacement of each layer. And the detailed mathematical 
derivations are presented. Free vibration problem of simply supported piezoelectric bimorphs with series or parallel arrangement is 
investigated for the closed circuit condition, and the results for different length-to-thickness ratios are compared with those ob-
tained from the exact 2D solution. Excellent agreements between the present model prediction with k=8/9 and the exact solutions 
are observed for the resonant frequencies. 
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INTRODUCTION 
 

Piezoelectric bimorphs (or benders), a special 
type of piezoelectric device, which can produce 
flexural deformation significantly larger than the 
length or thickness deformation of the individual 
piezoelectric layers, have been widely used as elec-
troacoustic transducers, medical devices and micro-
robot due to their characteristics of easy miniaturiza-
tion, high positioning accuracy, sensitive response, 
and large displacement (e.g., Shirley and Hampton, 
1978; Ha and Kim, 2002; Zhou et al., 2005). Typi-
cally, two possible arrangements of the piezoelectric 
elements are adopted. The first, called parallel (or 
Y-P), means that two piezoelectric elements are ep-
oxied to a center conductor in an orientation that have 
the same poling direction, and the outer faces are 

coated with two conductive electrodes. The second is 
known as series (or X-P) in which two piezoelectric 
elements with opposite poling directions are directly 
bonded, and then covered by two surface electrodes. 
The application of an electric field across the two 
layers of the bimorph causes one layer to expand, 
while the other layer contracts. This is the working 
principle of bimorphs. To design and use such bi-
morphs rationally, it is crucial to understand their 
coupled electromechanical behaviors through effec-
tive modelling.  

In the past decades, the research of piezoelectric 
bimorphs has experienced tremendous growth (Rao 
and Sunar, 1994; Chee et al., 1998; He et al., 2000; 
Lim et al., 2001; Wang, 2004). However, most of the 
existing models are either inaccurate or overcompli-
cated (Gopinathan et al., 2000). The present work 
attempts to develop a consistent, yet comprehensive 
approach to piezoelectric bimorphs. The model com-
bines an equivalent single-layer theory for the me-
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chanical displacements with layerwise-type ap-
proximation for the electric potential (Fernandes and 
Pouget, 2003). First-order shear deformation theory 
(FSDT) kinematics and quadratic electric potentials 
are assumed in developing the analytical solution. 
Mechanical displacement and electric potential Fou-
rier-series amplitudes are treated as fundamental 
variables, and full electromechanical coupling is 
maintained. Numerical analysis of the simply sup-
ported bimorphs under free vibration conditions are 
presented for different length-to-thickness ratios (i.e., 
aspect ratio), and the results are verified by those 
obtained from the exact 2D solution.  
 
 
BEAM MODEL AND FIELD APPROXIMATION 
 

The piezoelectric bimorph structure studied can 
be treated as a symmetric lamina in the state of plane 
stress (Fig.1). The bimorph of unit width is comprised 
of two identical piezoelectric layers with length l and 
thickness h for each piezoelectric layer. All layers are 
considered mechanically and electrically perfectly 
bonded. 
 

 
 
 
 
 
 
 
 
 

 
Basic equations of piezoelectricity 

The linear field equations of motion for 
orthotropic piezoelectric media under 2D plane stress 
assumptions are given by (Sosa and Castro, 1993; 
Ding et al., 1997): 
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where ρ is the mass density of piezoelectric material; 
ux and uz are the displacement components of the 

bimorph in the longitudinal and transverse directions,  
respectively; fx and fz are the body forces; σx, σz, τxz,  
Dx and Dz represent the stress components, electric 
displacement components, which satisfy the linear 
constitutive equations of piezoelectricity as 
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where r is an integer and r=2 if the layer poling di-
rection coincides with the coordinate axes and oth-
erwise r=1; εx, εz, γxz, Ex and Ez are strain and electric 
field intensity components, which relate to the dis-
placement components and electric potential by 
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It should be noted here that 11c , 13c , 33c , 31,e  

33e  and 33ε  in Eq.(2) are the reduced material con-
stants of the piezoelectric medium under 2D plane 
stress assumptions (See Appendix A). 
 
FSDT kinematics field approximation 

According to first-order shear deformation the-
ory (Timoshenko et al., 1974), the effect of shear 
deformation (and rotary inertia in dynamic analysis) 
cannot be omitted, so the mechanical displacements 
are assumed as follows: 
 

( , , ) ( , )zu x z t w x t= , ( , , ) ( , )xu x z t z x tψ= −       (4) 
 
where w is the displacement of the bimorph’s neutral 
axis; and ψ is the bending rotations of the vertical 
lines perpendicular to the neutral axis (Fig.1).  

