
Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 240

An application-layer based centralized information
access control for VPN*

OUYANG Kai (欧阳凯), ZHOU Jing-li (周敬利), XIA Tao (夏 涛), YU Sheng-sheng (余胜生)
(School of Computer Science & Technology, Huazhong University of Science & Technology, Wuhan 430074, China)

E-mail: oykai@mail.hust.edu.cn; ljzhou@mail.hust.edu.cn; xiatao@mail.hust.edu.cn; ssyu@mail.hust.edu.cn
Received Dec. 23, 2004; revision accepted Apr. 4, 2005

Abstract: With the rapid development of Virtual Private Network (VPN), many companies and organizations use VPN to
implement their private communication. Traditionally, VPN uses security protocols to protect the confidentiality of data, the
message integrity and the endpoint authentication. One core technique of VPN is tunneling, by which clients can access the in-
ternal servers traversing VPN. However, the tunneling technique also introduces a concealed security hole. It is possible that if one
vicious user can establish tunneling by the VPN server, he can compromise the internal servers behind the VPN server. So this
paper presents a novel Application-layer based Centralized Information Access Control (ACIAC) for VPN to solve this problem.
To implement an efficient, flexible and multi-decision access control model, we present two key techniques to ACIAC—the
centralized management mechanism and the stream-based access control. Firstly, we implement the information center and the
constraints/events center for ACIAC. By the two centers, we can provide an abstract access control mechanism, and the material
access control can be decided dynamically by the ACIAC’s constraint/event mechanism. Then we logically classify the VPN
communication traffic into the access stream and the data stream so that we can tightly couple the features of VPN communication
with the access control model. We also provide the design of our ACIAC prototype in this paper.

Key words: Virtual private network, Access control, Tunneling, Centralized management, Stream
doi:10.1631/jzus.2006.A0240 Document code: A CLC number: TP393.02

INTRODUCTION AND BACKGROUND

In the last decade, as the Internet becomes a
popular low-cost backbone infrastructure, many or-
ganizations and companies use it to establish their
secure private network, which is known as VPN
(Virtual Private Network) technology (Cohen, 2003).
Generally, VPN implements confidentiality of data,
message integrity and endpoint authentication by the
security protocols (such as IPSec: IP Security (Kent
and Atkinson, 1998) and TLS/SSL: Transport Layer
Security/Secure Socket Layer (Dierks and Allen,
1999)), and implements the private addressing by the
tunneling technique. Due to the tunneling of VPN
server shown in Fig.1, however, vicious users can

bypass the control of the firewall by the use of VPN
Server and compromise interior servers. Furthermore,
even though VPN has endpoint authentication to
prevent invalid users from accessing those servers,
the whole interior servers’ topology would be ex-
posed to every trusting user because there is no access
control model for VPN. Hence, establishing access
control model for VPN is the key technique of
high-security VPN architecture.

Traditionally, the research on access control is
classified into two aspects: access control model and
the security policy architecture. The classic access
model includes the B-LP model, the Biba model
(Verschuren et al., 1992), RBAC (Role Based Access
Control) (Sandhu et al., 1996) and CDAC (Content
Dependent Access Control) (Moffett and Sloman,
1991). Spencer et al.(1999) presented the Flask se-
curity architecture—the operating system security

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

* Project (No. 60373088) supported by the National Natural Science
Foundation of China

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 241

architecture. This research was the prelude to the
dynamical security policy framework. Bertino et
al.(2002) described a core specification language of
an extensible access control system, called MACS
(Multipolicy Access Control System), along which
different access control policies can co-exist.

There were further researches on the access
control technique for VPN in recent years. Jason et
al.(2003) presented an object-oriented information
model of IPSec policy designed to facilitate agree-
ment on the content and semantics of IPSec policy,
and to enable derivations of task-specific representa-
tions of IPSec policy such as storage schema, distri-
bution representations, and policy specification lan-
guages used to configure IPSec-enabled endpoints.
Sanchez and Condell (2002) proposed a protocol
called SPP, which can systematically resolve IPSec
policies with Policy Servers. Those researches were
almost all focused on IP-layer, but few were focused
on application-layer.

