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Abstract:    The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is 
based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points 
and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this 
paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the 
amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal 
varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal 
under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment. 
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INTRODUCTION 
 

Frequency estimation is the basis of other pa-
rameter measurements of signals in intelligent in-
struments and meters. Frequency estimation of sinu-
soidal or nonsinusoidal signals is easier to realize 
under non-noisy conditions than under noisy condi-
tions. Under noisy conditions, the frequency estima-
tion becomes more difficult work due to distortion in 
sample data. Some pioneering algorithms, such as 
zero crossing technique (Moore et al., 1996; Begovic 
et al., 1993), level crossing technique (Nguyen and 
Srinivasan, 1984), least squares error technique (Ka- 
mwa and Grondin, 1992; Sachdev and Giray, 1985; 
Giray and Sachdev, 1989), Newton method (Terzija et 
al., 1994), Kalman filter (Sachdev et al., 1985; Girgis 
and Hwang, 1984; Girgis and Peterson, 1990; Lobos 
and Rezmer, 1997; Phadke et al., 1983), Fourier 
transform (Yang and Liu, 2000; 2001; Lu et al., 1998; 
Moore and Johns, 1994; Szafran and Rebizant, 1998; 
Kuang and Morris, 2002; Girgis and Ham, 1982), 

wavelet transform (Moore and Johns, 1994), are used 
for frequency estimation of signals with harmonics 
and noises. Such algorithms need much more time 
and computation for estimation if they are applied in 
some real-time measurement cases. 

A novel algorithm proposed in this paper was 
developed for frequency estimation of multi-com- 
ponent signals using numerical differentiation and 
central Lagrange interpolation with multi-points. The 
proposed algorithm can achieve at an accuracy of 
0.001% of estimation over a larger range and only 
spends at most 1 cycle. Compared with other algo-
rithms, this high accuracy algorithm spends less time 
and computation over a wide range at and can be 
adaptively applied in real-time, intelligent measure-
ment and control cases. 

 
 

FORMULATION 
 

Numerical differentiation 
Given a function of voltage signal: 

Journal of Zhejiang University SCIENCE A 
ISSN 1009-3095  
http://www.zju.edu.cn/jzus        
E-mail: jzus@zju.edu.cn 

 



Wu et al. / J Zhejiang Univ SCIENCE A   2006 7(2):179-184 180

v(t)=0.                                    (1) 
 

At discrete points such as (ti, vi) and  (tj, vj), 
i=0,1,2,…,M–1, j=0,1,2,…,M–1 (M is derivative 
number), the Taylor series expansion is expressed as:  
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where ∆t=ti–tj. 

Without consideration of M order and higher 
order derivatives, we have central difference formulas 
such that: 
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where k=floor(M/2). floor(A) rounds the elements of 
A to the nearest integers less than or equal to A. 

Given (t0,v0), (t1,v1), …, (tM,vM) with regularly 
spaced h, we have the following relationship: 

 
   t0, t1=t0+h, t2=t0+2h, t3=t0+3h, …, tM=t0+Mh. 
 
So that Eq.(3) becomes: 
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       , 1,..., 2,1, 1, 2,..., ( 1),j k k k k= − − − − − − .            (4) 
 

With v(ti–k)–v(ti+k) known, the solution of 1st and M–1 
order derivatives can be obtained with the help of 
Eq.(4). 

For any M, a general matrix form may be ob-
tained as: 

 
D=Cr,                                      (5) 
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Therefore, the odd derivatives can be formulated 

as Eq.(6): 
 

r=C–1D.                               (6) 
 

Similar form could be derived for even deriva-
tives.  

For example, with M=7, the 1st and 2nd order 
derivative of v(t) at point p is expressed as follows: 
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where p is central point for derivative, h is regular 
space. 
 
Frequency estimation 

Under without noise condition, the multi-
ple-component signal is expressed by Eq.(9): 
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where fk,Vk,φk is the frequency, magnitude and phase 
of the kth component sinusoid, K is the number of 
power system signal sinusoid. 

