
Hu et al. / J Zhejiang Univ SCI   2005 6A(10):1030-1039 1030

                                                        
 
 
 

Data fusion for fault diagnosis using multi-class 
Support Vector Machines* 

 

HU Zhong-hui (胡中辉)†, CAI Yun-ze (蔡云泽), LI Yuan-gui (李远贵), XU Xiao-ming (许晓鸣) 
(Department of Automation, Shanghai Jiao Tong University, Shanghai 200030, China) 

†E-mail: huhzh@sjtu.edu.cn 
Received July 26, 2004; revision accepted Mar. 15, 2005 

 

Abstract:    Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion 
strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from 
several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. 
Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-
essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to 
combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into 
account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane 
with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed 
that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved 
because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 
 
Key words:  Data fusion, Fault diagnosis, Multi-class classification, Multi-class Support Vector Machines, Diesel engine 
doi:10.1631/jzus.2005.A1030                     Document code:  A                    CLC number:  TP181 
 
 
INTRODUCTION 
 

The failure of machinery reduces the production 
rate and increases the costs of production and main-
tenance. Therefore, it is important to reduce mainte-
nance costs and prevent unscheduled downtimes for 
machinery. So knowledge of what, where and how 
faults occur is very important. Condition-based 
maintenance (CBM) has the potential to decrease 
life-cycle maintenance costs, increase operational 
readiness and improve safety. Fault detection and 
failure mode diagnosis are also necessary for imple-
menting CBM (Byington and Garga, 2001). Fault 
diagnosis of machinery is an intensively researched 
field. Many effective methods have been developed. 

However, because machinery is becoming more and 
more complex and the failure mode is becoming more 
and more complicated, and the enormous improve-
ments in the performance and cost of digital signal 
processing and communication devices in recent 
years have made it practical and affordable to im-
plement complex monitoring and fault diagnostic 
techniques for electrical drive systems in online or 
offline fashion, fault diagnosis is still an ongoing 
research problem in some sense (Tay and Shen, 2003; 
Hajiaghajani et al., 2004; Shen et al., 2000). 

Shen et al.(2000) pointed out that it is difficult to 
diagnose more than one category of faults and that 
some results obtained from specific fault method are 
not easy to interpret. Therefore, they proposed a 
rough set theory based method that can diagnose more 
than one category of faults in a generic manner. 
However, one disadvantage of this method is that the 
rough set theory cannot be used to deal with con-
tinuous attributes. To apply this method, the discre-
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tization method has to be used. Because a prior 
knowledge about the attribute is difficult to obtain, it 
is hard to choose an appropriate discretization method. 
This disadvantage may adversely affect the robust-
ness and accuracy of fault diagnosis. 

Support Vector Machines (SVMs), derived from 
statistical learning theory and VC-dimension theory, 
have been widely used in many fields and show good 
performance (Vapnik, 1998). Good generalization 
ability is an important characteristic of SVMs. In 
addition, it is very fit for solving problems with small 
sample set and high dimension. Therefore, it is a 
promising theory for application to fault diagnosis. 
Little research is reported about the application of 
SVM to fault diagnosis. SVMs were originally de-
veloped to solve binary classification problems, and 
so cannot be easily applied to diagnose more than one 
category of faults. In real world problems, discrimi-
nation between more than two categories is often 
required. How to extend the SVM for binary classi-
fication to solve multi-class problem is a desired re-
search goal. Currently there are two types of ap-
proaches for constructing multi-class SVM (MSVM) 
(Hsu and Lin, 2002): One is by constructing and 
combining several binary classifiers while the other is 
by directly considering all data in one optimization 
formulation. Hsu and Lin (2002) indicated that the 
one-against-one and directed acyclic graph (DAG) 
methods are more suitable for practical use than the 
other methods. In our methods of fault diagnosis, 
three typical methods of MSVM, one-against-all, 
one-against-one and directed acyclic graph SVM 
(DAGSVM), were created by combining several bi-
nary SVM classifiers, and applied and evaluated re-
spectively. 