This paper focuses on the application-layer
based access control model for VPN. Compared with
IP-layer based access control model, it has two ad-
vantages as follows:

(1) Fine-grained. In the application-layer, we
could implement not only the control work in IP-layer,
but also more complex access constraints for VPN
(e.g. the access decision is made according to the
cooperation of the user name, client source, destina-
tion, time and the type of application-layer protocol).
Further, we can parse the content and context of an
application-layer protocol (such as HTTP) and im-
plement the access decision.

(2) Guard against network virus and intrusion. In
application-layer, we can establish the corresponding
constraints based on the virus characteristic and the
IDS (Intrusion Detection System) rule to protect the
internal servers. We cite for instance a well-known

SQL Injection for the Web-based database system. If
we set a constraint in the application-layer to inspect
application traffic and filter all dangerous packets on
VPN server, we can disconnect the routine between
the client and the Web-based database system. When
we set a constraint in the IP-layer, it is hard to inspect
the content of application traffic.

Hence, we present a novel application-layer
based access control model—ACIAC (Applica-
tion-layer based Centralized Information Access
Control), aiming at providing an efficient, flexible
and secure application-layer based access control
model for VPN. To achieve the goal, we present two
new ACIAC techniques: centralized management and
the stream-based access control. We first implement
the information center and the constraints/events
center for ACIAC. The two centers can be used to
reveal the dynamic multi-decision mechanism for
ACIAC, which is composed of the features of
multi-access control models, such as UBAC, RBAC
and CDAC. Then, we logically classify the VPN
communication traffic into the access stream and the
data stream so that we can tightly couple the features
of VPN communication with the access control
model.

The remainder of the paper is organized as fol-
lows. In Section 2, we detail the essential features of
ACIAC and discuss the control of ACIAC. Section 3
presents the prototype of ACIAC and discusses the
relationship between the logical modules and the key
techniques of the prototype. In Section 4, we describe
the current related researches. Section 5 summarizes
this paper.

ESSENTIAL OF ACIAC

Based on the theory of set and relation, we de-
scribe the terminology, rules, control and feature of
ACIAC in this section.

Definition and terminology
Definition 1 Stream S refers to as all communica-
tion traffic traversing the VPN server, and can be
classified into Access Stream (AS) and Data Stream
(DS). The traffic traversing the VPN server when the
users access VPN or the tunnel is established is AS.
After one tunneling is established, all traffic in this

Fig.1 The basic framework for VPN

Interior
Servers

Topology

Client

Firewall VPN
Server Srv1

Srv2

Srv3

Firewall packet filter rule: 1. Allow (VPNServer) 2. Discard (Srv1/Srv2/Srv3)
Tunneling:

Internet LAN

3. ClientTunneling Srv1/Srv2/Srv3

Interior
servers

topology

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 242

tunneling is DS. Any stream belonging to one par-
ticular user is expressed as u(S/AS/DS).

Through the above classification, ACIAC can
achieve the fine-grained access control and avoid the
unnecessary execution of constraints. We constrain
AS to implement the control of the access to the inte-
rior server and constrain DS to implement the internal
control of one particular server.
Definition 2 All kinds of sets and chains in ACIAC
are defined as follows:

(1) All the attributes of objects in any VPN
stream should be described as the information set
{Info}.

(2) All the constraints in any VPN stream should
be described as the constraint set {Cons}.

(3) The event set {Event} is a series of special
actions, which usually cause one special constraint
chain to change dynamically.

(4) The information set in any constraint/event
can be classified into the subject set {Sub} and the
object set {Obj}. {Sub} represents the information
that must be decided dynamically in one constraint.
{Obj} represents the static information in one con-
straint, which is configured or decided by the admin-
istrator.

(5) Chain List(x) is the management form, by
which ACIAC can organize {Info} with a special
logic relationship. x refers to subjects, objects, con-
straints or events.

(6) The user set U describes all the users regis-
tered in VPN, and the role set R defines different
groups of users. Each group of users has the same
logical privilege. Before any user can execute any
operation, he must be authenticated and authorized
A(u). In addition, there is a special user Admin, the
superuser for ACIAC.

