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Abstract:    The determination of the precise thickness-shear frequency of electroded crystal plates has practical importance in 
quartz crystal resonator design and fabrication, especially when the high fundamental thickness-shear frequency has reduced the 
crystal plate thickness to such a degree that proper consideration of the effect of electrodes is very important. The electrodes effect 
as mass loading in the estimation of the resonance frequency has to be modified to consider the stiffness of electrodes, as the 
relative strength is increasingly noticeable. By following a known procedure in the determination of the thickness-shear frequency 
of an infinite AT-cut crystal plate, frequency equations of crystal plate without and with piezoelectric effect are obtained in terms 
of elastic constants and the electrode material density. After solving these equations for the usual design parameters of crystal 
resonators, the design process can be optimized to pinpoint the precise configuration to avoid time-consuming trial and reduction 
steps. Since these equations and solutions are presented for widely used materials and parameters, they can be easily integrated 
into the existing crystal resonator design and manufacturing processes. 
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INTRODUCTION 
 

In quartz crystal resonator design, the mass effect 
of the electrodes must be considered to achieve ac-
curate prediction of the fundamental thickness-shear 
frequency, as analyzed and demonstrated by 
Bleustein and Tiersten (1968), which is considered to 
be the exact frequency solutions in making necessary 
comparisons with solutions from two-dimensional 
plate equations and deriving the correspondent cor-
rection factors (Mindlin, 1972). When the crystal 
plate is relatively thick or the fundamental thick-
ness-shear frequency is relatively low, it is adequate 
to consider the effect of the electrodes as additional 
mass on crystal surface. As we know, earlier efforts in 
research on and production of piezoelectric resonators 

were concentrated on frequencies much lower than 
100 MHz. In last few years, rapidly emerging appli-
cations and market driven efforts in reducing the size 
of crystal resonators and continuous push in reaching 
higher frequencies have led to thinner crystal plate 
blanks and relatively larger mass ratios of electrodes 
are increasingly important in determining the fun-
damental thickness-shear frequency. Apparently, in 
addition to the mass effect, the relative stiffness of the 
electrodes, which is proportional to the mass ratio, is 
also a factor to be considered. By assuming constant 
deformation in the electrodes, Mindlin (1963) intro-
duced the stiffness ratios in terms of elastic constants 
and thicknesses of crystal plates and electrodes in the 
high frequency vibration equations of plated crystal 
plates. To improve the frequency prediction of crystal 
resonators with finite element method, Wang et 
al.(1999) treated the deformation of electrodes as 
separated variables in the finite element formulation 
and later solved the expanded equations numerically. 
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Although much more accurate and realistic, the extra 
variables and their solutions actually make the ex-
traction of useful information more difficult, thus 
losing their appeal in practical applications. 

In this work, we are concerned about the fun-
damental thickness-shear vibration frequency of 
crystal resonators with relatively larger mass ratio 

 

2 /R h h= ρ ρ                            (1) 
 

where R, ,ρ ,h  ρ, and h are mass ratio, electrode 
density, electrode thickness, crystal density, and 
crystal thickness, respectively. Following Bleustein 
and Tiersten (1968), we obtained the frequency 
equations of fundamental thickness-shear vibrations 
based on an infinite crystal plate with symmetric and 
full electrodes on both faces. The solution of these 
equations is the approximate resonance thick-
ness-shear frequency of a resonator structure with 
typically complicated electrodes and support struc-
tures, because the vibrations are dominated by the 
driving voltage applied to the electroded area, which 
is usually in the center of the crystal blank. As before, 
these solutions can be used as references for crystal 
resonator design and fabrication, because fast and 
precise determination of the blank thickness is always 
of great importance, if the final target of precise 
thickness of the crystal blank in the process is known 
in advance. In addition, these solutions can be used to 
derive correction factors of the two-dimensional plate 
equations to aid further analytical efforts in obtaining 
other important parameters like capacitance ratio and 
thickness-shear displacement distribution with vari-
ous methods including the straight-crested wave so-
lutions that are popular for strip crystal resonator 
analysis. All these steps are closely related to reso-
nator design and fabrication processes, have great 
potential to improve the efficiency in product devel-
opment and production. 
 