In the data fusion area multi-source classification 
is an important research issue. Different or the same 
types of information from several data sources are 
used for classification in order to achieve higher 
classification accuracy and robustness (Hall and Lli-
nas, 1997; Benediktsson et al., 1997). Research on 
neural networks, expert systems and artificial intel-
ligence will certainly result in new developments in 
the data fusion field which hitherto has benefited little 
from these advances (Grox, 1997). Benediktsson et al. 
(1997) pointed out that conventional statistical pattern 
recognition methods are not appropriate for classifi-
cation of multi-source data since such data cannot, in 

most cases, be modelled conveniently by a multi-
variate statistical model. Neural-network models are 
superior to statistical methods in terms of overall 
classification accuracy of training data. In many 
classification problems the SVM classifiers outper-
form the neural-network classifiers (Vapnik, 1998; 
Cristianini and Shawe-Taylor, 2000; Burges, 1998). 
The application of MSVMs to multi-source 
multi-class classification is still an ongoing research 
area. In this paper, novel schemes combining data 
fusion techniques with MSVMs are proposed to solve 
the problem of multi-source multi-class classification. 

In an information processing system, fusion can 
take place at three levels: signal level, feature level, 
and decision level. Signal-level fusion is often used to 
reduce measurement uncertainty of a single sensor. 
Feature-level fusion can effectively use complemen-
tary information from different sources. One of the 
practical limitations is the tremendous size of the 
feature space and the resulting heavy computational 
burden. To alleviate this problem, many researchers 
do not consider dependence among features from 
different data sources, so that decisions are made 
individually based on signals from each data source, 
and then combined together. This approach is known 
as decision level fusion (Pan et al., 1998). They pro-
posed an entropy based estimation method to further 
improve the estimation accuracy, which uses neural 
networks as non-parametric estimators of a posteriori 
probabilities. Papastavrou and Athans (1992) ana-
lyzed the architectures of some very simple organi-
zations in a binary hypothesis testing environment. 
Both serial and parallel architectures were proposed. 
Thomopoulos et al.(1989) considered the problem of 
decision fusion in distributed sensor systems. Dis-
tributed sensors pass their decisions on the same hy-
potheses to a fusion center that combines them into a 
final decision. We found that the feature level and 
decision level are more practical in fusion, and that 
the decision−level fusion is most flexible. Therefore, 
feature−level and decision−level fusion are mainly 
considered in this paper. 

This paper is organized as follows. In Section 2, 
the standard SVMs for binary classification are re-
viewed, since all the MSVMs evaluated in this paper 
are obtained by solving several SVMs for binary 
classification and then combining them. We introduce 
one-against-all, one-against-one and DAGSVM 
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methods based on solving and combining several 
binary SVM classifiers in Section 3. In Section 4, the 
fusion strategies for fault diagnosis are discussed. 
Numerical experiments are given in Section 5. Finally, 
conclusion is given in Section 6. 
 
 
SUPPORT VECTOR MACHINES FOR BINARY 
CLASSIFICATION 
 

A concise introduction of SVMs for binary 
classification is given in this section. An excellent 
description of SVMs is provided by Cristianini and 
Shawe-Taylor (2000). For the training dataset 

1{( , )} { 1, 1},l n
i i iy R= ∈ × + −x where xi represents con-

dition attribute and yi represents class attribute, they 
must be normalized before being used to train SVM 
classifier. SVMs optimize the classification boundary 
by separating the data with maximal margin hyper-
plane, i.e., the optimal classification hyperplane. In 
real world situations, the data are usually inseparable, 
so linearly inseparable and nonlinearly inseparable 
cases are discussed in the following (Burges, 1998; 
Cristianini and Shawe-Taylor, 2000). 