The discrete-time sequence of the signal can be 
rewritten as Eq.(10): 
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where ts=nT/N, N is the sample size, T is sample pe-
riod. 

Without loss of generality, a multiple-component 
signal with 3-components is taken into consideration, 
and the discrete-time sequence of the signal can be 
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written as Eq.(11): 
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The 1st-order differentiation of v(n) is formu-

lated as Eq.(12): 
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The 2nd-order differentiation of )(nv  is formu-

lated as: 
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From Eqs.(12) and (13), we can obtain the fol-
lowing general Eq.(14): 
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So, we get the 4th-order differentiation of v(n) as: 
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where 

1 1 1 1( ) sin(2 )sv n V f t φ= π + .                      (16) 
 

From Eqs.(11), (13) and (15), we obtain the 
formula of component 1, namely v1(n) of the signal 
as: 
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In the same way, we obtain the formula of 

component 2, v2(n) and 3, v3(n) respectively as: 
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From Eq.(17), we can obtain the 1st-order dif-

ferentiation of v1(n) as: 
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In the same way, we obtain the 1st-order differ-

entiation of v2(n) and v3(n) respectively as: 
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From Eq.(16), the 1st and 2nd-order differentia-

tion of v1(n) can be obtained respectively as: 
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Using Eq.(24), the frequency of component 1 of 

the signal is estimated by: 
 

1
1

1

( )1 .
2 ( )

v nf
v n
′′−

=
π

                           (25) 

 
In the same way, the frequency of components 2 

and 3 of the signal is estimated by Eq.(26) and Eq.(27) 
respectively: 
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ALGORITHM IMPLEMENTATION 
 

The steps for implementation of frequency es-
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timation of multi-component signals are: 
Step 1: Sample the multi-component signal at 

sample frequency of N×50 Hz. 
Step 2: Use central numerical differentiation of 7 

points to compute the 1st to 6th-order differentiation 
of the signal using Eqs.(5)~(10). 

Step 3: Calculate the frequency fe11 of the 1st 
component sinusoid using Eq.(28): 
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where ηk (k=1,2,…,K) is compensation coefficient of 
the kth component sinusoid. fekn is the nth estimated 
value of the frequency of the kth component sinusoids. 

Step 4: Compute the signal sequences using 
Eq.(29): 
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where T=1/fe11; Vkc, φkc is the computation coefficient 
of the magnitude and phase angle of the kth compo-
nent sinusoid respectively. 

Calculate the estimated frequency fe12 using 
Eq.(28). 

Step 5: Compute the signal sequences using 
Eq.(29) with T=1/fe12. Calculate the estimated fre-
quency fe13 using Eq.(28).  

Step 6: Compute the signal sequences using on 
Eq.(29) with T=1/fe13. Calculate the estimated fre-
quency fe14 using Eq.(28). fe14 is the measured value f1 
of  the 1st component sinusoid. 

Step 7: Set k=2. 
Step 8: Calculate the estimated frequency fek1 of 

the kth component sinusoid using the following equa-
tion: 
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Step 9: Compute the signal sequences using on 

the following formulation: 
 

1
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where T=1/fek1. 

Calculate the estimated frequency 2ekf using 
Eq.(30). 

Step 10: Compute the signal sequences basing 
on Eq.(31) with T=1/fek2. Calculate the estimated 
frequency fek3 using Eq.(30).  

Step 11: Compute the signal sequences using on 
Eq.(31) with T=1/fek3. Calculate the estimated fre-
quency fek4 using Eq.(30). fek4 is the measured value fk 
of the kth component sinusoid. 

Step 12: k=k+1. If k is not equal to K, then go to 
Step 13. If k=K, then it is the end of the computation. 
 
 
NUMERICAL TEST 
 

To illustrate the proposed algorithm, a signal 
with 3 components is given:  
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where the value of f1, f2, f3, the amplitudes and phase 
angles of 3 harmonics are all unknown. In this paper, 
the simulation for the proposed algorithm is carried 
out with Matlab software.  

In any case, the signal is sampled with an initial 
sample frequency of 25600 Hz, and a sample se-
quence obtained from this sample is used for fre-
quency estimation.  

