
Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1354

A simple approach for building transliteration editors
for Indian languages

PRAHALLAD Lavanya, PRAHALLAD Kishore, GANAPATHIRAJU Madhavi

(Institute for Software International, Carnegie Mellon University, Pittsburgh, PA 15217, USA)
E-mail: lavanyap@cmu.edu; skishore@cs.cmu.edu; madhavi@cs.cmu.edu

Received Aug. 5, 2005; revision accepted Sept. 10, 2005

Abstract: Transliteration editors are essential for keying-in Indian language scripts into the computer using QWERTY keyboard.
Applications of transliteration editors in the context of Universal Digital Library (UDL) include entry of meta-data and diction-
aries for Indian languages. In this paper we propose a simple approach for building transliteration editors for Indian languages
using Unicode and by taking advantage of its rendering engine. We demonstrate the usefulness of the Unicode based approach to
build transliteration editors for Indian languages, and report its advantages needing little maintenance and few entries in the
mapping table, and ease of adding new features such as adding letters, to the transliteration scheme. We demonstrate the trans-
literation editor for 9 Indian languages and also explain how this approach can be adapted for Arabic scripts.

Key words: Transliteration editor, Indian languages, Universal Digital Library (UDL)
doi:10.1631/jzus.2005.A1354 Document code: A CLC number: TP391

INTRODUCTION

Transliteration editors are essential for keying-in
Indian language scripts into the computer using
QWERTY keyboard. Applications of transliteration
editors in the context of Universal Digital Library
(UDL) include entry of meta-data and dictionaries for
Indian languages. In this paper we propose a simpler
approach for building transliteration editors for Indian
languages using Unicode and by taking advantage of
its rendering engine available in Windows XP and
Linux operating systems. We use the transliteration
scheme referred to as IT3 developed by IISc Banga-
lore and Carnegie Mellon University to represent the
Indian language scripts.

The Indian language scripts are syllabic in nature
and consist of V, CV, CCV and CCCV type of units,
where C is a consonant and V is a vowel. The prop-
erty of these scripts in that a syllable always ends with
a vowel makes it easy to identify the syllables using
vowels as anchor points.

To render the syllables on the computer screens,
we use Unicode, and the Unicode rendering engine

available in Windows XP and Linux operating sys-
tems. To display a CV unit, we concatenate the
UTF-8 sequence of C and V to cause the Unicode
rendering engine to render appropriate shape for CV.
To display a CCV unit, we need to render the con-
sonant cluster, so a special character called Ha-
lant/Viraam ($) is introduced between every two
consonants. So to render CCV we concatenate the
UTF-8 sequence of C$CV. To display CCCV type of
unit, we concatenate the UTF-8 sequence of CCCV.
In these syllables, if the vowel is of type schwa (short
vowel /a/) then it is nullified as the last consonant in
the syllable inherits it by default. Every consonant in
the Indian language scripts inherits schwa and so
Unicode representation too. However, if the vowel is
a non-schwa, then the UTF-8 sequence of Maatra of
the corresponding vowel is used. A Maatra is a
modified shape of a vowel when it is combined with a
consonant. Each vowel has only one Maatra.

In this paper, we demonstrate the usefulness of
such a simple scheme to train transliteration editors
for Indian languages, and report its advantages
needing few entries in the mapping table, little

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1355

maintenance, and ease of adding new features such as
new letters to the transliteration scheme. We demon-
strate the transliteration for 9 Indian languages and
also explain how this approach can be adapted with
few modifications for Arabic scripts.

This paper is organized as follows: Section 2
describes the nature of Indian language scripts. Sec-
tion 3 discusses the shape of an Akshara and its ren-
dering aspects. Section 4 introduces Unicode and
UTF-8 representation. Section 5 describes the ren-
dering of Aksharas of type CV, CCV and CCCV
using Unicode. Section 6 describes the characteristics
of IT3 transliteration scheme and how to key-in the
Indian language scripts. Sections 7 and 8 detail the
implementation of Indian language editing. Section 9
explains how Unicode and IT3 based editing can be
extended to Arabic, Urdu and Persian scripts.

