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Abstract:    As the popularity of digital images is rapidly increasing on the Internet, research on technologies for semantic image 
classification has become an important research topic. However, the well-known content-based image classification methods do 
not overcome the so-called semantic gap problem in which low-level visual features cannot represent the high-level semantic 
content of images. Image classification using visual and textual information often performs poorly since the extracted textual 
features are often too limited to accurately represent the images. In this paper, we propose a semantic image classification ap-
proach using multi-context analysis. For a given image, we model the relevant textual information as its multi-modal context, and 
regard the related images connected by hyperlinks as its link context. Two kinds of context analysis models, i.e., cross-modal 
correlation analysis and link-based correlation model, are used to capture the correlation among different modals of features and 
the topical dependency among images induced by the link structure. We propose a new collective classification model called 
relational support vector classifier (RSVC) based on the well-known Support Vector Machines (SVMs) and the link-based cor-
relation model. Experiments showed that the proposed approach significantly improved classification accuracy over that of SVM 
classifiers using visual and/or textual features. 
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INTRODUCTION 
 

The popularity of digital images is rapidly in-
creasing due to improving digital imaging technolo-
gies, and convenient availability facilitated by the 
Internet. Organizing these images into categories and 
providing effective indexing is imperative for real- 
time browsing and retrieval. Typically, existing im-
age classification work such as that of Vailaya et 
al.(2001) follows the paradigm of content-based im-
age retrieval (CBIR) technologies, i.e., representing 
images using a set of low-level visual features such as 
colour, texture and shape, and grouping visually 
similar images as training images. An image may 

supply much information from which many different 
concepts or ideas can be extracted. Users typically do 
not think in terms of low-level features. As a result, 
most of these systems have poor classification per-
formance since low-level visual features cannot rep-
resent the high-level semantic content of images. 

To overcome the so-called semantic gap, some 
current research efforts (e.g., Chen et al., 2001; Zhao 
and Grosky, 2002; Paek et al., 1999) focus on com-
bining low-level features and high-level features for 
semantic image classification and retrieval, in which 
the text information (e.g., image annotations, or sur-
rounding texts on the Web pages that contain the 
images) can be used as potential high-level semantic 
features to represent the images. However, a pure 
combination of traditional text-based and con-
tent-based approaches is not adequate for dealing 
with the problem of image classification and retrieval 

Journal of Zhejiang University SCIENCE  
ISSN 1009-3095  
http://www.zju.edu.cn/jzus        
E-mail: jzus@zju.edu.cn 

 
 
* Project supported by the Hi-Tech Research and Development Pro-
gram (863) of China (No. 2003AA119010), and China-American 
Digital Academic Library (CADAL) Project (No. CADAL2004002)



Tian et al. / J Zhejiang Univ SCI   2005 6A(11):1268-1283 1269

on the WWW (Chen et al., 2001), mainly because of 
the following difficulties: 

(1) The textual feature source problem. How to 
obtain high-level textual features is a key issue. 
Clearly, image annotation is a tedious process. 
Moreover, it is often difficult to make exactly the 
annotations on the images (Chen et al., 2001). Many 
works (Chen et al., 2001; Zhao and Grosky, 2002; Cai 
et al., 2004; Wang et al., 2004) use the text content 
from the document that contains an image as the se-
mantic features of that image. For example, the image 
URLs and filenames, page titles, ALT text, and sur-
rounding text on the Web pages can be extracted to 
represent the images on the same pages. However, the 
available textual features are usually less accurate 
than annotating text since there is already too much 
clutter and irrelevant information on the Web pages 
(Chen et al., 2001). Moreover, some Web images 
have few or even no surrounding texts. Therefore, we 
should resolve the problem of noisy information and 
few surrounding text in the textual feature extraction.  

(2) The very high feature dimensionality. In 
general, the dimensionality of textual features is often 
much higher (even up to 2000~5000). Zhao and 
Grosky (2002) utilized latent semantic indexing (LSI) 
technique to reduce the dimensionality of textual 
features and to improve the retrieval performance of 
Web documents. However, their conclusion cannot be 
directly applied in other Web image collections since 
in their experiments only 43 keywords are extracted 
to represent the images.  

(3) The cross-modal correlation. Once we ex-
tract the visual and textual features of images, we can 
combine the two kinds of feature vectors into a 
high-dimensional vector (Zhao and Grosky, 2002), or 
calculate the similarities based on the visual and 
textual features separately and then use the linear 
combination of these two similarities for image re-
trieval (Chen et al., 2001). In these approaches, the 
textual features are treated as additional features, and 
the different types of features remain unchanged 
during the learning process. Therefore, the correla-
tions among different modals of features are not fully 
explored. 

Alternatively, some researchers investigated 
how to exploit link information to improve the per-
formance of image clustering and retrieval. The un-
derlying fundamental premise is that images which 

are co-contained in pages are likely to be related to the 
same topic, and images which are contained in pages 
that are co-cited by a certain page are likely related to 
the same topic (Lempel and Soffer, 2002). Pi-
cASHOW is such a Web image retrieval system that 
is based on several link analysis algorithms (Lempel 
and Soffer, 2002). It can retrieve relevant images even 
when those are stored in files with meaningless names. 
Cai et al.(2004) exploited visual, textual and link 
information to hierarchically cluster Web image 
search results. By exploiting link information, one 
can also explore the inter-relationships between Web 
images and their textual annotations to improve Web 
image retrieval (Wang et al., 2004). 

However, the link regularities in many real- 
world link data such as Web pages are very complex. 
For example, pages with the same class tend to link to 
pages that are topically similar to each other, but also 
link to a wide variety of other pages without semantic 
reason (Yang et al., 2002). The presence (or absence) 
of such a complex regularity may significantly in-
fluence the optimal design of a link-based Web image 
classification or retrieval model. However, the above 
approaches do not automatically identify which links 
are most relevant to the task. As a result, this lack of 
selectivity will make the models more difficult to be 
practically applicable (Neville and Jensen, 2003). 
Therefore, what is important is to be able to effec-
tively capture such complex regularity in link-based 
image classification models so that they can be robust 
in the real-world environment. 