For the linearly inseparable case, the optimal 
classification hyperplane can be obtained by solving 
the optimization problem 
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where C is the constant of capacity control and iξ  is 
the slack factor that permits margin failure of corre-
sponding xi. 

According to the Lagrange optimization method 
and duality principle, the optimization problem Eq.(1) 
can be rewritten as follows: 
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By solving the above problem Eq.(2), we can get the 

optimal hyperplane with maximal margin 
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Therefore, the decision function based on SVM for 
linear classification in the input space is 
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For the nonlinearly inseparable case, the original 

data are projected into a certain high dimensional 
Euclidean space H by a nonlinear map Φ:Rn→H, so 
that the problem of nonlinear classification is trans-
formed into that of linear classification in the space H. 
By introducing the kernel function 

( , ) ( ), ( ) ,i j i jK Φ Φ=x x x x  it is not necessary to 

explicitly know Φ(⋅) (Burges, 1998). So that the op-
timization problem Eq.(1) can be translated directly to 
the more general kernel version 
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The problem Eq.(5) can be rewritten as follows 
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By solving the problem Eq.(6), we can get the optimal 
hyperplane with maximal margin 
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and the decision function that separates training vec-
tors into two classes in the input space is 
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MULTI-CLASS SUPPORT VECTOR MACHINES 
 

Real world problems often require classification 
between more than two classes. However, the prob-
lem of multi-class classification does not usually have 
easy solution, especially for classifiers like SVMs 
(Platt et al., 2000). How to extend the SVM for binary 
classification to solve multi-class problem is a desired 
research goal. Currently there are two types of ap-
proaches for constructing MSVMs (Hsu and Lin, 
2002). One is by constructing and combining several 
binary classifiers while the other is by directly con-
sidering all data in one optimization formulation. It is 
generally simpler to construct classifier theories and 
algorithms for two classes than for more than two 
classes. Therefore, an effective strategy is to combine 
many two-class classifiers into a multi-class classifier. 
Hsu and Lin (2002) indicated that the one-against-one 
and DAG methods are more suitable for practical use 
than the other methods. Therefore, the approaches of 
creating MSVM by constructing and combining sev-
eral binary SVM classifiers, such as one-against-all, 
one-against-one, and DAGSVM, are mainly dis-
cussed in this section. 

Given a training dataset 1{( , )} ,l
i i iy =x where 

xi∈ún represents condition attribute and yi∈{1, …, K} 
is the class attribute of xi, the objective of multi-class 
classification is to correctly discriminate these classes 
from each other. Three approaches of constructing 
MSVMs are presented below. 

The earliest implementation for SVM 
multi-class classification is probably the one-against- 
all method (Hsu and Lin, 2002). Based on the SVM 
for binary classification, the MSVM using one- 
against-all strategy can be constructed by applying the 
following procedure (Vapnik, 1998): 

(1) Construct K binary SVM classifiers where 
fi(x) (i=1, …, K) separates training vectors of the class 
i from the other training vectors (sgn[fi(x)]=1), if 
vector x belongs to the class i; sgn[fi(x)]=−1 other-
wise). 

(2) Construct the K-class classifier by choosing 
the class corresponding to the function with maximal 
value among fi(x) (i=1, …, K). Therefore, the final 
decision function is 

 
{ }1( ) arg max ( ), , ( )Kd f f= …x x x                    (9) 

The one-against-one method constructs the 
classifiers where each one is trained on data from two 
classes. There are different methods for doing the 
future testing after all binary classifiers are con-
structed. Hsu and Lin (2002) used the voting strategy 
suggested in (Friedman, 1996), which is also called 
the “Max-Wins” strategy. However, if two classes 
have identical votes, it may not be a good strategy. 
Therefore, a modified testing strategy is proposed in 
this paper. 