INDIAN LANGUAGE SCRIPTS

Indian language scripts originated from the an-
cient Brahmi script. The basic units of the writing
system are referred to as “Aksharas”. The properties
of Aksharas are as follows: (1) An Akshara is an
orthographic representation of a speech sound in an
Indian language; (2) Aksharas are syllabic in nature;
(3) The typical forms of Akshara are V, CV, CCV and
CCCV, thus have a generalized form of C*V; (4) An
Akshara always ends with a vowel; (5) White space is
used as word boundary thus separating Aksharas
present in two successive words; (6) The scripts are
written from left to right; (7) Roman digits (0...9) are
used as numerals. Some of the languages have their
own numeric symbols which are rarely used; (8)
English Punctuations marks such as comma, full stops
are mostly used in writing. Languages such as Hindi
have a set of their own punctuation marks which are
often used.

Convergence and divergence of Indian language
scripts

India is a multi-lingual nation with 17 recog-
nized official languages. These languages are: As-
samese, Tamil, Malayalam, Gujarati, Telugu, Oriya,
Urdu, Bengali, Sanskrit, Kashmiri, Sindhi, Punjabi,
Konkani, Marathi, Manipuri, Kannada and Nepali.
Except Urdu and English, all of the remaining official

languages have a common phonetic base, i.e., they
share a common set of speech sounds.

While all of these languages share a common
phonetic base, some of the languages such as Hindi,
Marathi and Nepali also share a common script
known as Devanagari. But languages such as Telugu,
Kannada and Tamil have their own scripts. The
property that makes these languages separate can be
attributed to the Phonotactics in each of these lan-
guages rather than the scripts and speech sounds.
Phonotactics is the permissible combinations of
phones that can co-occur in a language.

SHAPE OF AN AKSHARA

The shape of an Akshara depends on its compo-
sition of consonants and the vowel, and sequence of
the consonants. In defining the shape of an Akshara,
one of the consonant symbols acts as pivotal symbol.
Depending on the context, an Akshara can have a
complex shape with other consonant and vowel
symbols being placed on top, below, before, after or
sometimes surrounding the pivotal symbol.

Ideally the basic rendering unit for Indian lan-
guage scripts should be Aksharas themselves. How-
ever, a language such as Telugu has around 15 vowels
and 36 consonants. To render Aksharas as a whole
unit, it requires 540 CV units, 19440 CCV units and
699840 CCCV units. It is reasonable to assume that
not all combinations of consonant clusters are al-
lowed, but even then nearly more than 10000 Ak-
sharas are needed as rendering units.

Due to this large number of units, an Akshara is
rendered by concatenating the consonant and vowel
symbols. The following are the symbols used to ren-
der Aksharas by a Unicode rendering engine.

Consonant symbol

A consonant symbol in an Indian language
represents a single consonant sound and also an in-
herent vowel (short /a/). Akshara is syllabic so each
consonant symbol represents a consonant and the
inherent vowel.

Half forms of the consonant

Aksharas of the type CCV or CCCV, have more
than one consonant. In these cases, the initial conso-

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1356

nant(s) have half-form shape. These half-forms do not
have an inherent vowel.

Vowel symbols (independent vowels)

A vowel symbol represents a vowel sound and is
used to render a syllable of type V which has no
consonants before or after it. These vowel symbols
are also referred to as independent vowels.

Maatra (dependent vowels)

Consonants can associate with vowels other than
inherent vowel. If a non-inherent vowel is needed,
then a diacritical mark corresponding to the non-
inherent vowel is added to the consonant symbol.
These vowels with their attached diacritical marks are
referred to as Maatras or dependant vowels. A Maatra
can occupy a place on top, below, before, after, or
sometimes surrounding the consonant symbol and
thus is often referred to as dependant vowel.

Viraam

Sometimes it is necessary to write consonants
without inherent vowels. To remove the inherent
vowel from a consonant, a symbol called Viraam is
used. The symbol may be an oblique stroke under the
consonant symbol, or can change the shape of the
consonant if it is on top of the consonant.