In this paper, we propose a semantic image 
classification approach using multi-context analysis. 
A fundamental aspect of our approach is the explicit 
use of the context. For a given image, it models the 
relevant textual information as its multi-modal con-
text, and regards the related images connected by 
hyperlinks as its link context. Two kinds of context 
analysis models, i.e., cross-modal correlation analysis 
(CMC) and link-based correlation model (LCM), are 
used to capture the correlation among different mo-
dals of features and the topical dependency among 
images that is induced by the link structure. Specifi-
cally, instead of directly using link information for 
classification, this paper explores how to use linkage 
semantic kernels to reveal the semantic relationships 
underlying the link structure. We propose a new col-
lective classification model called relational support 
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vector classifier (RSVC), based on the well-known 
Support Vector Machines (SVMs) and the linkage 
semantic kernels. On a sports Web image collection 
crawled from Yahoo!, the experiments showed that 
the proposed approach achieved significant im-
provement in classification accuracy over SVM clas-
sifiers using visual and/or textual features. The pro-
posed approach has been implemented in a Web im-
age classification prototype, ConWic. 

The paper is organized as follows. Section 2 
presents the system architecture of the ConWic sys-
tem. We describe the visual, textual and relational 
representation of Web images in Section 3, and then 
present the multi-context analysis in Section 4. The 
RSVC models are described in Section 5. Experi-
ments and results are presented in Section 6. Finally, 
we conclude the paper in Section 7. 
 

 
OVERVIEW OF THE CONWIC SYSTEM 
 

The ConWic system (Context-Based Web Image 
Classification & Clustering system) was developed to 
exploit visual, textual and relational information to 
aid classification, clustering and semantic-sensitive 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

retrieval of Web images. The architecture of the 
ConWic system is shown in Fig.1a. As can be seen 
from this figure, the system consists of four compo-
nents: the preprocessing component, the feature ex-
traction component, the multi-context analysis com-
ponent, and the classification and clustering compo-
nent. The preprocessing component performs several 
preprocessing tasks such as the mapping between 
local file names and pages’ URLs, the extraction of 
images’ properties from pages, and the splitting of 
train/test images. In the feature extraction component, 
we have three modules, namely, the visual, textual 
and relational feature extractors. In the multi-context 
analysis component, cross-modal correlation analysis 
is used to reveal the correlationship among different 
types of features, and link-based correlation analysis 
is used to capture the topical correlation among im-
ages that is induced by the link structure. Finally, the 
classification and clustering component exploits 
some traditional machine learning algorithms such as 
SVMs or the link-based models such as RSVCs to 
classify or cluster the given image collection.  

Fig.1b shows the main interface of the ConWic 
system. As an experimental prototype, the system 
currently does not include the image retrieval com-
ponent and the user feedback interface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.1  The architecture (a) and main interface (b) of the ConWic system 
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FEATURE REPRESENTATIONS OF IMAGES 
 

In this section, we present in detail how to rep-
resent Web images using the visual, textual and rela-
tional features. Fig.2 depicts the basic idea for the 
Web image representation models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Most existing Web mining algorithms usually 

treat the whole page as an indivisible node with no 
internal structure. As mentioned in (Tian et al., 2004), 
pages should be further divided into some logic 
snippets with a single topic, and this kind of logic 
snippets, e.g., DOM nodes (Document Object Model, 
http://www.w3c.org/DOM/), should be treated as the 
basic analysis units in Web mining tasks so as to 
effectively reduce the influence of noisy information 
in pages. Similarly, here we also need to segment 
each page into several finer-grain blocks, each of 
which contains an image and its surrounding texts. As 
in (Cai et al., 2004), we also refer to them as image 
blocks. 

The often-used page segmentation method is 
directly based on DOM trees. In the HTML DOM tree, 
an image is always a leaf node, and thus the text of its 
sibling nodes can be used as the surrounding text of 
the image. Naturally, we can use the DOM based 
method to segment pages into different image blocks. 
Alternatively, Cai et al.(2003) proposed a vision- 
based page segmentation (VIPS) algorithm to extract 
the semantic structure of a Web page based on its 
visual presentation. The VIPS algorithm has been 
successfully applied in Web image clustering and 

retrieval systems (Cai et al., 2004; Wang et al., 2004). 
However, it also suffers from high complexity. For 
simplicity, here we use the DOM based method, 
which yields very satisfactory results on our gathered 
Web page collection. Several heuristic rules can also 
be used to remove some “noisy” images such as 
navigational bars and advertisement icons. Fig.3 
shows a simple example of DOM page partitioning, in 
which each image block corresponds to a DOM sub-
tree between tag <TR> and tag </TR>. 

 
Visual feature representation 

Each image Ii∈I can be represented by a visual 
feature vector )V(

if , where I denotes the image col-
lection. The most widely used visual features include 
(Ma and Zhang, 1998): (1) color features such as 
color histogram, color correlogram, color moment, 
color coherence vector; (2) texture features such as 
edge histogram, co-occurrence matrix and Gabor 
wavelet feature; (3) shape features such as Fourier 
descriptor and moment invariant. In addition, some 
combined features such as color texture moments (Yu 
et al., 2002) can also be used. However, it is often 
very difficult to find one or several visual features that 
are robust for all types of images or for all image 
analysis tasks. Thus in practice, different sets of vis-
ual features may be used to represent different types 
of images. In our approach, we use eight classes of 
visual features.  
 
Textual feature representation 

For a Web image, the texts extracted from the 
Web page that contains that image, such as the file-
name and URL of the image, the image ALT in page 
source, the page title, the surrounding text, are usually 
very useful for revealing the semantic meaning of that 
image (Chen et al., 2001; Cai et al., 2004). However, 
none of all these texts are semantically related to the 
image. For example, we can find Web images with 
meaningless filenames such as “myimages/image1”, 
or with ALT such as “photo” that do not indicate 
explicit semantics. So in our approach, the text fea-
tures are extracted only from the surrounding text of 
images. When we use the DOM based method to 
segment each Web page into several blocks, the text 
of the sibling nodes can be treated as the surrounding 
text of the image.  