(7) The actions triggered by the results of the
constraints are described as {Action}. In ACIAC
model, there are four types of actions: allow, discard,
filter and pend. allow: The streams can be transmitted
between clients and the internal servers through the
VPN server. discard: Because of the privilege re-
striction, the streams cannot be transmitted through
the VPN server, which results in the disconnection of
this tunneling or the logout of this user. filter: Because
of the streams’ invalid content or particular require-
ments, the streams cannot be transmitted through the
VPN server, and cannot cause the disconnection of

this tunneling or the logout of this user. pend: When
one constraint cannot be executed because the current
conditions are not satisfied, ACIAC marks this case
as a token pend, which cannot be evidence for access
control.
Definition 3 In ACIAC, we formulate the informa-
tion element as <name, value, List(R, Access), List(U,
Access)>. name is the name of the information ele-
ment. value is the abstract description of the ele-
ment’s value, whose type is decided when name is
defined. Access is the control privilege set of one
element, Access={none, read, write, own}. List(R,
Access) is the relationship between the role set and the
access privilege to the element. List(U, Access) is the
relationship between the user set and the access
privilege of the element.
Definition 4 The privilege level is formulated as
Level(x)={r∈R}×{u∈U}. In ACIAC, we adopt the
hybrid judgment mechanism, which includes the role
privilege and the user privilege. The access to one
information element info1 by a user u1 belonging to
the role r1 is allowed on both the conditions below:

(1) r1 has enough privilege to access info1 and
info1’s attribution does not include the none privilege
for u1;

(2) r1 has not enough privilege to access info1 but
info1’s attributions definitely include the read, write
or own privilege for u1.

Otherwise, this access is not allowed.
Definition 5 The formula for one stream process is
expressed as:

{∀u∈A(u),u(List(s)) ⊂{Sub}}
(()) { }
(() { } { (()) { }}u List c Cons

u List e Event u List o Obj⊂
⊂→ ⊂ .

When one constraint or event registers in

ACIAC, it must provide its subject list List(s), object
list List(o) and constraints’/events’ routine for the
ACIAC model. In one stream transmitting process,
according to the stream’s attribution, ACIAC gets all
information and call every constraint’s and event’s
routine in the current u(List(c)) and u(List(e)).

Rules
Rule 1 The constraint’s or event’s control routine
for any stream must be executed only if the user, to
whom the stream belongs, is authenticated and au-
thorized.

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 243

{∀u∈A(u), ∀s∈u(s), ∀c∈u(List(c))∪∀e∈u(List(e))e}
⇒Exec(c∪e).

Rule 2 Any modification to the value of any in-
formation element in any stream is done only if the
stream’s privilege is not less than that of the infor-
mation element. The same judgment applies to the
elements of {Cons} and {Event}.

{∀u∈A(u), ∀s∈u(S), ∀i∈{Info}, Level(s)≥Level(i)}

⇒Modify(i).

Rule 3 One constraint may have many instances, but
one user has one instance of one constraint at most.

{∀u∈A(u), ∀c∈u(List(c))}
⇒{u(Entity(c))≡1, Entity(c)≥1}.

Rule 4 {Event} is managed centrally by the ACIAC
model and shared by all valid privilege users. When
one user u1 is authenticated and authorized, ACIAC
organizes u(List(e)) for u1 according to Rule 2 and
every event in u(List(e)) is triggered by the user’s
stream u(S). u1 does not own any event in u(List(e)),
but refers to event.

{ (), ()} { (())}trigeru A u s u S e u List e∀ ∈ ∀ ∈ → ∀ ∈ ,
{ { }} { (()) () 1}e Event u Entity e Entity e∀ ∈ ⇒ ≡ ≡ .

Rule 5 After one user u1 is authenticated and au-
thorized, u1’s constraint list u(List(c)) is managed
through the user’s events u(List(e)) created by Rule 4.

{∀u∈A(u), ∀e∈u(List(e))}
((())e Manage u List c→ .

Rule 6 After one user u1 is authenticated and au-
thorized, he will maintain a copy of u(List(s)) ex-
pressed as <name, value> for his subject information
u(List(s)) involved in the constraints list and events
list. The same subject element has different values in
different user space, but the same object element has
the same value in different user space.

1 2 1 1{ (), (), (()),u A u u A u s u List s∀ ∈ ∀ ∈ ∀ ∈

2 2 1 2(()), () ()}s u List s name s name s∀ ∈ =
 1 2() ()value s value s= ,

1 2 1 1{ (), (), (()),u A u u A u o u List o∀ ∈ ∀ ∈ ∀ ∈

2 2 1 2(()), () ()}o u List o name o name o∀ ∈ =

1 2() ()value o value o⇒ = .