UNICODE: A UNIVERSAL CHARACTER SET

Computers can only interpret bits and bytes, and
hence the representation of a script should be defined
in terms of bits and bytes. ASCII—American Stan-
dard Code for Information Interchange is an 8-bit
code to represent the English character set. Similarly
there is Indian Standard Code for Information Inter-
change (ISCII) that defines an 8-bit character code for
Indian language scripts. As these codes overlap,
computers using ASCII character set cannot interpret
ISCII as a code for Indian language scripts. With an
8-bit code, only 256 unique characters can be defined.
To allow computers to represent any character in any
language, the international standard ISO 10646
defines the Universal Character Set (UCS). UCS
contains the characters to practically represent all
known languages in the world. ISO 10646 originally
defined a 32-bit character set. Each character is

assigned a 32 bit code. However, these codes vary
only in the least-significant 16 bits. ISO 10646 and
Unicode though started as two projects finally merged
their character set around 1991 so that both are now
compatible with each other.

In addition to the character set, Unicode standard
specifies recommendation for renderning of the
scripts, handling of bi-directional texts that mix for
instance Latin (left to right writing system) and
Hebrew (right to left writing system), algorithms for
storage and manipulation of Unicode strings (Alan,
2005; The Unicode Consortium, 2003).

UTF-8 and UTF-16

It has to be noted that Unicode is a table of codes
that assigns integer numbers to characters (Markus,
2005). One still has to define its implementation or
encoding in the computers. A straightforward
encoding of these integers is to store the Unicode text
as sequences of 2 byte sequences. This encoding is
referred to as UTF-16. An ASCII file can be
transformed into a UTF-16 file by simply inserting a
0x00 byte in front of every ASCII byte.

However, operating systems such as Unix/Linux
have been written based on ASCII (1 byte code)
character set and they expect each byte as a character.
For these reasons, UTF-16 may not be an appropriate
encoding of Unicode in the case of filenames, text
files, environment variables, etc.

The UTF-8 encoding uses Unicode compatibly
with operating systems working with 1-byte
characters.

UTF-8 has the following properties:
Unicode characters U+0000 to U+007F (ASCII)

are encoded simply as bytes 0x00 to 0x7F (ASCII
compatibility). This means that files and strings
which contain only 7-bit ASCII characters have the
same encoding under both ASCII and UTF-8.

All Unicode characters >U+007F are encoded as
a sequence of several bytes, each of which has the
most significant bit set. Therefore, no ASCII byte
(0x00~0x7F) can appear as part of any other
character.

The first byte of a multibyte sequence that
represents a non-ASCII character is always in the
range 0xC0 to 0xFD and it indicates how many bytes
follow for this character.

All further bytes in a multibyte sequence are in

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1357

the range 0x80 to 0xBF. This allows easy
resynchronization and makes the encoding stateless
and robust against missing bytes.

UTF-8 encoded characters may theoretically be
up to six bytes long tio handle 32-bit character set,
However for 16-bit characters the UTF-8 encoding is
only up to three bytes long.

The bytes 0xFE and 0xFF are never used in the
UTF-8 encoding. These bytes are used to denote byte
order for UTF-16 codes.

Representation of Indian language scripts

Having known the syllabic nature of Indian
language scripts, it is easy to understand the notation
followed by the Unicode to represent Indian language
characters. The following are the principles used by
Unicode to represent the Indian language characters:

(1) A Unicode is assigned to each consonant
symbol, i.e., a consonant sound along with the in-
herent vowel.

(2) Each independent vowel is represented by a
Unicode.

(3) Each Maatra is also represented by a Uni-
code.

(4) Viraam has a Unicode number too.

Unicode rendering recommendations

It should be noted that half-forms of the conso-
nants are not represented by the Unicode. The
half-forms are essential to render Aksharas involving
consonant clusters. The Unicode recommendation for
rendering resolves the issue of half-forms. These rules
describe the mapping between Unicode characters
and the glyphs in a font. They also describe the com-
bining and ordering of these glyphs.

These recommendations are used to build Uni-
code rendering engines in Windows and Linux oper-
ating systems for displaying Unicode characters.