 

Fig.2  The basic idea of the representation model for Web
images 
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After the extraction of surrounding text, a textual 

term vector is used to represent the textual features for 
each image Ii∈I. That is, each term in the vector is 
weighted by its term frequency (TF),  

 
(T)

,1 , ,[ ,..., ,..., ]i i i j i mt t t=f                        (1) 

 
where ti,j is the frequency of term j appearing in the 
text description of image Ii, and m is the size of the 
term dictionary constructed from the training set. 
Note that for constructing the term dictionary, the 
stopwords and rare keywords are removed. Similar to 
the TFIDF method used in information retrieval, here 
each term can also be weighted by the factor TFIIF 
(Term Frequency Inverse Image Frequency), 
 

(T)
,1 1 , ,[ log( / ),..., log( / ),..., log( / )]i i i j j i m mt N n t N n t N n=f

                                                                                (2) 
 

where nj stands for the number of images character-
ized by term j, and N is the total number of images. 
 
Relational feature representation 

To derive the relational feature representation of 
images, we first describe how to construct an image 
graph whose weights defined on the edges reflect str- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
uctural relationships between images. To further elu-
cidate the structural relations between images, we 
introduce some notations. Let pk∈P denote the kth 
Web page or document, and Ii, Ij∈I denote two images 
numbered i and j, where P and I are the sets of all Web 
pages and all the images, K=|P|, N=|I|. 

Usually, there are three kinds of structural rela-
tions in the Web image domain: 

(1) Ii∈pk: A page pk contains an image Ii. For 
example, an image pbhp_blu.gif is contained in a file 
hh296.html,  

 

<IMG border=0 height=28 src=“hh296.files/ 
pbhp_blu.gif” width=84> 

 

Accordingly, an image-in-page matrix , ,[ ]k i K Nx=X  

can be derived to represent the relation Ii∈pk. As in 
(Cai et al., 2004), xk,i can be set to an importance 
value of image Ii in page pk. For simplicity, here we 
group images into two types: central images (e.g., I1, 
I4, I5, I7 in Fig.4) and marginal images (e.g., I2, I3, I6 
in Fig.4). Thus, xk,i can be defined as: 
 

,

2 , if  and  is a cental image;

= , if  and  is a marginal image;  (3)

0, otherwise.

k

k

p i k i

k i p i k i

a I p I

x a I p I

∈


∈



<TR> 
    <TD><IMG alt=photo border=1 height=409  
    src="hh 150.files/capt.ny16512161440.ravens_colts_ny165.jpg"  
    width=270> <BR>ADVANCE FOR WEEKEND EDITIONS, DEC 18   
    Indianapolis Colts quarterback Peyton  <BR>  
    href="http://sports.yahoo.com/top/mostpopular">View  
    Popular</A><BR></DIV></TD> 
</TR>

<TR> 
   <TD align=middle><A  href="http://sports.yahoo.com/nfl/photo?    
   slug=nad11612200517.ravens_colts_nad116&amp;prov=ap"><IMG  
   alt=photo border=0 height=130  
   src="hh 150.files/thumb.nad11612200517.ravens_colts_nad116.jpg"  
   12:20 am EST<BR>AP </SPAN></SMALL></TD> 
 </TR> 

<TR> 
   <TD align=middle><A href="http://sports.yahoo.com/nfl/photo? 
   slug=cxb11112192246.bears_fans_seats_cxb111&amp;prov=ap"><IMG  
   alt=photo border=0 height=85  
   src="hh 150.files/thumb.cxb11112192246.bears_fans_seats_cxb111.jpg"  
   </SPAN></SMALL></TD> 
</TR>

<TR> 
  <TD align=middle><A href="http://sports.yahoo.com/nfl/photo? 
    slug=nad11512200518.ravens_colts_nad115&amp;prov=ap"><IMG  
    alt=photo border=0 height=129  
    src="hh 150.files/thumb.nad11512200518.ravens_colts_nad115.jpg"  
    </SPAN></SMALL></TD> 
 </TR> 

Fig.3  An example page segmentation based on DOM tree
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where 
kpa  is a normalization factor such that 

, =1.
i k

k i
I p

x
∀ ∈
∑  Fig.4b shows the image-in-page matrix 

that corresponds to the link graph shown in Fig.4a. 
(2) Ij↔pk: The image block Ij has links to page pk, 

or page pk points to Ij’s image file. For example, an 
image block in page hh296.html has a link to page 
hh39.html: 

 
<TR> 

<TD align=middle><A href=“hh39.html”><IMG 
alt=photo border=0 height=85 src=“hh296.files/ 
bears_fans_seats_cxb111.jpg”> 

</TD> 
</TR> 
 

Accordingly, an image-to-page matrix 
, ,[ ]I P i k N Kl↔ =L  can be derived to represent the rela-

tion Ij↔pk: if the relation exists, li,k=1; otherwise li,k=0. 
Fig.4c shows an example of the image-to-page matrix. 

(3) pj↔pk: Page pj points to page pk. Note that 
here the relation pj↔pk includes neither the links in 
the image blocks of page pj that point to page pk, nor 
the navigational hyperlinks and advertisement hyper-

links in page pj. For example, page hh296.html has a 
hyperlink to page hh291.html: 

 
<A class=yspmore href=“hh291.html”>David Terrell 
Gallery </A> 
 

Accordingly, a page-to-page matrix P P→ =L  

, ,[ ]j k K Kl  can be derived to represent the relation 

pj↔pk: if the relation exists, li,k=1; otherwise li,k=0. 
Fig.4d shows an example of the page-to-page matrix. 

The three relational matrices can be used as basis 
to facilitate construction of the page-to-image adja-
cency matrix among the pages in P and the images in 
I: 

 

~ ( , ) [ (1 ) ][ (1 ) ]I P P P K I Pε δ ε ε δ δ→ ↔′= + − + −A L I L X , 
                                                                                (4) 
 
where L′ denotes the transpose of L, IK is a K×K 
identity matrix, ε and δ are the weights, 1≥ε≥0, 1≥δ≥0. 
In general, choosing small values of ε and δ will boost 
the relationship between pages and the images which 
they themselves contain (i.e., Ii∈pk), while choosing 
large value of ε will introduce bias towards relations 
between pages and images contained in pages linked 
from them (i.e., those that correspond to pj↔pk), and 
choosing large value of δ will introduce bias towards 
relations Ij↔pk. Clearly, AI~P(0,0)=X, AI~P(0,1)= 

I P↔′L , ~ (1,0)I P P P→=A L X , ~ (1,1)I P P P I P→ ↔′=A L L .  
Naturally, we can derive the image adjacency 

matrix among the images in I, which naturally defines 
an image graph GI. 