In our modified testing strategy, the 
“Max-Wins” strategy is first applied to test the 
one-against-one MSVM. If more than one class has 
identical votes, the following strategy is used based 
on the results obtained by using the “Max-Wins” 
strategy. Suppose the max votes of p classes are equal 
to m, each of the p classes has m functions fij(x) 
(i=1, …, m), j=kh∈{1, …, K} (h=1, …, p). The deci-
sion function for multi-class classification is 

 

1
( ) arg max ( )

m

ijj i
d f

=

 
=  

 
∑x x                       (10) 

 

that is, the class attribute of x is determined by the 
sum of maximal distances to the optimal classification 
hyperplane. 

The training phase of DAGSVM proposed by 
Platt et al.(2000) is the same as that of the 
one-against-one method. However, in the testing 
phase, it uses a rooted binary directed acyclic graph 
which has internal nodes and leaves. Each node is a 
binary SVM of ith and jth classes. Given a test sample, 
starting at the root node, the binary decision function 
is evaluated. Then it moves to either left or right de-
pending on the output value. Therefore, we go 
through a path before reaching a leaf node which 
indicates the predicted class. An advantage of using a 
DAG is that some analysis of generalization can be 
established (Hsu and Lin, 2002; Platt et al., 2000). 
There are still no similar theoretical results for 
one-against-all and one-against-one methods yet. In 
addition, its testing time is less than the 
one-against-one method. 
 
 
DATA FUSION STRATEGIES 
 

During the past decades, the data fusion problem 
has been well researched. However, it is still an on-
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going research area because of the promotion from the 
advances in other fields. The synergistic use of over-
lapping and complementary data sources provides 
information that is otherwise not available from in-
dividual sources. Furthermore, multiple data sources 
can provide more robust performance due to the in-
herent redundancy (Liggins et al., 1997). Therefore, 
data fusion techniques of combining data from several 
data sources can yield higher accuracy and robustness 
than that achieved by single data source. The tradi-
tional architecture for fusion is centralized. Data from 
multiple data sources are sent to a single location 
where the data are fused. Due to the advances in 
computer science and communication, the distributed 
architecture becomes feasible. In this architecture the 
data from individual data sources in lower level nodes 
are processed and then the results are sent to higher 
level nodes to be combined. Although it is conceptu-
ally more complicated, the distributed fusion archi-
tecture has the following advantages: lighter proc-
essing load at each fusion node; no need to maintain a 
large centralized database; lower communication load; 
higher robustness. The distributed fusion architecture 
is also a necessity since many fusion systems have to 
be built with existing fusion systems as components. 
Therefore, the proposed fusion schemes in this paper 
are focused on the distributed architecture. 

In this paper, new centralized and distributed 
architectures based on MSVMs are proposed. The 
proposed schemes make full use of MSVM charac-
teristic. One is that the MSVMs discussed in this 
paper are created by constructing and combining 
several binary SVM classifiers. The other is that the 
training of a binary SVM classifier is to obtain an 
optimal classification hyperplane with maximal mar-
gin. Therefore, the distances from a vector with un-
known class label to the optimal classification hy-
perplane and the binary outputs of the decision func-
tions, such as Eqs.(3), (4), (7), (8), are the key bases of 
the proposed schemes. The centralized fusion scheme 
is labelled as the fusion Scheme I. The distributed 
fusion schemes include the fusion Schemes II, III, IV 
and V. In each of the proposed schemes, three types of 
aforementioned MSVMs are applied separately. 

The fusion Scheme I is illustrated in Fig.1. In this 
scheme, the features of all the data sources are ex-
tracted and combined to form a single input space. 
Then the MSVM for multi-class classification is 
trained and tested to create a decision maker. 