 
THICKNESS-SHEAR VIBRATIONS OF ELEC- 
TRODED CRYSTAL PLATES  

 
For an infinite crystal plate with symmetric 

electrodes in the upper and lower faces, as shown in 
Fig.1, we assume the thicknesses of the crystal plate 
and electrodes in x2 direction are 

                2 ,  2h b h b= =                            (2) 
 
respectively. The thickness-shear displacements sat-
isfying the continuity boundary conditions on the 
interfaces are 
 

 
1 2 2

1 2 2

2

sin( ),  
sin( )cos[ ( )] sin[ ( )]

                               2

u A x b x b
u A b x b B x b

b x b b

η

η η η

= − ≤ ≤

= ± +

≤ ≤ +

∓ ∓   (3) 

 
for the crystal plate and electrodes, respectively, with 
wavenumbers in the crystal plate and electrodes being 
η and .η  The displacement amplitudes A and B  in 
Eq.(3) are to be determined later with boundary con-
ditions. As a result, the stress components corre-
sponding to these displacements are 
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for the crystal plate and electrodes and c66 and 66c  are 
elastic constants in the crystal and electrodes, re-
spectively. 
 
 
 
 
 
 
 
 
 
 
 

 
For infinite plate, the stress equations of motion 

are related to the displacements in Eq.(3) and stress 
components in Eq.(4) for the crystal blank and the 
electrodes, with simple stress state in Eq.(4) they can 
be simplified to 

 
2 2 2 2

66 660,    0c cη ω ρ η ω ρ− = − =                   (5) 
 

where ω is the circular frequency, ρ and ρ are the 

Fig.1  Electroded crystal plate of a typical crystal resona-
tor 

Crystal Metal

x2 

2b 

2b

2b



Wang et al. / J Zhejiang Univ SCI   2005 6A(9):980-985 982

densities of crystal and electrodes, respectively. From 
traction-free boundary conditions 
 

6 2 6 6 20,  (2 );   ,  T x b b T T x b= = ± + = = ±             (6) 
with stress components in Eq.(4), we have 
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For resonance to occur, from Eq.(7) we must have 
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or 
    66 66cos( )cos(2 ) sin( )sin(2 )c b b c b bη η η η η η=     (9) 
 
To simplify Eq.(9), we define 
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and Eq.(9) can be rewritten as 
 

66

2tan tan B k
k C
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                          (11) 

 
With the solution ξ for known parameters appearing 
in Eq.(11), we have the frequency solution as 
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where we define the normalized frequency solution as 
 

2 /X ξ= π                         (13) 

 
Finally, we can write the frequency equation in 
Eq.(11) as 
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As we can see from Eq.(14), both the thickness 

ratio B and elastic constant ratio C66 are presented, 

thus effectively taking into consideration the stiffness 
and mass effects of the electrodes on the resonator 
structure. In the earlier study by Bluestein and Tier-
sten (1968), the stiffness term was neglected, limiting 
the results to be applicable only to relatively thin 
electrodes with small mass ratio. The result presented 
here in Eq.(14), as indicated, should be accurate for a 
much large size range of electrodes with different 
materials and configurations. 
 
 
 
PIEZOELECTRIC CONSIDERATIONS 
 

As given by Bluestein and Tiersten (1968), for 
the piezoelectric crystal plate we have the electric 
potential inside the piezoelectric plate as 

 
26

1 1 2 0
22

e
u C x Cϕ

ε
= + +            (15) 

 
where φ, e26, ε22, u1, C1, and C0 are electric potential, 
piezoelectric constant, dielectric constant, thick-
ness-shear displacement, and two integration con-
stants, respectively.   

With alternating driving voltage φ0eiωt on the 
electroded faces, we have the electrical boundary 
conditions as 

 
0( )bϕ ϕ± = ±                          (16) 

 
which simplifies Eq.(15) to 
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Consequently, the stress components in crystal plate 
with electric potential term will be 
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Again, we apply the traction-free boundary conditions 
given in Eq.(6) to Eq.(4.2) and Eq.(18) for the unde-
termined A and .B   For the resonance to occur, we 
must have 
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where 
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is the piezoelectric coupling constant. By further 
defining  
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we can rewrite Eq.(19) as 
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The frequency will be the same as in Eq.(11), and the 
equation for normalized frequency is 
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In comparison to Eq.(14), we emphasize the new 
parameter K as given in Eq.(21), which differs from 
the one in Eq.(10) with the introduction of piezo-
electric coupling constant. The consideration of both 
the stiffness of the electrodes and piezoelectric effect 
of crystal plate will certainly make the frequency 
solution more accurate when the electrode presence 
cannot be neglected, which is true nowadays because 
the crystal blank has been shrunken a lot in achieving 
higher fundamental thickness-shear frequency. 
 