 
~ ~ ~I I I P I P′=A A A                            (5) 

 
The matrix AI~I can be used as the basis for 

calculation of semantically richer representations of 
linked images. In the following, we will develop two 
relational feature representation models for Web 
images. 

The first model is referred to as linkage rela-
tionship vector (LRV) model, which is derived di-
rectly from the matrix AI~I. For a given image graph 
GI, the image set I can be further divided into two 
parts: the set of target images I(T) and the set of 
background entities I(B). Usually, the set of back-
ground entities I(B) may consist of the training images 

Fig.4  An example link graph of Web images and its rela-
tional matrices 
(a) The example link graph of Web images; (b) The im-
age-in-page matrix; (c) The image-to-page matrix; (d) The
page-to-page matrix 
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and other images for which the classification is 
known but that are not crawled into local machines or 
are practically unavailable (thus cannot be used as the 
training images). Let N(T)=|I(T)| and N(B)=|I(B)|. Obvi-
ously, N= N(T)+ N(B).  
 
Definition (LRV model)  

Given an image graph GI, each image Ij∈I(T) is 
represented by a weighted vector 

 
 

(T ) (T )

(L)
,1 ,2 , , 1 ,[ , ,..., , ,..., ]i i i i N i N i Nw w w w w+=f            (6) 

 
where wi,k (1≤k≤N(T)) is the weight of the relationship 
between image Ii and target image Ik∈I(T), and wi,k 
((N(T)+1)≤k≤N) is the weight of the relationship be-
tween Ii and background entity Ik∈I(B). 

There are many feasible alternatives to define 
the weight wi,k (1≤k≤N(T)) from the image graph GI. 
wi,k may be binary, representing the presence/absence 
of a link between image Ii and image Ik. wi,k may be 
set to wi,k=ωi,k+ωk,i, where ωi,k indicates the number of 
links from Ii to Ik, or represents the significance of the 
link Ii→Ik. In this paper, wi,k is set to be the number (or 
the frequency) of linkage modes between Ii and Ik, 
where the linkage modes denote the important link 
relations that are likely to convey explicit semantic 
meaning, such as co-containedness, in-link, out-link, 
co-citation and co-reference.  

The second model is derived by exploiting ag-
gregated link features. The motivated observation is 
that link features that are computed based on statistics 
from the categories of different sets of linked objects 
may be more robust to irrelevant links. Thus we have 
the following definition of the class-based linkage 
relationship vector (CLRV) model. 

 
Definition (CLRV model) 

Given an image graph GI, each image Ii∈I(T) is 
represented by a class-based weighted vector 

 
(L)

,1 ,2 ,5| |[ , , , ]i i i i Cw w w=f                          (7) 
 
where wi,k (1≤k≤5|C|) are the weighted frequencies of 
the five important link relations (i.e., co-contained- 
ness, in-link, out-link, co-citation and co-reference) 
between image Ii and its neighboring images of dif-
ferent classes, |C| is the number of the class taxonomy 

C. 
Two additional advantages of the CLRV repre-

sentation are as follows: it can be significantly more 
compact than storing the LRV matrix; and it can ac-
commodate the introduction of new images, and thus 
is applicable in a wider range of situations. 
 
 
MULTI-CONTEXT ANALYSIS 
 

In the ConWic system, the main tasks of 
multi-context analysis are: (1) to reveal the correla-
tion among different modals of image features; (2) to 
capture the topical dependency among linked images. 
The two kinds of correlation can be then exploited to 
improve the performance of image classification or 
retrieval. 
 
Cross-modal correlation (CMC) analysis 

Among the three kinds of representations for 
each image, the visual and textual features can be 
combined into high-dimensional vectors and then be 
directly used for image classification or retrieval. Let 
n stand for the dimensions of visual features, and m 
stand for the dimensions of textual features, then in 
the joint visual-textual feature space, each image can 
be represented as 

 
(C) (V) (T)

,1 , , ,1 , ,

[ , ]
        [ , , , , , , , , , ]

i i i

i i j i n i i k i mv v v t t t
=

=

f f f
           (8) 

 
Note that since various visual and textual fea-

tures can have quite different variations, we also need 
to normalize each feature in the joint space according 
to its maximum elements (or certain other statistical 
measurements).  

However, the dimensionality of the visual or 
textual feature vectors is very high. And the extracted 
textual features are usually companied with some 
noisy or irrelevant information. For reducing the 
feature dimensionality and removing noise, an of-
ten-used method is the so-called latent semantic in-
dexing (LSI) technique (Deerwester et al., 1990), 
which relies on singular value decomposition (SVD) 
of the feature matrix to capture the latent semantic 
structure among the matrix elements. Thus we can 
apply the LSI technique to reveal the latent semantic 
structure in the joint visual-textual feature space, as in 
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(Zhao and Grosky, 2002). However, LSI does not 
distinguish features from different modalities in the 
joint space, thus the optimal solution based on overall 
distribution may not best represent semantic rela-
tionships between features of different modalities. In 
(Li et al., 2003), two cross-modal association analysis 
methods, i.e., cross-modal factor analysis (CFA) and 
canonical correlation analysis (CCA), were intro-
duced to identify and measure intrinsic associations 
between visual and audio features. Here we adopt the 
CFA method to capture the best coupled patterns 
between visual and textual features.  