RENDERING OF AKSHARAS

As noted in Sections 2 and 3, an Akshara is
syllabic in nature, and it is rendered by concatenating
a sequence of consonant and vowel symbols. In this
section we will examine the rendering of Aksharas of
type, CV, CCV and CCCV for the case of Telugu and
Hindi.

Rendering a CV unit
If the vowel is the inherent vowel (short /a/), then

to render a CV unit we use the Unicode number of the
consonant symbol. The following examples show the
rendering of two CV units in Hindi and Telugu.

Hindi:
utf-8(2325) , where 2325 is the Unicode

number of the consonant symbol and utf-8() is a
function which converts the integer value to its UTF-8
format.

Telugu:
utf-8(3093)
If the vowel is non-inherent vowel then the

rendering of a CV unit is a two stage process.
Remove the inherent vowel from the consonant

symbol. This can be done by adding a Viraam to the
consonant symbol. Now add the Maatra of the cor-
responding vowel. Please note that a vowel occurring
beside a consonant is always a dependent vowel and
so Maatra should be used.

The following examples display the rendering of
two CV units where V is a non-inherent vowel.

Hindi:

utf-8(2325) + utf-8(2367)

Telugu:

utf-8(3093) + utf-8(3135)

The Unicode 3093 represents the full consonant

symbol, and the Unicode 3135 represents the Maatra.
The concatenation of a Maatra to the consonant
symbol changes its shape to get the required CV unit.

Any desired CV unit can thus be produced by a
simple concatenation of UTF-8 representation of the
consonant symbol and the Maatra

Rendering a CCV unit

Let C1 and C2 denote the first and second con-
sonant in a CCV unit. To render the CCV unit:

(1) The consonant C1 has to be rendered in its
half-form. Half-form denotes a consonant with its
inherent vowel being suppressed. To perform this
suppression, the Viraam is added to the consonants
symbol of C1.

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1358

(2) The remaining syllable C2V has to be ren-
dered as a CV unit as explained in Section 5.1.

The following examples demonstrate the ren-
dering of CCV units in Telugu and Hindi.

Hindi:

utf-8(2325) + utf-8(2381) + utf-8(2352) + utf-8(2367)

Telugu:

utf-8(3093) + utf-8(3149) + utf-8(3120) + utf-8(3135)

In the above examples, 2381 and 3149 are the
Viraam symbols for Hindi and Telugu respectively.
The concatenation of UTF-8 encoding of 3093 and
3149 produces a half-form of the consonant /k/ in
Telugu. The concatenation of this half-form with the
remaining sequence produces the required CCV unit.

Rendering of a CCCV unit

If we denote the first two consonants as C1 and
C2, then the concatenation of the CCCV can be
achieved by producing the half-forms of C1 and C2
and then concatenating them with the remaining syl-
lable.

IT3—TRANSLITERATION SCHEME

From the end user point of view, the details
mentioned in all of the above sections are masked.
He/she is concerned with how to key-in the Indian
language scripts. There are many transliteration
schemes such as ITRANS to key-in the Indian lan-
guage scripts. The focus of these schemes was mainly
to represent the Indian language scripts and paid less
attention on the importance of user readability aspect.
IT3 is a transliteration scheme developed by IISc
Bangalore, India and Carnegie Mellon University
with the primary focus on user readability of the
transliteration scheme (Ganapathiraju et al., 2005)..
The following are the salient points of this translit-
eration scheme.

(1) It is case-insensitive.
(2) This scheme is phonetic in nature, the char-

acters corresponds to the actual sound that is being
spoken. Thus a single transliteration scheme is used
for all the Indian languages, as they share the same set
of sounds.

(3) Each character (corresponding to a
phone/sound) should be not more than three letters
length.

(4) There should be minimal use of punctuation
marks in the composition of a character

In Fig.1, a section of the transliteration scheme is
shown.

MAPPING IT3 to UNICODE

Using the IT3 notation and the Unicode charac-
ters, one can build a simple transliteration editor in a
short amount of time. Any new language can be added
to it with minimal effort. To add a language, a map-
ping table has to build to map an IT3 character to the
corresponding Unicode character.