 
 
 
 
 
 
 
 
 
 
 
 
In the fusion Scheme II (Fig.2), the features of 

every data source are extracted and used to form an 
input space, respectively. Then the sub-MSVM deci-
sion makers are created. Suppose that the class at-
tribute set is CS={1, 2, …, K}, using the majority vote 
strategy, the final decision is 
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where d(x) is the final decision function, Vj is com-
prised of the obtained votes of class j and di(x) is the 
output of the ith MSVM trained using the data from 
the ith data source. It is possible that more than one 
class have equal maximal votes. That is the limitation 
of this scheme. In this situation, the final decision can 
be decided by the following strategies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Data fusion Scheme I 
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Suppose the max votes of p classes are equal to 
m. Thus, the jth class has m functions fij(x) (i=1, …, 
m), j=kh∈{1, …, K} (h=1, …, p). For the 
one-against-all MSVM, the class attribute of the 
vector x is determined by the sum of maximal dis-
tances to the optimal classification hyperplane. 

 

1
( ) arg max ( )

m

ijj i
d f

=

 
=  

 
∑x x                        (12) 

 
For the one-against-one and DAG MSVMs, the aux-
iliary decision function is 
 

1
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In the fusion Scheme III (Fig.3), the difference 

from the fusion Scheme II is that the output of the ith 
MSVM is not a decision, but the maximal distance of 
the vector x to the optimal classification hyperplane. 
For the one-against-all method, the distance function 
fij(x) (i=1, …, N; j=1, …, K) can be directly obtained 
by using the real output of each binary sub-SVM 
classifier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the one-against-one MSVM, the function 
fij(x) is defined as 
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ijV

ij ijh
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f f
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where Vij is the vote number of the jth class of the ith 
one-against-one MSVM trained by using the data 

from the ith data source, and fijh(x) is the real output of 
the binary sub-SVM classifier, which belongs to the 
ith one-against-one MSVM and gives its vote to the 
jth class. 

In the DAGSVM method, for a problem with K 
classes, (K−1) decision nodes will be serially evalu-
ated in order to derive a final decision (Platt et al., 
2000). The last decision node is a binary sub-SVM 
classifier. Suppose that the final decision of the ith 
DAGSVM is that the vector x belongs to the class r, 
and that the final maximal distance to the optimal 
classification hyperplane is md. We set the corre-
sponding maximal distance function is fir(x)=|md|. 
The maximal distance functions of the ith DAGSVM 
for the other (K−1) classes are defined as fiq(x)=0 (i=1, 
…, N), q∈{1, …, K} and q≠r. 

Among the N MSVMs corresponding to the N 
data sources, the maximal distance function for each 
class is defined as 
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Thus, the final decision function is 
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In the fusion Scheme IV (Fig.4), the difference 
from the fusion Scheme III is that the real output of 
each binary sub-SVM in the ith MSVM, the respec-
tive maximal distance of the vector x to the optimal 
classification hyperplane, is used as a feature for fu-
sion. Furthermore, these features are weighted in the 
fusion process (Yan et al., 2003). The final decision 
function is defined as 
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where cij (i=1, …, N; j=1, …, K) is the weighted fac-
tor. 

For the one-against-one MSVM, there exists 
another fusion strategy illustrated by Fig.5. The de-
cision function is given as Eq.(18). 
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Fig.3  Data fusion Scheme III 
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where vij is the vote number of the jth class of the ith 
MSVM trained by using the data from the ith data 
source. 

Table 1 summarizes  the  schemes  presented  in 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

this section. No additional formula is needed in 
Scheme I since the centralized strategy is used and 
only one input space exists. In Schemes II−V the 
distributed strategy is applied. 
 
 
EXPERIMENTAL RESULTS 
 

Tay and Shen (2003) proposed a method that 
uses rough set theory to diagnose the valve fault for a 
multi-cylinder diesel engine. The original vibration 
signals are sampled from a 4135 engine surface. The 
rated engine power is 80 hp and the rated engine 
speed is 1500 rpm. Due to the complex structure and 
multi-excitation sources that exist in the diesel engine, 
a great deal of periodical self-exciting and forced 
vibration is present. Four states are researched (Tay 
and Shen, 2003): Normal state; intake valve clearance 
is too small; intake valve clearance is too large; ex-
haust valve clearance is too large. Among these four 
states, three fault types are obtained by deliberately 
introducing the corresponding fault conditions into 
the intake valve and exhaust valve on the second 
cylinder head. Three sampling points are selected for 
collecting vibration signals. They are located at the 
first cylinder head, the second cylinder head and the 
centre of the piston stroke, on the surface of the cyl-
inder block. 