 
APPLICATIONS IN RESONATOR DESIGN 
 

In crystal resonator design, how to quickly de-
termine the parameters appearing in the above equa-
tions is very important in selecting the best initial 
configuration. We can certainly employ an iterative 

procedure based on the equations above, or we can 
use the known parameters, like the required frequency 
and electrodes based on the practical manufacturing 
capability to decide the thickness of the crystal plate 
so the iterations of reducing the thickness of crystal 
blank can be kept to minimum. With f as the given 
frequency of the crystal resonator, we have thick-
nesses of crystal and metal electrodes in pure thick-
ness-shear vibration mode as 
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Consequently, the equation for the crystal blank 
thickness can be deduced from Eqs.(14) and (23) and 
are 
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respectively. Since all the parameters except crystal 
thickness b are known, we can use them for the de-
termination of the thickness of crystal blanks. These 
equations are very similar to the frequency equations 
given in Eqs.(14) and (23), so the solution procedure 
will also be similar. In addition, we have noticed that 
Eq.(24.1) has been known to design engineers as the 
primary formula for the selection of crystal blank 
thickness in the initial design stage with given fre-
quency. 
 
 
NUMERICAL EXAMPLES 
 

With given frequency Eqs.(14) and (23), we can 
use known parameters like crystal cut, crystal blank 
thickness, electrode material, and electrode thickness 
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to find the accurate resonance frequency of the reso-
nator. To evaluate the effect of electrodes at larger 
mass ratio, we consider an AT-cut quartz crystal and 
copper electrodes with the following constants 
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for frequency solution in Eq.(23). The results in Fig.2, 
in comparison with that of Bluestein and Tiersten 
(1968), are very close, although there are small dif-
ferences in the equations. Bluestein and Tiersten 
(1968) stated clearly that their approximate result is 
for mass ratios in the range of 0.005<R<0.05, but we 
found the results were also good up to larger numbers, 
say around 0.3, or 30%. Since the results are for one 
electrode material only, we can say at least for copper, 
the effect is dominated by the mass loading. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be observed that indeed the effect of 
electrodes on the resonance frequency can be well 
predicted with the mass loading consideration when 
the thickness of the electrode is relatively small, or the 
mass ratio R is in the small range specified by Blue-
stein and Tiersten (1968). As the thickness ratio B or 
the mass ratio R increases, the frequency will de-
crease, almost linearly manner. 

In crystal resonator design and production, the 
precise determination of the crystal blanks with elec-
trodes present will be important for many reasons like 
the reduction of etching process and related tuning 

and adjustments. Since the electrodes are generally 
known in the design process, we can use Eqs.(25) or 
(26) to calculate the precise crystal blank thickness in 
terms of the ratio with crystal plate without electrodes. 
This result is shown in Fig.3 with given frequency and 
electrodes as ratios defined in the equation. These 
results can be directly applied in the design process 
for given frequencies and electrodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

With a rigorous derivation of thickness-shear 
resonance frequency of electroded crystal plates, we 
have obtained the frequency equation in ratios of 
thicknesses and densities of crystal plates and elec-
trodes. By evaluating the equation for solutions of an 
infinite AT-cut plate, we found that for larger mass or 
thickness ratios, the consideration of stiffness effect 
can improve the approximate frequency predictions. 
It is obvious that in applications like crystal resonator 
design today, the higher fundamental thickness-shear 
frequency has pushed down the crystal blank thick-
ness, and the relative ratios of thickness and mass 
have been increasing to a level requiring further at-
tention in making necessary revisions to the design 
theory and tools. The results presented in this paper 
are our initial response to this matter based on our 
extensive work on the computational tool develop-
ment. We are considering incorporating these results 
into the basic thickness-shear vibration analysis 
through the correction factors based on the accurate 

Fig.2  Normalized frequency vs mass ratio of copper elec-
trode 
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Fig.3  Crystal blank thickness vs electrode thickness ratio
for copper electrode 
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frequency solutions. We believe that the new correc-
tion factors and proper consideration of electrode 
stiffness in the plate equations will make the ana-
lytical effort more suitable for practical applications. 
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