Substituting Eq.(4) into Eq.(3a), we get the strain 
of the piezoelectric layer as 
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Fig.1  Piezoelectric bimorph: coordinates and geometry
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In general, the electric potential is associated 
with the applied electric potential G(x, z, t) and the 
induced electric potential by elastic deformation ϕ(x, z, 

t) (Fig.2). Now, we propose the following functions 
 

( , , ) ( , , ) ( , , )x z t G x z t x z tφ ϕ= +  
( ) ( , ) ( ) ( , )g z V x t f z x tΦ= +         (6) 

 
where V(x, t) is the amplitude of G(x, z, t) at surfaces, 
and g(z) is the linear distribution function along the 
thickness direction of this applied electric potential; 
f(z) is the through-the-thickness distribution function 
of ϕ(x, z, t), and Φ(x, t) is the electric potential am-
plitude on the midline of the piezoelectric layer. 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

According to the studies of Smits et al.(1991), 
Yang (1999), and Wang et al.(2001), the electric 
potential functions mentioned above can be ap-
proximated, in view of the settings in Fig.2, as 
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Substituting Eqs.(6) and (7) into Eq.(3b) yields 

the following electric field intensity components 
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And the zero normal stress assumption in FSDT 

leads to the solution of σz=0 in Eq.(2b) for εz, as 
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Then substituting the results and Eq.(5) into Eq. 

(2), and incorporating Eqs.(9) and (10), yields the 
electromechanical variables for either type of ar-
rangement under FSDT assumptions 
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Fig.2  Piezoelectric bimorph settings: (a) parallel ar-
rangement (Y-P); (b) series arrangement (X-P) 
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Eq.(11) indicates that there is no fundamental 
difference between the parallel and series bimorphs 
under FSDT assumptions since the electromechanical 
variables are almost the same except for the electric 
components symmetry. 
 
 
EQUATIONS OF MOTION FOR BIMORPHS 
 

Based on Timoshenko’s beam theory and the 
charge conservation law, the motion equations of 
piezoelectric bimorph (e.g., the parallel arrangement) 
in Eq.(1) can be satisfied approximately by applying 

integration over the cross section as 
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where m and p are the corresponding externally ap-
plied couple and force; Mx and Qx are the bending 
moment and shear force, which can be expressed as 
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Substituting the stress components in Eq.(11) 
into Eq.(15), yields the expressions for the shear force 
and moment. Then substituting these resultants into 
Eqs.(12) and (13), and substituting the electric dis-
placements in Eq.(11) into Eq.(14), with shear coef-
ficient k defined in FSDT, yields the motion equations 
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The governing Eqs.(12), (13) and (14) are then 
transformed into Eqs.(16), (17) and (18). Noticing 
that k is the layerwise defined shear correction factor, 
which is introduced into the integration of τxz and Dx   
defined in Eq.(11). 
 
 
SERIES SOLUTIONS FOR SIMPLY SUPPORTED 
BENDING 
 

Generally, we consider a piezoelectric bimorph 
subjected to a uniformly distributed load or an electric 
potential applied to the top and bottom faces (Fig.2), 
and there is no surface density of moment m. The 
simply supported conditions for a rectangular beam 
with length l can be expressed as 
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The electromechanical load functions of uniform 

distribution cases are written by Fourier series as 
 

i

1

2( , ) 1 ( 1) sin en t

n

p np x t x
n l

ω
∞

=

π    = − −    π   
∑  

i

1
sin e t

n
n

nP x
l

ω
∞

=

π 
 
 

∑                           (21a) 

 
i

1

2( , ) 1 ( 1) sin en t

n

V nV x t x
n l

ω
∞

=

π    = − −    π   
∑   

i

1
sin e t

n
n

nV x
l

ω
∞

=

π 
 
 

∑                           (21b) 

 
Then expanding the unknown functions in Eqs. 

(16), (17) and (18) with Fourier series yields 
 

i

1
( , ) sin e t

n
n

nw x t W x
l

ω
∞

=

π =  
 

∑             (22a) 

i

1
( , ) cos e t

n
n

nx t x
l

ωψ Ψ
∞

=

π =  
 

∑            (22b) 

i

1
( , ) sin e t

n
n

nx t x
l

ωΦ Φ
∞

=

π =  
 

∑             (22c) 

 
Substituting Eqs.(21) and (22) into Eqs.(16), (17) 

and (18), yields the matrix form equations: 
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Solving Eq.(23) for Wn, Ψn and Φn yields the 

Fourier coefficients in Eq.(22), based on which other 
related electromechanical variables are readily ob-
tained. Furthermore, if the series arrangement is 
treated the same way as the parallel arrangement, one 
will find that the governing equations and solution 
expressions are exactly the same.  

