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Abstract:    Position and orientation estimation with high accuracy based on GPS and encoders for a four-wheel-steering vehicle 
(4WS) mobile robot is presented. A GPS receiver working in Real-Time Kinematics (RTK) mode can offer centimeter-level 
accuracy for our vehicle. In addition to GPS, the vehicle is equipped with four incremental encoders and two absolute encoders to 
provide information on wheels for estimation of velocity and sideslip angle of vehicle. The proposed architecture of position and 
orientation estimation consists of two extended Kalman filters and a processing unit of Runga-Kutta based dead reckoning. The 
first EKF fuses data from six encoders to estimate the vehicle velocity and the sideslip angle. The second EKF is applied to the 
estimation of position and orientation based on the measurement from precise RTK GPS data and output from first EKF. To obtain 
higher accuracy of estimation, an arbitrator is designed to switch between EKF2 and dead reckoning. The results and analysis of 
experiments are presented to show the effectiveness of the proposed approach. Limitations of the proposed approach and future 
works are also pointed out and discussed in this paper. 
 
Key words:  Extended Kalman filter, Navigation, Dead reckoning, GPS 
doi:10.1631/jzus.2006.A0185                    Document code:  A                    CLC number:  TP24 
 
 
INTRODUCTION 
 

Precise navigation is being researched and ap-
plied in various fields, especially for outdoor mobile 
robots (Wang et al., 1998; Lee, 1997; Iida et al., 
2000), such as those used in cargo container trans-
portation at seaport, in precision agriculture, military 
vehicles, etc. As we know, applied sensors and rele-
vant data processing basically determine the accuracy 
of navigation. In our research, GPS and encoders are 
used as navigation sensors. As an absolute positioning 
sensor, GPS has been commercially applied in vehi-
cles localization and navigation as well as in military 
areas. A GPS receiver working in Real-Time Kine-
matics mode can offer centimeter-level accuracy for 
our vehicle. In addition to GPS, the vehicle is 
equipped with four incremental encoders and two 
absolute encoders to provide information on wheels 
for estimation of vehicle velocity and sideslip angle. 
To estimate position and orientation on the basis of 
GPS data and encoder data, a novel architecture of 

position and orientation estimate is proposed, which 
consists of two extended Kalman filters and a proc-
essing unit of Runga-Kutta based dead reckoning. 
The first EKF fuses data from six encoders to estimate 
the velocity and sideslip angle at a reference point of 
the vehicle. The second EKF estimates position and 
orientation based on the measurement from GPS data 
and output from the first EKF. Further, to obtain 
better accuracy of estimation, a dedicated arbitrator is 
designed to switch on or off appropriate processing 
unit (EKF2 or dead reckoning). The results and 
analysis of experiments are presented to show the 
effectiveness of the proposed approach. 

This paper is organized as follows. Section 2 de-
scribes our research platform, a 4WS vehicle, and its 
kinematics model. Section 3 analyzes position and 
orientation estimation in detail, including the archi-
tecture of data fusion, estimation algorithms, and arbi-
tration. Results and analysis of some experiments are 
provided in Section 4. Finally limitations of the pro-
posed approach are discussed and conclusions are 
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presented in Section 5 and Section 6 respectively. 
 
 

KINEMATICS MODEL OF A MOBILE ROBOT 
 

Our research platform, Cycab, is a com-
puter-aided and DC-motor-driven four wheel steering 
vehicle. The kinematic model used in this paper is 
based on the one in (Wang et al., 1998) that was de-
rived for a 4WS vehicle. The motion of the vehicle 
can be described in global coordinates by using the 
“bicycle model” (Tay, 1999) as illustrated in Fig.1. 
The reference point CG is chosen at the center of 
gravity of the vehicle. Point O is the Instant Center of 
Turn. δf and δr are the steering angles of front and rear 
wheels. (x, y, ψ) defines the configuration of the ve-
hicle body, where, (x, y) is the position of the refer-
ence point in global coordinates and ψ is the vehicle 
heading angle.  