The key idea underlying the CFA method is to 
find two orthogonal transformation matrices so that 
the coupled data in the two subsets of features can be 
projected as close to each other as possible (Li et al., 
2003). Let FV and FT be the visual and textual feature 
matrices for the images in I, then the transformation 
matrices A and B can be obtained by solving the fol-
lowing optimisation: 

 
2

TVmin 
F

BFAF −  s.t. ′ =A A I , ′ =B B I ,    (9) 
 

where ║⋅║F denotes Frobenius norm. According to 
the orthogonality of A and B, we have 
 

2
V T V V T T V Ttr( ) tr( ) 2tr( )

F
′ ′ ′ ′− = + −F A F B F F F F F AB F

                                                                              (10) 
 

where tr(⋅) denotes the matrix trace. Thus Eq.(9) is 
equivalent to maximize the term T2tr( )′VAB T . It can 
be shown (Li et al., 2003) that such matrices are given 
by the SVD decomposition of V T ,′F F  i.e., 

V T′ =F F ADB where D is the singular value matrix. 
Thus with the optimal transformation matrices A and 
B, FV and FT can be transformed by the following 
equation: 
 

V V

T T

 =


=

F F A
F F B

                           (11) 

 
And V

~F  and T
~F  can then be combined into a joint 

feature matrix C
~F . Similarly to those in LSI, the first 

and most important k vectors in V
~F  and T

~F  can be 
used to preserve the principal coupled patterns in 

much lower dimensions, and correspondingly irrele-
vant noise is removed. 

A significant advantage of the CFA method is in 
favour of coupled patterns with high variations. 
However, the CFA method is based on some naive 
techniques such as the linear correlation model and 
the projected distance, which would limit its applica-
tion in more complex situations. Moreover, such an 
approach can only be applied in the cases where the 
feature matrix for all the testing images is constructed 
offline. Instead, in this paper the two optimal trans-
formation matrices A and B are learned from the 
training images in I(B), and then used as two semantic 
matrices to map the testing images in I(T) into another 
semantic space. That is, for a target image Ii∈I(T),  the 
transformed feature vector can be represented as 

(C) (V) (T)[ , ]i i i=f f f , where Aff )V()V(~
ii =  and =)T(~

if  

Bf )T(
i . This is similar to the semantic smoothing 

method used in (Cristianini  et  al.,  2002;  Siolas  and  
d’Alché-Buc, 2000). Without risk of confusion, this 
paper refers to this version of the CFA method as 
cross-modal correlation (CMC) analysis. 

Thus if we consider the visual-textual joint space, 
the corresponding kernel is given by =CK  

(C) (C)[ ( , )],i jk f f where (C) (C)( , )i jk f f  is a kernel func-

tion. Here we refer to KC as the content kernel. 
Naturally, this kernel can be used by any “kernelized” 
algorithm such as SVM for Web image classification 
using visual and textual features. 
 
Link-based correlation model (LCM) 

In the preceding section, we derived two rela-
tional feature representations of images. Typically, 
the data contain informative, high-order features of 
some complex, non-linear relationships that may not 
be apparent in the raw data (Schölkopf, 2000). For 
example, while each edge of a link graph contains 
only local information about neighboring vertices, the 
set of all edges, i.e., the graph itself contains infor-
mation about the global structure of the instance space 
which can be exploited to improve the classification 
accuracy of relational models (Gärtner, 2003). Thus 
to extract much more information from the link 
structure, kernel methods are introduced here. Such 
information is encoded in the linkage kernels, and 
defines a new metric in the original feature space, or 
equivalently a further mapping of the objects into 
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another space. 
Using the LRV representation of images, the 

simplest linkage kernel is constructed directly by the 
dot product >< )L()L( , ji ff  and the corresponding 
linkage kernel matrix is the co-citation matrix 

LL
)C(

L FFK ′=  where FL is the LRV link feature matrix 
for I(T) with dimension N×N(T). We can also use the 
three popular kernel functions (Schölkopf, 2000), i.e., 
polynomial kernel, Gaussian kernel and sigmoid 
kernel, to construct the linkage kernels. However, 
these kernels cannot take advantage of the “natural” 
structure of the link data. Instead, several kernels are 
directly defined on the structure of the instances or on 
the structure of the instance space (Gärtner, 2003). 
For graph-like structures such as link data, the 
best-known kernel for this purpose is the diffusion 
kernel proposed by Kondor and Lafferty (2002). 
Following the spirit of the diffusion kernel, we pro-
posed a semantic diffusion kernel (SDK) (Tian et al., 
2005). That is, a semantic proximity matrix is intro-
duced to capture the semantic correlations among 
linked objects, and we perform the diffusion process 
on the semantic proximity matrix rather than directly 
on the linkage kernels. Let Sλ be a semantic proximity 
matrix that approximately captures the semantic re-
lationships between the coordinate entities of the 
N-dimensional space spanned by the N(T) target im-
ages in I(T) and the N(B) background images in I(B), 
then under the semantic diffusion process, 
Sλ=exp(λS0), where LL0 FFS ′=  is assumed to capture 
the initial semantic relationships. The SDK kernel can 
be expressed as 

 
[ ](D)

L L L L 0 Lexp( )λ λ′ ′= =K F S F F S F  =VΛV′,   (12) 

 
where the bandwidth factor λ (0≤λ≤1) ensures that the 
longer range effects decay exponentially, FL=WΛV′ 
is the SVD decomposition of FL, and Λ=Σ2exp(λΣ2). 
Similar to the latent semantic kernels in text catego-
rization (Cristianini et al., 2002), we can also perform 
the LSI analysis on )C(

LK  or )D(
LK  to obtain the latent 

linkage semantic kernel corresponding to the latent 
semantic space.  

On the other hand, the CLRV representation of 
images captures the semantic information among 
linked images by directly exploiting class-based ag-

gregated link features. So to reveal the deep correla-
tion underlying link structure, we can directly use the 
co-citation matrix  

 

LL
)C(

L FFK ′= ,                          (13) 
 

where LF  is the CLRV link feature matrix for I(T) 
with dimension 5|C|×N(T). We refer to it as class- 
based co-citation kernel (CCK). However, to calcu-
late the CLRV feature vector for image Ii∈I(T), the 
label attributes of its neighboring images (including 
the neighboring target images) must be known. On 
the other hand, the prediction of the label attributes of 
all target images is exactly one of the main goals in 
calculating the link features; so this creates a circular 
argument. A possible solution is to use a bootstrap-
ping step. That is, we first assign an initial category to 
each unlabelled image based solely on its visual and 
textual features, then calculate the CLRV link fea-
tures, and finally exploit the CCK kernel based mod-
els for re-classifying these target images.  