Shen et al.(2000) pointed out that due to the 
complexity of vibration signals, the original time 
series waveform cannot indicate conspicuous differ-
ence among the different fault types, and the corresp- 
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Only applicable to 
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Table 1  Comparison of the proposed schemes 
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onding conventional FFT spectrum also cannot dis-
criminate between these fault types. For thoroughly 
utilizing the useful information, six features are ex-
tracted from the vibration signals at each sampling 
point. These features represent the information from 
both the frequency domain and time domain. The 
transformation formulas for generating the features 
are introduced as follows (Shen et al., 2000). 

(1) FE–waveform complexity in frequency do-
main 

 
/ 2
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( ) ln ( )
N

i
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where X(i) is the FFT spectrum. FE can be seen as 
frequency domain entropy. 

(2) CF–the center frequency of spectrum 
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where ( ( ))X iµ  is defined as 
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(3) TE–waveform complexity in time domain 
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(4) NC–nonperiodic complexity 
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In Eqs.(22) and (23), λi is the singular value of a 

time series in accordance with its period and m is the 
number of periods in a time series. TE serves as the 
time domain entropy. 

(5) Vx–the variance of a time series 
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(6) σ4-kurtosis of a time series 
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In Eqs.(24) and (25), n is the length of a time 

series, x  is the mean value of the whole series and 
x(ti) is the time series. 

Thus, each instance in the dataset is composed of 
18 condition attributes (six features from each sam-
pling point) and a class attribute (four states). The 
whole dataset was listed by Shen et al.(2000). It con-
sists of 37 instances. In the distributed schemes, the 
six features from one sampling point, added the class 
attribute, form an individual dataset. Therefore, three 
datasets from corresponding three data sources are 
constructed. 

The cross-validation test is divided into two 
equal parts for showing the effect of the rough set 
theory in fault diagnosis by Tay and Shen (2003). 
Each part contains the half instances in every class, 
and these two parts are trained and tested alternatively. 
The excerpted classification accuracy is listed in Ta-
ble 2 showing that the average classification accuracy 
is 76.32%. 

 
 
 
 

 
 

 
 
In our experiment, 25 instances of the whole 

dataset are used as training set and the rest are used as 
test set. The choice of kernel and of the regularizing 
parameter was determined via performance on a 
validation set. Eighty percent of the training set is 
used for training binary SVM classifiers and the other 
20% of the training set is used as validation set. This 
avoids the problem of “training on the test data”, 
which arises when a classifier undergoes a long series 
of refinements guided by the results of repeated test-
ing on the same test data (Duda et al., 2001). The test 
set is used to test the classification accuracy in dif-
ferent strategies. The whole experiment is repeated 50 
times, where the training set and test set, with the 
aforementioned fixed set sizes, are randomly selected 
without replacement every time. The average ex-
perimental results are given in Table 3. Given a 

Dataset Classification accuracy (%)
1st part−TRD; 2nd part−TD 78.95 
2nd part−TRD; 1st part−TD 73.68 