 
 
 
 
 
 
 
 
 
 
 
 
 
The kinematic model can be derived based on 

principles of geometry as follows:  
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where, ∆ is the sampling interval. 
 
 
POSITION AND ORIENTATION ESTIMATE 
WITH HIGH ACCURACY 
 

Position and orientation estimation aims  to  pro- 

duce the vehicle configuration, (x, y, ψ), using the 
measurement data from GPS and encoders mounted 
on the steering and driving systems. 

 
Architecture 

When reception is good, GPS measurements 
provide the vehicle position (x, y), but not the vehicle 
heading-angle. However, GPS signals are not avail-
able at all times; thus navigation requires more than 
the GPS. Encoders are common type of sensors in the 
industry. They are used to record the speed or relative 
position of a rotating shaft. To estimate the configu-
ration of a vehicle, encoders are not reliable because 
of accumulation of error over time-drift. 

As such, combination of the absolute sensors, 
e.g., GPS or compass and relative sensors, e.g., en-
coder, gyroscope and accelerometer is a natural solu-
tion (Kobayashi and Watanabe, 1994; Abbott and 
Powell, 1999). In this paper, we propose architecture 
for estimating the configuration of the vehicle based 
on extended Kalman filtering and Runga-Kutta 
method as illustrated in Fig.2. In this architecture, two 
extended Kalman filters are deployed; one (EKF1) is 
used to estimate the velocity and sideslip angle of the 
vehicle measuring wheels velocity and steering angle. 
Another one (EKF2) is used to fuse absolute posi-
tioning information from GPS and the output of the 
first extended Kalman filter to estimate the configu-
ration of the vehicle, i.e., (x, y, ψ). A block of R-K is 
referred to as dead reckoning based on Runga-Kutta 
method. An arbitrator and its two virtual switches in 
this architecture, determine which of the estimate 
solutions is on service. The details of the above men-
tioned blocks of algorithms will be presented in the 
next sub-sections. 
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Fig.1  Kinematics model 
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Wheel velocities vfl, vfr, vrl and vrr, are obtained 
from incremental encoders mounted at each of four 
wheels. δf and δr are steering angles of two front 
wheels and two rear wheels respectively, which are 
measured by two absolute encoders installed at the 
hydraulic jacks on the vehicle. 
 
Estimation algorithms 

EKF1 estimates the vehicle velocity, v, and ve-
hicle sideslip angle, β. It is always first choice to see if 
we can obtain any direct relationships from existing 
equations, like Eq.(1), which relates the vehicle posi-
tion and orientation to the velocity and sideslip angle. 
Is it possible to get an explicit definition of velocity v 
and sideslip angle β from the vehicle position and 
orientation as shown in Eq.(2)? 
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But obviously the vehicle orientation on the right 

side of the above equations is not available. So, we 
must explore other way to estimate v and β.  

Now, let us take [v, β, ρ]T as state vector x, ρ is 
the curvature at the center of gravity of the vehicle. 
Assuming that the velocity and sideslip angle of the 
vehicle keep constant within one sampling interval, 
the process model is as follows: 
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[wv, wβ, wρ]T is process error vector, a zero-mean 
white noise with Q1 covariance matrix. The above 
assumption is valid while the vehicle is driven 
smoothly without sharply accelerating or decelerating 
or turning.  

The measurement model should be the equations 
that express the relationships between four wheels 
velocity, two steering angles and state vector [v, β, ρ]T. 
Fig.3 represents the vehicle kinematics based on 
four-wheels model. r is the instant radius at point CG, 
i.e., the reciprocal of ρ. 