In summary, instead of being used for exploiting 
slightly different kernel construction methods, the 
two kinds of linkage kernels can be used to reveal the 
semantic relationships underlying link structure. In 
practice, they can be used by any “kernelized” algo-
rithm (or model) for link data if the algorithm can be 
stated so that each vector of input data only appears 
within a dot product operation. 
 
 
RELATIONAL SUPPORT VECTOR CLASSIFI- 
ERS (RSVCs) 
 

For image classification, the ConWic system 
uses a support vector machine (SVM). SVMs have 
strong theoretical foundations and excellent empirical 
successes, and have been applied to tasks such as 
handwritten digit recognition, object recognition, and 
text classification. When each image is represented by 
visual and textual features, the content kernel KC can 
be exploited by an SVM classifier (SVC) for classi-
fication of Web images. From our point of view, 
SVM has the advantage of being especially 
well-suited for incorporating a priori knowledge by 
proper choice of an appropriate metric consequently 
leading to higher generalization capacity of the clas-
sifier (Siolas and d’Alché-Buc, 2000). As mentioned 
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before, the metric is built from CMC analysis data.  
We can also use a SVC for link-based image 

classification, by combining the content kernels with 
linkage kernels (as in Joachims et al., 2001). In that 
case, however, we would classify the target images in 
I(T) separately, and consequently ignore the correla-
tion among the unlabelled target images―the corre-
lation endowed by these links is one of our main goals 
in defining the LCM model. In this work, we propose 
a relational support vector classifier (RSVC) model, 
which allows the collective classification of all the 
target objects together so as to take special advantage 
of the correlations between the labels of related enti-
ties. According to (Jensen et al., 2004), collective 
inference can effectively improve relational classifi-
cation, while relational models that do not exploit 
collective inference generally have much larger pa-
rameter spaces and require much larger data samples 
to learn relational models reliably.  
 
Kernel combination 

At this point, we have two sets of kernels: con-
tent kernel KC that is calculated by using visual and 
textual features, and linkage kernel KL (i.e., )D(

LK  or 
)C(

LK ). We can combine the two kernels to obtain a 
valid kernel that can perform better than the other two 
considered separately. Joachims et al.(2001) vali-
dated that the combination of kernels is beneficial as 
long as both kernels are independent in that they do 
not extract the same features.  

The simplest method is the convex combination 
of the content kernel KC and the linkage kernel KL 
(Joachims et al., 2001), i.e.,  

 
LC)1( KKK ββ +−= ,                        (14) 

 
where β is a weight, 0≤β≤1. Alternatively, Kandola et 
al.(2002) proposed a von Neumann kernel, based on 
the mutual reinforcement assumption. The von 
Neumann kernel can be treated as a non-linear com-
bination of two kernels. However, this method also 
suffers from much higher complexity due to the it-
erative computation. We thus do not intend to apply it 
in this paper. 
    
RSVCs for collective classification 

Similarly to the topographic SVM in (Mohr and 

Obermayer, 2005), we propose a RSVC model using 
the composite kernel for collective classification. If 
the vector α and the scalar b are the parameters of the 
hyperplane learned from the training images, then the 
RSVC decision rule is defined as:  
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where  (C) (C)
C

1

(1 ) ( , )
l

i j j i j
j

y bθ β α
=

= − +∑ K f f  which 

is the decision function of a conventional SVM, and l 
denotes the number of support vectors (SVs). Here 
each image is represented by ( )(C) (L), , ,i i iy< >f f  

where  )C(
if  and )L(

if   are its content feature vector 
and link feature vector respectively, yi is its class label. 
Note that when a RSVC is trained using the compos-
ite kernel, the resulting SVs will still contain the 
relevant information about the content features, and 
the link feature information required good distinction 
of the classes. 

However, the situation is different when we use 
)C(

LK  as the linkage kernels. As mentioned before, the 
calculation of the CLRV link features needs the 
neighboring kernel label attributes of Ii∈I(T). Thus to 
collectively classify the images in I(T), an iterative 
approach is used to achieve a self-consistent solution 
to the classification problem. We denote the label at 
step τ as 

τiy , and use 
τ

)L(
if  to denote the CLRV link 

feature at step τ. Then at each step τ new labels are 
assigned according to 

 

( )(C) (L) (L)
L 1 1

1
sgn ,

l

i j j i j i
j

y y
τ τ τ

β α θ
− −

=

 
= + 

 
∑ K f f (16) 

 
where 

0
sgn( )i iy

τ
θ

=
=  and iθ  do not change with τ. 

This leads to an iterative assignment of new labels: at 
step τ=0. The results from a conventional SVC (β=0) 
are used to initialize the labels; at the following steps, 
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the estimates of the neighboring labels are available 
from the previous iteration. And a criterion may be 
used to determine whether the iteration process will 
be terminated, i.e., (T)1

,i i iy y I I
τ τ −
= ∀ ∈ with a 

minimal τ. 
 
 
EXPERIMENTS 
 
Overview 

Several sets of experiments were designed to 
evaluate the classification performance of the Con-
Wic system. When images are represented by visual 
and/or textual features, we use SVMs for classifica-
tion; while when images are represented by the three 
representations, we use RSVCs for classification. In 
the experiments, our main goal was to demonstrate 
the utility of linkage semantic kernels in Web image 
classification, and show the superior performance of 
RSVC models over the SVM models using only vis-
ual and/or textual features. For all experiments, we 
evaluate the classification performance on the basis of 
accuracy. Results reported are based on averaging at 
least four independent tests. 

All the data used in our experiments are crawled 
from Yahoo! sports site (http://sports.yahoo.com/). 
The dataset contains approximately 4419 images 
grouped into three types (i.e., basketball, football and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

baseball). As in (Cai et al., 2004), we filtered those 
images whose width and height are both smaller than 
60 pixels, and those images whose ratios between 
width and height are greater than 5 or smaller than 1/5. 
The navigational hyperlinks and advertisement hy-
perlinks were also removed using several heuristic 
rules.  

Obviously, the different types of images are 
visually similar (e.g., in the players’ wear, or in the 
playfield), particularly for the football and baseball 
images. Therefore, it is necessary to exploit textual 
and link information to aid classification. 