Rule 7 In the process of ACIAC executing the
constraints list u(List(c)) to control the transmission
of the current stream, if the result of any constraint is
discard or filter, ACIAC need not implement the
remainder of the constraints in u(List(c)). This stream
can be passed only if all the result s are allow or pend.

(()){ () { , }}c u List cu A u action discard filter∀ ∈∀ ∈ →∀ ∉
 (())Pass u S⇒ .

Control mechanism

ACIAC is the stream based control model. We
take the process of one user using VPN for example;
ACIAC includes these logic control modules: the
entry of the user, the establishment of tunneling, the
data stream control and the logout of the user.

1. The entry of the user
After the user u1 is authenticated and authorized,

ACIAC will dynamically create a new valid ID A(u1)
for u1 (the valid ID is the global, exclusive and irre-
versible value), initialize the user’s event list
u(List(e)), add 1 to the referenced counter of any
event in u(List(e)), and call every event’s registered
routine. When one user enters VPN, ACIAC must
trigger the initial event (usually the first event) to
build the user’s constraints list u(List(c)), copy the
constraints’ and events’ subject elements <name,
value> to the user’s private space, and reset the val-
ues of those copies.

2. The establishment of tunneling
After one user u1 enters the VPN architecture, u1

can establish one tunnel to access one internal server.
When one tunnel is established, ACIAC first checks
the validity of this request, then calls routines for
events and constraints in u(List(e)) and u(List(c)).

3. The data stream control
After the tunnel is established, ACIAC can con-

trol the traffic between the client and the internal
server. Because all data streams must pass through the
VPN server, ACIAC can analyze those streams con-
tent and context through events and constraints. The
mechanism of the analysis is similar to that of Content
Dependent Access Control (CDAC) model and the

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 244

Context Based Access Control (CBAC) model. We
take the access control for an internal Web server as
an example. After the tunnel from the client client1 to
the Web server serv1 is established, ACIAC will filter
some special URLs requested by client1 and analyze
the request or response packets according to the
characteristics of the virus and intrusion. Furthermore,
ACIAC can determine whether client1 is allowed to
access a resource according to the sequence of status.
ACIAC exclusively manages one set of detailed ac-
cess controls to a data stream so that those controls
can only be applied in one unique tunnel, and avoid
unnecessary control operations in other tunnels.

4. The logout of the user
When one valid user u1 wants to leave the VPN

session, ACIAC will call the events’ routines in
u(List(e)) and subtract 1 from the referenced counters

of those events. Usually, the last event ACIAC called
is the destruction event, in which ACIAC will clear all
session information of u1 and all related resources.

One demonstration of ACIAC shown in Fig.2
consists of one user u1 who has been authenticated
and authorized, one tunnel tunneling1, u1’s events list
u(List(e)) and u(TUN(List(e))), and u1’s constraints
list u(List(c)) and u(TUN(List(c))). It shows the rela-
tionship among information, subjects list, objects list,
constraints list, events list and user/role (all interac-
tions must be done under the control of those above
rules).

It also indicates that ACIAC has two centralized
repositories, one to store all information and the other
to store events and constraints. Both the subject and
the object come from the information repositories.
After ACIAC creates one new valid ID for u1, he will

user1 role1 Valid ID
ConstraintsEvents Cons1

Routine

Cons2 Cons3

Centralized information

Subject information <name, value>

Subject information <name, value>

TUN1 ConsTunneling1 ()List s
()List o

Routine

()List s
()List o

Routine

()List s
()List o

Event3

Routine

Event2 Event1

()List s
()List o

Routine

()List s
()List o

Routine

()List s
()List o

, , (,), (,)name value List R Access List U Access< >

, , (,), (,)name value List R Access List U Access< >

, , (,), (,)name value List R Access List U Access< >

Centralized constraints/events

, (,), (,)constraint List R Access List U Access< >

, (,), (,)constraint List R Access List U Access< >

, (,), (,)constraint List R Access List U Access< >

, (,), (,)event List R Access List U Access< >

, (,), (,)event List R Access List U Access< >

, (,), (,)event List R Access List U Access< >

Global event list

(())u List e

(())u List c
((()))u TUN List c

TUN1 events

((()))u TUN List e

Fig.2 One demonstration of ACIAC

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 245

copy the needed subject elements from the informa-
tion center to his private space and reset the value of
every subject element. When a constraint or event
needs the object, ACIAC retrieves the object from the
information repository. ACIAC stores the registered
constraints and events information as <constraint,
List(R, Access), List(U, Access)>/<event, List(R,
Access), List(U, Access)> in the constraints/events
center. ACIAC also maintains a global events entity
list List(e). As u(List(e)) shows in Fig.2, in u1’s ini-
tialization process, ACIAC creates the referenced
event list (Event1 and Event3) for u1, and u1 creates his
own constraints list (Cons1, Cons2 and Cons3) through
his initial event.