For free vibration, the right-hand side of Eq.(23) 
is set to zero, and nontrivial solutions for Wn, Ψn and 
Φn imply that the determinant of the coefficients ma-
trix of Eq.(23) vanishes. Then solving Eq.(23) gives 
the resonant frequencies for a given n. 
 
 
NUMERICAL RESULTS AND ANALYSIS 
 

In this section, we will consider the free vibra-
tion of the bimorph with l=1 m and different thickness 
2h=0.01 m, 0.02 m, 0.05 m, 0.1 m, 0.2 m. The mate-
rial properties of the layers for the numerical simula-
tions are given in Table 1. To demonstrate the per-
formance of present analytical FSDT model, the shear 
correction factor should be determined first. For ex-
plicitness, we adopt two commonly used values k=8/9 
(Timoshenko, 1922) and k=5/6 (Cowper, 1966) for 
bimorphs in plane stress problems. 

The frequencies of the resonant modes predicted 
by the present model with k=8/9 and k=5/6 for 
PZT-5A are plotted in Fig.3 for comparison  with  the 
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Table 1  Material constants of piezoelectric bimorph 
 

Property PZT-5A Property PZT-5A 

c11 (GPa) 105 e31 (C/m2) –9.78  
c12 (GPa) 54.6 e33 (C/m2) 13.8      
c33 (GPa) 86.8 e15 (C/m2) 12.2      
c13 (GPa) 52.7 ε11 (nF/m) 16.4      
c55 (GPa) 22.2 ε33 (nF/m) 15.1      
ρ (kg/m3) 7800   

 
results provided by exact 2D theory. It is clear that 
rather good agreement is observed for the present 
model, and even for higher modes such as n=10. The 
error is smaller than 1% and 2% for the cases using 
k=8/9 and k=5/6, respectively. As expected, the errors 
of FSDT frequency estimation increase with the in-
creasing of the mode order and aspect ratio of the 
bimorph. 
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from Bender element
Shear k = 5/6

 
 
 

Fig.3  Frequency accuracy performance 
(a) k=8/9; (b) k=5/6 

Meanwhile, for the same n, the prediction accu-
racy for k=5/6 is lower than that for k=8/9 with in-
creasing aspect ratio. The difference implies that the 
dynamic prediction based on FSDT is sensitive to the 
exactness of shear k. This phenomenon might be at-
tributed to the shear stiffness (kGA) change from k 
variation, while the former is directly related to 
resonant frequencies. 
 
 
CONCLUSION 
 

In the present study, piezoelectric bimorph 
structures were investigated using FSDT approach 
mainly based on the principle of linear piezoelectric-
ity and on the quasielectrostatic hypothesis. The 
model combines an equivalent single-layer approach 
for the mechanical displacements with a layer-
wise-type model for electric potential. The modelling 
process and numerical analyses revealed that: 

1. Piezoelectric bimorphs will behave funda-
mentally the same way for both series and parallel 
arrangements under the same loading; 

2. In dynamic analysis, high accuracy of bending 
vibration frequencies can be obtained by the present 
model even for rather thick beam (Aspect ratio=5), 
whereas classical elastic thin beam or plate theory 
gives less accurate results; 

3. In FSDT model, shear correction factor plays 
a key role in ensuring the prediction accuracy of dy-
namic response, and choosing the appropriate k value 
for piezoelectric laminates is worth further investiga-
tion when using FSDT approaches. 
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APPENDIX A 
 

The 3D constitutive equations applied to an 
orthotropic piezoelectric material can be written in its 
material axes (1, 2, 3), using the usual condensed 
(engineering) notations for the material constants as 
 

( 1)r
ij ij j ji jC S e Eσ = − − , ( 1)r

i ij j ij jD e s Eε= − +    (A1) 

 
where r is an integer mentioned in the main text; σij 
and Sj are the components of the stress tensor and the 
strain; Ei and Di the components of the electric field 
and electric displacement components; Cij, eji and εij 
the elastic stiffness components, the piezoelectric 
coefficients and the dielectric constants, and they are 
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For 2D plane problems, introducing the plane 

stress assumptions (i.e., σ22=0, σ23=0, σ12=0, D2=0) 
into Eq.(A1), and solving σ22=0 for s22 gives 

 

22 12 11 23 33 32 33
22

1 ( 1)rs c s c s e E
c

 = − + − −        (A3) 

 
Substituting Eq.(A3) into Eq.(A1) yields Eq.(2). 

And the reduced material constants under plane stress 
assumptions are given by 
 

2
11 11 12 22c c c c= − , 13 13 12 23 22c c c c c= − ,  

2
33 33 23 22c c c c= − , 31 31 12 32 22e e c e c= − ,  

33 33 23 32 22e e c e c= − , 2
33 33 32 22e cε ε= +        (A4) 

 