The frequencies of the components 1, 2 and 3 of 
the signal are all estimated at an accuracy of 0.001% 
over 1 Hz to 800 kHz, as shown in Table 1. The 
simulation is accomplished in 5 cases:  

Case 1: the amplitude of the components 1, 2 and 
3 of the signal are set to vary from 1 V to 200 V at 
random respectively and the phase angle of the 
components 1, 2 and 3 of the signal are set to a fixed 
value, say φ1=30°, φ2=160°, φ3=320°.  The results of 
the simulation show that the accuracy for frequency 
estimation of the components 1, 2 and 3 are all 
0.001% with the amplitude of the 1st, 2nd and 3rd 
harmonic varying from 1 V to 200 V at random. It is 
noteworthy that the accuracy is still not less than 
0.001% in cases the amplitude of the 1st, 2nd and 3rd 
harmonic is all 1 V or 200 V, or is 1 V, 200 V, 200 V, 
or 1 V, 1 V, 200 V respectively. 

Case 2: the phase angle of the components  1,  2 
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Table 1  Frequency estimation 
 

f1 (Hz)  f2 (Hz)  f3 (Hz) 

Real Measure Real Measure  Real Measure 

1 0.99386 1 0.99386 1 0.99386 
6 5.99715 18 17.97246 28 27.94138 

73 73.00768 5 5.00106 10 10.00210 
100 100.0020 200 200.0065 150 150.0041 
400 400.0190 300 300.0365 500 499.9727 

1000 999.9997 800 800.0098 2000 1999.999 
5000 5000.080 2000 1999.999 3000 3000.027 
3000 3000.048 6000 5999.997 8000 7999.996 

10000 9999.997 8000 7999.989 20000 19999.99 
50000 49999.84 70000 69999.78 60000 59999.81 

100000 99999.69 200000 199999.3 150000 149999.5 
200000 200000.5 200000 200000.5 200000 200000.5 
300000 300000.8 200000 199999.4 400000 399999.3 
500000 499998.6 400000 400000.9 500000 499998.6 
500000 499998.6 500000 499998.6 500000 499998.6 
800000 800006.7 600000 599998.6 700000 700008.0 

 
and 3 of the signal is set to vary randomly from 0° to 
360° respectively and the amplitude of the compo-
nents 1, 2 and 3 of the signal are set to a fixed value, 
say V1=200 V, V2=10 V, V3=120 V. In this case, the 
frequencies of the components 1, 2 and 3 of the signal 
are all estimated at an accuracy of 0.001% over 1 Hz 
to 800 kHz.  

Case 3: the amplitude of the components 1, 2 and 
3 of the signal is to vary randomly from 1 V to 200 V 
respectively, and the phase angle of the components 1, 
2 and 3 of the signal is also set to vary randomly from 
0° to 360° respectively. In this case, the frequencies of 
the components 1, 2 and 3 of the signal are all esti-
mated at an accuracy of 0.001% over 1 Hz to 800 
kHz. 

Case 4: the amplitude fluctuation of the white 
noise is set to vary from 0.5 V to 400 V and the am-
plitude of the components 1, 2 and 3 of the signal are 
set to a fixed value, say V1=200 V, V2=10 V, V3=120 V, 
the phase angle of the components 1, 2 and 3 of the 
signal are set to a fixed value, say φ1=30°, φ2=160°, 
φ3=320°. In this case, the frequencies of the compo-
nents 1, 2 and 3 of the signal are all estimated at an 
accuracy of 0.001% over 1 Hz to 800 kHz. 

Case 5: the amplitude fluctuation of the white 
noise is set to vary randomly from 0.5 V to 400 V, the 
amplitude of the components 1, 2 and 3 of the signal 
are set to vary from 1 V to 200 V respectively, the 
phase angle of the components 1, 2 and 3 of the signal 
is set to vary randomly from 0° to 360° respectively. 

In this case, the frequencies of the components 1, 2 
and 3 of the signal are all estimated at an accuracy of 
0.001% over 1 Hz to 800 kHz. 