Fig.1 A section of the transliteration scheme

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1359

However, attention should be paid to the fol-
lowing issue in building this table. IT3 being phonetic
in nature, a character ‘k’ represents a consonant sound
/k/ and there is no notion of inherent vowel (short /a/)
associated with the consonant sound. Thus to get the
syllable /ka/ one has to write a sequence of two
characters ‘ka’.

In Unicode a consonant symbol has a consonant
as well as the inherent vowel. The issue is whether the
IT3 character ‘k’ should be mapped to the half-form
of the consonant /k/ or to the consonant symbol, i.e.,
the syllable /ka/ which is a CV unit.

Let us say, we map ‘k’ to half-form of the con-
sonant. This can be achieved by concatenating the
consonant symbol i.e., /ka/ and a Viraam. Given this
mapping stored as a table, to obtain /ka/ we need to
write ‘ka’, and during rendering concatenate the
half-form of ‘k’ and the Maatra of /a/. But unfortu-
nately Unicode defines Maatra for all other vowels
except for /a/.

The above limitation of Unicode forces the
IT3-Unicode mapping table to map the IT3 character
‘k’ to the syllable /ka/. Let us say we map ‘k’ to /ka/.
But as IT3 is phonetic in nature, the user would want
to type ‘ka’ to get /ka/. To resolve the conflict, we
should allow the user to type ‘ka’, but nullify the /a/
before looking for an entry in the mapping table. As
another example, if the user types /ki/ then we can get
half-form of /k/ and concatenate it with the Maatra of
/i/.

BUILDING THE EDITOR

To build the Indian language editor, the follow-
ing is the pseudo code which is followed:

(1) Given an IT3 word, parse it into sequence of
characters. The maximum length of an IT3 character
is three letters with each character denoting a speech
sound.

(2) Aksharas are obtained from the sequence of
characters. An Akshara is of the type C*V, thus every
vowel marks the end of an Akshara. This step can also
be treated as syllabification.

(3) An Akshara can be V, CV, CCV or CCCV.
Rendering of the Aksharas of type CV, CCV and
CCCV is done as discussed in Section 5. As IT3 is
phonetic in nature, users type the inherent vowel (/a/).

This has to be nullified for the reasons discussed in
Section 7.

In Fig.2 we show some of the screen shots of the
editor built using this simple scheme.

EXTENDING THE APPROACH TO ARABIC,
URDU AND PERSIAN

As the extension to the Indian language Trans-
literation Editor, we have included Middle East lan-
guages such as Arabic, Urdu and Persian.

The Middle East languages like Arabic, Persian
and Indo-European language Urdu have some com-
mon characteristics.

All these three languages are written from right
to left. Persian and Urdu are derived from Arabic. The
characters of Arabic, Persian and Urdu characters are
called alphabets. Each alphabet corresponds to a
phone (Library of Congress, 1997).

Arabic:
Each alphabet corresponds to a phone. Arabic

has 9 vowels and 28 consonants (Library of Congress,
1997; Qur’an Transliteration, 2005). In Arabic it
should be noticed that the vowels do not appear in-
dependently as seen in many Indian languages, they
occur only with a consonant. All the Arabic charac-
ters are written in different ways by the occurrence of
the same, i.e. the alphabet is written differently if it
occurs in the initial position and it is written differ-
ently if it occurs in the middle or end of a word. This
rule is same for Persian and Urdu.

Persian:
Persian also has 9 vowels and 32 consonants.

Modern Persian uses a modified version of the Arabic
alphabet. Persian adds four extra alphabets due to the
fact that four sounds that exist in Persian do not exist
in Arabic. The additional four alphabets are shown in
Table 1 (Omniglot, 2005).

Table 1 Extended Persian set

Sound Shape Unicode name

[p] پ Peh

[tʃ] (ch) چ Tcheh

[ʒ] (zh) ژ Jeh

[g] گ Gaf

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1360

Urdu:
Urdu is derived from Persian which in turn is

derived from Arabic. Urdu uses more complex and
sinuous Nastaliq script. It is said that Arabic is a
subset of Urdu. Urdu has 11 vowels in addition to the
9 vowels of the Arabic alphabet and 35 consonants
(alphabets) (Hugo’s Website, 2005; U-TRANS, 2002).
Urdu language has two noon (n), one is noon and the
other is noon gunna, where as Persian and Arabic has
one only noon.