The velocities at the four wheels of the vehicle 
are as expressed in Eq.(4). 
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Taking the magnitudes only: 
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The front and rear steering angles δf and δr can be 
derived by analyzing Fig.3 and are expressed in 
Eq.(6). 
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Combining Eqs.(5) and (6) yields a discretized 
measurement model as described by Eqs.(7) and (8).  
 

z(k)=h1[x(k), k]+v(k),                       (7) 
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where, z=[vfl, vfr, vrl, vrr, tan(δf/2), tan(δr/2)]T is the 
measurement vector; v is the measurement error 
vector, which is a zero-mean white noise vector with 
R1 covariance matrix. h1[x(k), k] in Eq.(8) is a 
nonlinear transition function.  

To apply extended Kalman filtering, the Jaco-
bian matrices with respect to state vector should be 
worked out (Farrell and Barth, 1999). The transition 
function Jacobian matrix of the process model is an 
identity matrix, the Jacobian H1 (“1” means the index 
of EKF1) of h1 of the measurement model is pre-
sented by the following equation: 
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Details can be found in Appendix A.  
EKF1 works in the following steps: 
Step 1: State prediction and measurement pre-

diction 
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Repeat the above process for k=0, 1, … 

In EKF2, the state vector is [x, y, ψ]T, and the 
estimation results of EKF1 are taken as the control 
input here. The estimate error covariance P1 of EKF1 
is used to determine the initial error covariance of the 
process model. The process model of EKF2 is: 
 

x(k+1)=f2[x(k), k]+w(k),               (10) 
 
where, f2[x(k),k] is of the form of Eq.(1), w is the 
error vector of the process model with zero-mean and 
Q2 the error covariance. Eqs.(11) and (12) are the 
measurement modes of the EKF2. The measurement 
vector z is directly recorded data from GPS posi-
tioning information with zero-mean and R2 error 
covariance. 
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Jacobian matrix F2 of transition function vector f2 
with respect to state vector and Jacobian matrix H2 of 
transition function vector h2 with respect to state 
vector are presented in the following forms respec-
tively: 
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EKF2 works in the following steps: 
Step 1: State prediction and measurement pre-

diction 
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Repeat the above process for k=0, 1, … 

By fusing the data from encoders and GPS, the 
position and orientation of the vehicle can be esti-
mated using the above process. Although one kind of 
sensor data only, i.e., GPS measurement is used ex-
plicitly in EKF2, we note that EKF2 takes the vehicle 
velocity and sideslip angle, which are estimation 
outputs in EKF1, as its control inputs. So, actually 
EKF2 indirectly fuses measurement from six encod-
ers with data from GPS sensor. The estimation by 
EKF2 can achieve high accuracy due to the high ac-
curacy data from RTK of GPS.  

RTK, i.e., Real-Time Kinematics, can give 
centimeter-level accuracy. The GPS receivers used in 
RTK systems should be dual-frequency types that use 
standard code and carrier phase GPS signals, and 
track the second carrier phase signal that enable RTK 
GPS receivers to lock into the high accuracy (centi-
meter level). But, high accuracy needs more re-
quirements, for example, to get initialized, RTK 
needs a minimum of five satellites, after that it can 
operate with four (DGPS needs a minimum of three 
for sub-meter accuracy). Furthermore, for RTK, GPS 
receiver must be capable of On-the-Fly initialization 
(obtaining centimeter accuracy while moving). A 

RTK GPS receiver (Trimble, MS750) is installed on 
our Cycab. Fig.4 shows a scenario of RTK GPS po-
sitioning system. There are two GPS receivers being 
used, one is for base station, and the other is for rover, 
e.g. our Cycab. Generally the rover receiver has two 
operation modes, e.g., fixed RTK (centimeter accu-
racy), DGPS (sub-meter accuracy). Between the two 
modes is a transient mode, i.e., float RTK, which has 
better accuracy than DGPS, but worse accuracy than 
fixed RTK. 