 
Results 

1. Classification using visual feature 
The first set of experiments was performed by 

using visual features only. In general, different visual 
features capture different aspects of images, and it is 
difficult to find one kind of visual features that are 
robust for all types of images. Therefore, we evaluate 
the performance of image classifiers that use 15 dif-
ferent combinations of color features, texture features 
and shape features. Note that all these feature com-
binations include the 64-bins color histogram.  

Table 1 shows the experimental results indicat-
ing that when using color histogram and color co-
herence vector as visual features (i.e., CH+CCV) the 
image classifier performs best, followed  by  the  case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  The classification performance using different visual feature combinations 
Accuracy for each category 

Features SVs Fea.  Dim. 
Football Basketball Baseball Avg. 

CH 227/240/362 64 59.78 60.86 72.87 64.50 
CH+CM 220/168/ 327 73 64.00 66.76 74.96 68.57 

CH+CM +Auto 207/149/300 98 67.11 69.41 67.90 68.14 
CH+CM+EH 180/137/264 223 45.78 52.17 81.06 59.67 

CH+CM+Auto+EH 169/136/255 183 36.89 66.53 77.45 60.29 
CH+CM+Auto+EH+MI 166/140/249 255 32.67 64.54 79.78 58.99 

CH+Auto 219/183/307 89 54.44 82.53 53.93 63.64 
CH+EH 195/185/291 214 44.00 54.06 85.15 61.07 

CH+EH+Auto 181/158/270 239 44.22 70.77 68.86 61.29 
CH+ZM 207/216/327 100 48.67 61.19 69.10 59.65 
CH+MI 217/237/352  71 60.67 61.76 71.83 64.75 

CH+CM+MI 214/160/325  80 67.78 67.85 66.13 67.25 
CH+CCV 193/161/265 320 73.33 66.24 76.65 72.07 
CH+CCG 198/180/227 1344 59.56 60.62 76.81 65.66 
CH+Gabor 227/240/362 88 59.78 60.86 72.87 64.50 

 

CH: color histogram; CM: color moment; CCV: color coherence vector; CCG: color correlogram; Gabor: Gabor wavelet;  
EH: edge histogram; ZM: Zernike moment; MI: moment invariant; Auto: autocorrelation 
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using color histogram and color moment as visual 
features (i.e., CH+CM), and the case using color 
histogram, color moment and autocorrelation as vis-
ual features (i.e., CH+CM+Auto). However, the fea-
ture dimensionality of the CH+CCV group is much 
larger than that of the other two cases (up to 320). It is 
known that the higher the feature dimensionality is, 
the longer the training time of the SVM classifier is. 
Thus to trade-off accuracy and training time, we use 
the CH+CM group as visual features in the following 
experiments. 

It should be noted that we cannot assure that the 
CH+CM feature group is the optimal set of visual 
features on the dataset. And the main goal of our 
experiments here is not to find such an optimal set of 
visual features. However, it is safely concluded that 
there is plenty of room for improvement for Web 
image classification using visual features only. 

2. Classification using visual and textual features 
The second set of experiments is aimed at 

evaluating the classification performance by using 
textual features. As mentioned before, the textual 
features of images can be represented by TF model 
and TFIIF model. Fig.5a compares classification 
accuracies using TF and TFIIF textual features. In-
terestingly, the difference in classification accuracy 
between the two representation models of textual 
features is not significant. Moreover, the classifica-
tion accuracy using textual features only is rather low 
(about 50%), which is much beyond our expectation. 
An important reason is that there are about 60% im-
ages which have few or even no surrounding texts, so 
that most elements in each textual feature vector are 
zero. We have also performed experiments by in-
cluding textual features extracted from other sources 
such as image filename, ALT, but the results being 
quite similar seems to indicate that Web image clas-
sification using textual features only often performs 
poorly. 

Fig.5b compares the classification accuracies 
using visual, textual and visual-textual features re-
spectively. Note that here the textual features are 
represented by the TFIIF model. Averagely, Web 
image classification using visual-textual features 
outperforms that using visual features by about 7.6%. 
Clearly, combining visual and textual features can 
indeed improve the performance of Web image clas-
sification, but the improvement is still not significant.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example, the classification accuracy for the 
baseball images using visual-textual features is even 
lower than that using visual features only. We can 
also see that the visual features are the most important 
determinant of Web image classification performance 
when using both visual and textual features. 

3. Classification using cross-modal correlation 
model 

We also performed experiments to evaluate the 
effects of the LSI and CMC analysis on Web image 
classification. When images are represented by tex-
tual features, we can exploit the LSI analysis to re-
duce the feature dimensionality and remove the noisy 
information; when images are represented by both 
visual and textual features, both LSI and CMC can be 
used.  

Table 2 shows the average dimension-reduction 
ratios. We can see that both LSI and CMC can effec-
tively reduce the dimensionality of the feature space 
used. Comparatively, the CMC analysis has larger 
dimension-reduction ratio (DR). For example, when 
using visual-textual features, the average dimension- 
reduction ratios are 3.4 for the LSI analysis, and 5.7 
for the CMC analysis. Note that here we use the same 
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Fig.5  The classification performance using textual feature
(a) Using TF and TFIIF textual features; (b) Using textual,
visual and textual-visual features 
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eigengap based method to determine an appropriate k 
value for LSI and CMC. 

On the other hand, we found that the two tech-
niques surprisingly yielded no improvement in clas-
sification accuracy when using visual and textual 
features (Fig.6). Obviously, the two techniques can-
not capture latent semantic relationships between 
features of different modalities. A possible reason is 
the highly uneven distribution of textual features, 
which is the main difficulty for correlation analysis of 
different modalities. Therefore, how to develop more 
robust and effective CMC analysis technique will be a 
future research topic. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Classification using multi-context models 
The last set of experiments was aimed at evalu-

ating the classification performance by using linkage 
semantic kernels. Two kinds of linkage semantic 

kernels (i.e., SDKs, CCKs) are utilized in RSVC 
classifiers for Web image classification. They are 
denoted respectively by RSVCSDK and RSVCCCK. The 
SVM classifier using visual and textual features 
(denoted by SVMNoLink) is used as the baseline model. 
Note that in RSVCSDK and RSVCCCK, the kernel 
combination weight β is set to 0.5. 