Table 2 shows mean squared errors of frequency 
estimation of the first sinusoid component under dif-
ferent Signal-to-Noise Ratio (SNR) using the pro-
posed algorithm. The mean squared errors are very 
small for SNR of 107.87255 dB, 29.63209 dB, 
15.76915 dB and 4.01341 dB.  
 
Table 2  Mean squared error of frequency estimation in 
noise 
 

SNR (dB) 
f1 (Hz) 

107.87255 29.63209 15.76915 4.01341 
1 0.0001680 0.0001694 0.0001685 0.0001600 
6 0.0032827 0.0060386 0.0055044 0.0062800 

73 0.0004757 0.0001396 0.0001673 0.0001900 
100 0.0015241 0.0002592 0.0003056 0.0003513 
400 0.0000023 0.0043304 0.0049993 0.0058061 

1000 0.0000428 0.0000066 0.0000064 0.0000072 
3000 0.0002715 0.0035005 0.0000911 0.0001656 
5000 0.0003303 0.0002270 0.0002791 0.0097457 

10000 0.0025787 0.0006361 0.0006336 0.0008715 
50000 0.0000151 0.0000060 0.0001985 0.0000001 

100000 0.0956671 0.0009483 0.0020417 0.0007260 
200000 0.0004324 0.0001408 0.0113145 0.0004350 
300000 0.0070367 0.0001940 0.0071031 0.0002456 

 
In Table 3, the time for frequency estimation of 

the first sinusoid component using NDBA (Numerical 
Differentiation Based Algorithm, proposed in this 
paper) is compared to other techniques. The compu-
tation time of DFT, SDFT and CWT algorithm are all 
obtained from (Yang et al., 2000). In a DSP system 
with running frequency being greater than 20 MHz, 
the time spent for frequency estimation of the first 
sinusoid component by the algorithm proposed in this 
paper always needs at most 20 signal periods (less 
than 0.4 s). It is seen that the algorithm proposed in 
this paper is the fastest method for frequency estima-
tion. 
 
Table 3  Estimation time compared to that of other tech-
niques 
 

 NDBA SDFT DFT Prony 
Time (s) ≤ 0.40 0.54 0.71 2.03 

 
In any cases, the proposed algorithm for esti-

mating the frequencies of the components 1, 2 and 3 
of the signal with noise or without noise needs at most 
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1 cycle. Because of use of numerical differentiation 
and central Lagrange interpolation, less computation 
work needs to be done so that much more time for 
computation is saved. The saved time depends on the 
speed of the microprocessor used in PC and the points 
used in numerical differentiation and central La-
grange interpolation. 
 
 
CONCLUSION 
 

A based on numerical differentiation and central 
Lagrange interpolation with multi-points algorithm 
for frequency estimation of multiple signals is pre-
sented in this paper.  

The frequencies of the components 1, 2 and 3 of 
the signal under noisy or not noisy condition are all 
estimated at an accuracy of 0.001% over 1 Hz to 800 
kHz with the amplitudes of the components 1, 2 and 3 
of the signal varying from 1 V to 200 V and the phase 
angle of the components 1, 2 and 3 of the signal 
varying from 0° to 360°. As a whole, the proposed 
algorithm needs at most half a cycle for estimation of 
the frequencies of the components 1, 2 and 3 of the 
signal under noisy or non-noisy conditions. 

The proposed algorithm is adaptive to any cases, 
in which the parameters, such as frequency, amplitude 
and phase of the signal are all unknown with the 
frequency of signal varying from 1 Hz to 800 kHz, the 
amplitude varying from 1 V to 200 V, and the phase 
angle varying from 0° to 360°. The proposed algo-
rithm is also adaptive to any cases with or without 
noise. In cases where the amplitude fluctuation of the 
noises is up to 400 V, the accuracy for frequency 
estimation of the signals is still maintained at 0.001%. 

Compared with other algorithms, this algorithm 
has higher accuracy and spends less time and com-
putation over a wide range at a high accuracy, so that 
the proposed algorithm is adaptive to any intelligent 
measurement and control.  
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