 
 
 
 
 
 
 
 
 
 
 
 
 
However, in practice, fixed RTK mode is not 

constantly available during the vehicle driving. There 
are many cases that could result in satellites signals 
mask or deterioration, for example, the vehicle pass-
ing by a bridge or high building, or being close to a 
high tree, etc. Even at a nearly open-view site, the 
deterioration of GPS signals could occur due to 
ionosphere activities or satellites failure. In such cases, 
GPS operation mode would be degraded from Fixed 
RTK to Float RTK or even DGPS (We will not dis-
cuss the situations of completely losing GPS signals 
or degrading to standard GPS in this paper), the es-
timation precision also will deteriorate significantly 
as well. To compensate for the lost precision as much 
as possible, dead reckoning is applied to replace 
EKF2 to produce the position and orientation of the 
vehicle during the above deterioration stages. The 
dead reckoning here is a Runga-Kutta-based algo-
rithm to solve the differential Eq.(10).  
 
Arbitration mechanism 

To choose the best estimate outputs from EKF2 
or the dead-reckoning, an arbitrator (Fig.5) is de-
signed to determine which estimate is online. In the 
NMEA data output of the GPS rover receiver is a 

Fig.4  A scenario of RTK GPS positioning system 
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message segment of “GPS quality indicator”, which 
indicates the current GPS modes by digits. The arbi-
trator utilizes such messages to switch the algorithms 
between EKF2 and Runga-Kutta-based dead reck-
oning. Fig.5 shows that, the dead reckoning has to 
subject to timeout checking, its “lifespan” is limited 
to a preset interval. Or else, the drift of encoders 
through time could go beyond a specified error bound, 
even beyond the error bound of DGPS or float RTK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another issue is that the dead reckoning must be 
initialized by the latest estimation results. In other 
words, the dead reckoning should be calibrated by the 
latest available GPS data before it is put into service. 

 
 

EXPERIMENTAL RESULTS 
 

Experiments were carried out in a car park with 
some low trees and houses nearby. In most cases, the 

rover GPS receiver on our vehicle works in fixed 
RTK mode.  

Estimation outputs of EKF1 are shown in Fig.6, 
estimation results can rapidly converge, even initial-
izing the state vector with some bias. To evaluate the 
estimation, a  quasi-true  velocity  by  post-processing 
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of GPS data is used for comparison; the square error 
shown in Fig.6d reflects the performance of estima-
tion to some extent. 

Fig.7 shows the trajectories of two experiments 
that basically represent the cases that most possibly 
occur when the vehicle is running at a nearly 
open-view site. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In Experiment 1, the vehicle starts running from 
the upper right side of Fig.7a with GPS working in 
fixed RTK mode. The dotted line is the trajectory 
recorded by GPS data, the solid line is produced by 
the estimator represented in Fig.2. The estimation 
mostly coincides with the one by GPS, because 
EKF1+EKF2 is being used to estimate the states ac-
cording to the arbitration mechanism. From the 
starting point, GPS is in fixed RTK mode; good re-
sults are produced by EKF1+EKF2. When the vehicle 
reaches segment AB, the DGPS mode occurs and a 
significant error (magnified profile is shown in the 
right window) emerges accordingly. Thus RTK1+RK 
algorithm is carried out within the timeout period (15 
s for DGPS, 20 s for RTK Float). The upper little 
arrow A points to the entering DGPS epoch, the lower 
arrow B points to the recovering to fixed RTK epoch. 
Clearly the estimation of EKF1+RK is quite good in 
such case. GPS works in fixed RTK mode again in the 

last period (after point B), the estimator applies 
EKF1+EKF2 accordingly. 