Transliteration:
As IT3 is sound based scheme, we used most of

the existing IT3 codes for these languages, which we
have used for the developing Indian languages
Transliteration. But there are additions that are made
for some of the sounds which do not exist in the In-
dian languages. For example the vowels a, aa, i, ii, u,
uu, e, o, ai, au have the same notation for Indian and
as well as for middle-east languages. But additional
IT3 codes such as ain (‘) and zheh (z’) are added to
accommodate middle-east languages. The following
steps are followed to develop the Transliteration:

(1) Once all the alphabets are assigned IT3 codes,
then each IT3 code should be mapped to the corre-

(c) (d)

(a) (b)

Fig.2 Screen shots of the transliteration editor in different Indian languages. (a) Telugu; (b) Hindi; (c) Kannada; (d) Tamil

Prahallad et al. / J Zhejiang Univ SCI 2005 6A(11):1354-1361 1361

sponding Unicode number.
(2) The above languages have explicit Unicode

number assigned to each of the alphabet.
(3) Unlike Indian languages, a consonant al-

phabet represents a consonant alone and a vowel
alphabet represents a vowel. For example in Indian
languages “k” is mapped to the Unicode representing
/ka/. But in Middle East languages “k” is explicitly
mapped to /k/ (kaf). There is no syllabification re-
quired in these languages.

CONCLUSION

In this work, we have described the process of
building Indian language editors using a simple
scheme based on Unicode. This simple approach has
the following advantages:

(1) Lesser number of entries in the mapping table.
There are only 92 entries (71 characters and 21
punctuation marks) for Telugu language. In the case
of ASCII font based Eenadu, a similar mapping table
consists of 635 entries; Hindi Language has 93 entries
including punctuation marks and Assamese has 89
entries with punctuation marks.

(2) Automatic rendering of the Unicode charac-
ters by the Unicode rendering engine in Windows
XP/Linux. Using Unicode based approach, a single
module can render all the languages. The mapping
table changes, but the parsing of IT3 sequence and
syllabification are the same across all of the Indian

languages. Whereas in the case of ASCII based fonts,
one may have to write separate modules for each of
the fonts to handle exceptions to render some of the
complex consonant clusters.

(3) Easy to adapt for new languages. Unicode
based approaches require minimal knowledge to work
in new languages, whereas ASCII font based ap-
proach requires a better understanding of the lan-
guage to handle exceptions related to rendering of
consonant clusters.

References
Alan, W., 2005. Unicode Resources. http://www.alan-

wood.net/unicode/index.html.
Ganapathiraju, M., Balakrishnan, M., Balakrishnan, N., Reddy,

R., 2005. Om: One Tool for Many (Indian) Languages.
Proceedings from the International Conference on Uni-
versal Digital Library (ICUDL), Hangzhou, China.
Journal of Zhejiang University SCIENCE, 6A(11):1348-
1353.

Hugo’s Website, 2005. Urdu & Arabic Pages. http://users.
skynet.be/hugocoolens/.

Library of Congress, 1997. ALA-LC Romanization Tables:
Transliteration Schemes for Non-Roman Scripts.
http://www.loc.gov/catdir/cpso/roman.html.

Markus, K., 2005. UTF-8 and Unicode FAQ for Unix/Linux.
http://www.cl.cam.ac.uk/~mgk25/unicode.html.

Omniglot, 2005. Persian. http://www.omniglot.com/writ-
ing/persian.htm.

Qur’an Transliteration, 2005. Qur’an Transliteration.
http://transliteration.org/quran/Home.htm.

The Unicode Consortium, 2003. The Unicode Standard, Ver-
sion 4.0. Addison-Wesley, Boston, MA.

U-TRANS, 2002. Urdu. http://tabish.freeshell.org/u-trans/.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