TRD: training data; TD: testing data  

Table 2  Classification accuracy of each part 
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complete comparison, the data from every data source 
(sampling point) are used to train and test MSVM 
respectively. The classification accuracies of three 
types of MSVM are given in D1, D2 and D3 columns. 
Scheme I is the centralized fusion strategy. All the 
Schemes II−V are distributed strategies of data fusion. 
Scheme II is mainly based on majority-vote strategy. 
Scheme III is mainly based on max-distance strategy. 
Scheme IV is mainly based  on  max-weighted-dis- 
tance strategy. Scheme V is also based on major-
ity-vote strategy in some sense, and is different from 
Scheme II in that Scheme V takes into account the 
vote of each binary sub-SVM classifier in all MSVMs. 
Table 3 shows that all the average classification ac-
curacies of combined classifiers in fusion strategies 
outperform those of the classifiers not using fusion 
strategies, except for Scheme III for DAGSVM. The 
Scheme IV for one-against-all MSVM has the best 
classification accuracy. The classification accuracy 
obtained by our methods remarkably outperforms that 
obtained by using rough set theory (Table 2). 
 
 
CONCLUSION 
 

This paper proposed several new centralized and 
distributed data fusion strategies based on MSVMs. 
They are evaluated by applying them to fault diagno-
sis for a diesel engine. Three methods of constructing 
MSVMs by combining several binary classifiers, 
one-against-one, one-against-all and DAG, are 
mainly discussed. The proposed schemes make full 
use of the characteristics of MSVMs. One is that the 
MSVMs discussed in this paper are created by con-
structing and combining several binary SVM classi-
fiers. Another is that the training of a binary SVM 
classifier is done by finding the optimal classification 
hyperplane with maximal margin. The distance from a 
vector with unknown class label to the optimal classi- 

 
 
 
 
 
 
 
 
 

fication hyperplane and the binary outputs of the de-
cision functions are the key bases of the proposed 
fusion schemes. When the data fusion strategy is not 
used, the one-against-one and DAG methods have 
higher accuracy (Columns D1, D2, and D3 in Table 3). 
Hsu and Liu (2002) pointed out that the 
one-against-one and DAG methods may be more 
suitable for practical use. If the centralized data fusion 
strategy is used, the accuracy of the three types of 
MSVM methods differs little (Column S.I in Table 3). 
However, in the distributed data fusion situation, 
different fusion strategies result in different per-
formance for the three types of MSVM methods. For 
the fusion Schemes II and III, the one-against-one 
method has the highest accuracy. Therefore, the fu-
sion Schemes II and III are most suitable for the 
one-against-one method. The fusion Scheme IV is 
most suitable for the one-against-all method and the 
improvement of accuracy is outstanding. The 
one-against-one method also yields high accuracy in 
fusion Scheme IV. The fusion Scheme V for the 
one-against-one method yields highest accuracy. In 
all three distributed fusion strategies, the DAGSVM 
always has the lowest accuracy. The fusion Scheme 
III for all three MSVM methods always has the lowest 
accuracy among all the fusion strategies. To sum up, 
the one-against-all and one-against-one methods with 
the distributed fusion strategies are more suitable for 
practical use, and for all MSVM methods, the fusion 
Scheme III is not satisfactory. In conclusion, our 
proposed methods are promising approaches that can 
improve the robustness and accuracy of fault diagno-
sis, and also have other applications. In practice, with 
different emphasis on the performance, different fu-
sion strategy is applied. For example, while empha-
sizing the robustness, the distributed fusion strategy is 
more appropriate. Future work is to evaluate the ef-
fectiveness of proposed methods if the distributed 
data sources are heterogeneous. 
 

 
 
 
 
 
 
 
 
 
 

Single data source MSVM D1 D2 D3 S.I S.II S.III S.IV S.V 

One-against-all (%) 91.25 75.42 91.67 94.59 95.00 92.50 96.25 − 
One-against-one (%) 92.92 80.00 92.50 94.59 96.25 92.92 95.00 96.25 
DAGSVM (%) 92.92 80.00 92.50 94.59 95.00 87.92 94.17 − 

D1, D2, D3: Data source 1, Data source 2, Data source 3; S.I, S.II, S.III, S.IV, S.V: Scheme I, Scheme II, Scheme III, 
Scheme IV, Scheme V 

Table 3  Comparison of experimental results 
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