Experiment 2 presents a worse situation of GPS 
signal (Fig.7b). A signal block occurs when the an-
tenna of the rover receiver is intentionally covered for 
a short term. This experiment was aimed at showing 
the performance of the estimator when the GPS works 
under bad conditions. The vehicle starts running with 
GPS working in fixed RTK mode, EKF1+EKF2 is 
used to estimate the states. From point A, the GPS 
signal is lost suddenly, there is no normal position 
data output (in such case, zeros are taken as the posi-
tion output, so the dotted line jumps to the origin), 
GPS receiver is in the “blind” status. At the point B, 
the GPS signal recovers, enters the DGPS mode first, 
then enters the float RTK mode at point C, finally 
returns to the high precise mode, i.e., fixed RTK at 
point D. From point B to point D, a typical complete 
RTK initialization procedure is performed, which 
takes about 30 s. From point A, the EKF1+RK (dead 
reckoning) is switched on to estimate the configura-
tion of the vehicle. In this case, the dead reckoning 
only lasts 15 s under the rule of the arbitrator. After 
the timeout, the estimator has to switch to 
EKF1+EKF2 at around the point C due to the drift of 
the encoders.  
 
 
LIMITATIONS 
 

This paper’s proposed approach has some limi-
tations, especially the problem of our not being sure 
that the GPS signal is always good enough in practice, 
would seriously and adversely impact the perform-
ance of the vehicle’s navigation system. And, al-
though using data from six encoders and 
Runga-Kutta-based dead reckoning we can work out 
the vehicle position and orientation, error accumula-
tion would get large when fixed RTK mode is lost for 
a long term. So, positioning and navigation cannot 
completely rely on only one kind of sensor (encoder). 
If RTK GPS is not available, more sensors, such as 
gyroscope, accelerometer, digital compass, etc. 
should be installed on the vehicle. In our future re-
search we will mount an IMU (inertial measurement 
unit) and laser scanner on Cycab, fuse them with 
encoders and GPS into EKF architecture to offer 
better and more reliable estimation.   

Fig.7  Trajectories by EKF (solid line) and GPS only 
(dotted line). (a) Experiment 1; (b) Experiment 2 
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CONCLUSION 
 

Real-time kinematics positioning of GPS pro-
vides very high precision (centimeter-level) for 
navigation of vehicles or outdoor mobile robots. But 
to be practical, it has to be used together with other 
sensors if deterioration of GPS signals is considered. 
In this paper, a 4WS vehicle is considered and we 
propose an estimator consisting of two extended 
Kalman filters, a Runga-Kutta-based dead reckoning 
unit and an arbitrator to estimate the position and 
orientation of the vehicle. Results of experiments 
showed the efficiency and high accuracy of estima-
tion, especially for the cases of short-term deteriora-
tion of satellites signals. 
 
 
 
APPENDIX A 
 

Supposing, 
 

2 2
f f f( ) 2 sin 1,A k l lρ ρ β= + +  

2 2
r r r( ) 2 sin 1A k l lρ ρ β= − + , 

2 2
f f f f( ) ( cos 2 sin 1) ( sin )B k l l lβ ρ ρ β ρ β= − + + + + , 

2 2
f f f f( ) (cos 2 sin 1) ( sin )B k l l lβ ρ ρ β ρ β= − − + − , 

1
cos
bC ρ
β+ = + , 1

cos
bC ρ
β− = − , 

2
f f1D B= − , 2

r r1D B= − , 

f f sinE l ρ β− = − , f f sinE l ρ β+ = + , 

r r sinE l ρ β− = − , r r sinE l ρ β+ = + . 
 
The Jacobian matrix of the EKF1 is 
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k k

kk k k
= +

∂
+ = =

∂ x x

h xH x
x

fl fl fl

fr fr fr

rl rl rl

rr rr rr

f f f

r r r

/ / /
/ / /
/ / /
/ / /

tan( / 2) / tan( / 2) / tan( / 2) /
tan( / 2) / tan( / 2) / tan( / 2) /

v v v v
v v v v
v v v v
v v v v

v
v

β ρ
β ρ
β ρ
β ρ

δ δ β δ ρ
δ δ β δ ρ

∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂  

, 

where, 
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