Fig.7 shows the average classification results of 
SVMNoLink, RSVCSDK and RSVCCCK. We can see that 
the two RSVC classifiers using linkage semantic 
kernels yield significant improvement in accuracy 
over the SVM classifier using visual and textual fea-
tures. Among them, the RSVCCCK model yields the 
best performance, and outperforms the SVMNoLink 
model by about 25% of classification accuracy; and 
the RSVCSDK model also outperforms the SVMNoLink 
model by about 17% of classification accuracy. 
Clearly, these results indicate that linkage semantic 
kernels are very helpful for Web image classification.  

 
 
 
 
 
 
 
 
 
 
 
 
 

We note that the RSVCCCK model performs 
much better than the RSVCSDK model. This means 
that the CCK kernel is more robust in link-based Web 
image classification, although the aggregation opera-
tion in the calculation of CLRV link features may lose 
some useful link information among images. This 
also coincides with the SV numbers of the used SVM 
classifiers. In general, the less the SV number is, the 
better generalization the SVM classifier used has. In 
the experiments, the SV number of the RSVCCCK 
model is much less than that of the RSVCSDK model. 
Surprisingly, the SV number of the RSVCSDK model 
is even more than that of the SVMNoLink model. 
Therefore, how to improve the generalization of the 
RSVCSDK mode will be another research topic in the 
ongoing work. 

Table 2  The comparison of average dimension- 
reduction ratios 

 LSI 
(textual) 

LSI 
(visual-textual) 

CMC 
(visual-textual) 

Before 730 827 827 
After 216 246 144 
DR 3.4 3.4 5.7 
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Fig.6  The classification performance using LSI and CMC
analysis 
(a) Using textual features only; (b) Using visual and textual
features 
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Fig.7 The average classification accuracy using linkage
semantic kernels. 
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In our approach, the training images are used as 
background entities. So we also perform several ex-
periments to investigate the effects of the training 
sample distributions on the classification performance. 
Table 3 shows the classification performances of 
RSVCSDK and RSVCCCK under four different training 
sample distributions. We can see that the standard 
deviation in classification accuracy is 0.76% for 
RSVCCCK, and 3.32% for RSVCSDK. Comparatively, 
the training sample distribution has higher influence 
on RSVCSDK than on RSVCCCK. 

Fig.8 shows the effect of parameter β on the 
classification performance. Clearly, when β=0, both 
RSVCSDK and RSVCCCK are degraded into the 
SVMNoLink model, and only visual and textual infor-
mation are exploited for image classification; while 
when β=1, the RSVCSDK and RSVCCCK models only 
exploit link information for classification. We can see 
that the RSVCSDK model yields the best performance 
when β=0.5, while the RSVCCCK model shows sur-
prisingly low dependency on β over much of its range. 
So for the RSVCCCK model, the utilization of the CCK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

kernel helps for almost any value of β.  While for the 
RSVCSDK model, we should carefully select an ap-
propriate β value for best prediction.  
 
Discussion 

In this section, we have discussed several Web 
image classification experiments on a collection of 
Web sports images by using visual, textual and link 
information. Two significant conclusions can be ob-
tained: 

(1) The performances of Web image classifica-
tion by using a single modal of features (i.e. visual 
features, or textual features) are constantly at very 
low levels. Combining visual and textual features is 
helpful for Web image classification, but the im-
provement is not significant in some cases. 

(2) Links among Web images are very useful for 
better classification. Linkage semantic kernels can 
effectively reveal the semantic relationships under-
lying link structure, and can be naturally embedded 
into kernelized relational classification algorithms 
such as RSVCs. Compared with the SDK kernel, the 
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Fig.8  Effects of parameter β for the RSVCSDK (a) and RSVCCCK (b) models 

Table 3  The classification performance of link-based models under different training sample distributions 
Accuracy for each category 

Train samples Model SVs 
Football Basketball Baseball Avg. 

RSVCSDK 230/258/262 80.13 97.64 77.88 85.22 
133/466/312 

RSVCCCK 68/57/66 100.0 99.56 93.95 97.84 
       

RSVCSDK 229/209/207 96.01 87.81 91.57 91.80 
135/165/214 

RSVCCCK 63/38/57 99.79 98.64 94.25 97.56 
       

RSVCSDK 211/190/194 78.42 96.04 79.73 84.73 
129/146/146 

RSVCCCK 55/41/64 100.0 98.13 90.65 96.26 
       

RSVCSDK 201/203/214 92.03 83.60 90.75 88.80 
134/168/189 

RSVCCCK 55/ 47/58 99.79 98.82 95.04 97.88 
       

RSVCSDK      3.32 Deviation 
RSVCCCK      0.76 
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CCK kernel is more robust in Web image classifica-
tion tasks. 

In the ongoing experiments, we need to evaluate 
the performance of the RSVC on different image 
classification tasks such as the identification of sen-
sitive images and artistic images. 
 
 
CONCLUSION 
 

In this paper, we present a context-based Web 
image classification system, ConWic. The main ob-
jective of ConWic system is to exploit the visual, 
textual and link information to aid the classification of 
Web images. Our main contributions are summarized 
as follows: 

First, a multi-context analysis method is intro-
duced into Web image classification tasks. For a 
given image, we model the relevant textual informa-
tion as its multi-modal context, and regard the related 
images connected by hyperlinks as its link context. 
Two kinds of context analysis models, i.e., CMC 
analysis and LCM model are exploited to capture the 
correlation among different modals of features and 
the topical dependency among images that is induced 
by the link structure.  

Second, we propose a new collective classifica-
tion model called RSVC, which is based on the 
linkage semantic kernels and a self-consistent solu-
tion to the label assignment. A significant advantage 
of the RSVC is that the relational information can be 
utilized for classification in an SVM-like manner but 
the correlations between the labels of related entities 
can also be explicitly exploited.  

On a sports Web image collection crawled from 
Yahoo!, the RSVC classifiers using the two linkage 
semantic kernels yield significant improvement in 
accuracy over the SVM classifier using visual and/or 
textual features. The experimental results demon-
strate the general applicability of the RSVC classifi-
ers using the linkage semantic kernels. 
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