When tunneling1 has been established, ACIAC
will modify u1’s constraints list u(List(c)) and events
list u(List(e)), as u(TUN(List(c))) and u(TUN(List(e)))
shown in Fig.2. Furthermore, different tunnels may
have different constraint/event lists for the data
stream verification and filtering. Each distinct con-
straint/event list is a unique subclasses instance of
u(List(c))/u(List(e)).

Characteristics

From the above discussion, we see that the
ACIAC model is tightly coupled with the character-
istics of VPN communication with the access control
technique. It provides a fine-grained access control
mechanism for VPN server and integrates the features
of RBAC/UBAC, CDAC and CBAC.

We can conclude describing the characteristics
of ACIAC as follows:

(1) The centralized object management. We
formulate the concrete resources as information ele-
ments and abstract these access controls to constraints
and events. Both information and constraints/events
are stored in ACIAC’s repositories, which we can
expediently manage and avoid antinomies in different
control routines, for example, when both Cons1 and
Cons2 need the value of info1 to determine the access
privilege, and info1 is currently changed by the ad-
ministrator. The value of info1 should be conveyed to
them automatically, because both Cons1 and Cons2
access info1’s value from ACIAC’s centralized in-
formation repository.

(2) The stream based access control. According
to Definition 1, ACIAC divides all the VPN com-
munication traffic into the control stream and the data

stream. The objective of this division is to implement
fine-grained access control and avoid unnecessary
constraint operations so as to improve the perform-
ance of ACIAC. We will prove this claim in the fol-
lows paragraphs.

Assumption: in one tunnel, the average duration
of one stream transmitting through the VPN server is
Ttrans, the average duration of one access control
(constraint or event) is Tcontrol and the total number of
access controls is Num.

When there is no access control, the duration of
one transition is:

Tno_control=Ttrans.

When there are access controls but the access

control model does not distinguish the properties of
streams, the duration of one transition is:

Ttotal=Ttrans+Num×Tcontrol.

From the above discussion, we know that the
operation of any access control can lower the VPN
server’s performance.

But when we use ACIAC to control the stream,
the AS number of access controls is
Num(AS(List(c))+AS(List(e))) and the DS number of
access controls is Num(DS(List(c))+DS(List(e))), so
the duration of one transition is:

TDS=Ttrans+Num(DS(List(c))+DS(List(e)))×Tcontrol,
TAS=Ttrans+Num(AS(List(c))+AS(List(e)))×Tcontrol.

Distinctly, the duration of one transition in

ACIAC is less than that in other models without di-
viding traffic. Based on the analysis of VPN access
control, there is little control used in both AS and DS.
Hence, ACIAC can reduce the loss of performance
caused by the access control model.

(3) The event-driven dynamic management
mechanism. ACIAC uses event-driven model to im-
plement its management mechanism. After the user is
authenticated and authorized, ACIAC organizes the
event list for him. During the whole lifetime of the
user’s session, his status is controlled by the
event-driven model. In ACIAC, the status of the user
is very simple:

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 246

Status={init, update, work, terminal},

They cooperate with each other to implement the
access control technique for VPN.

Scheduler

The functional organizations of the ACIAC
scheduler include the Valid ID Creator, the Global
Event Controller, the Privilege Level Controller and
Synchronous Controller, as shown in Fig.4.

After one user is authenticated and authorized,

ACIAC calls the Valid ID Creator to create a new ID
for him. The new ID is created by a collision-free
hash function whose seed is composed of the current
time and a random number. Since the event-entities
list is a global list, which can be referred to by valid
users under the privilege level control, ACIAC uses
the Global Event Controller to manage it. Moreover,
the Privilege Level Controller implements the
ACIAC’s hybrid judgment mechanism, which is de-
scribed in Definition 4. Because the ACIAC proto-
type is a multi-threads/multi-processes system and
there are many shared resources, we use the Syn-
chronous Controller to implement the consistency and

Valid user manager

AS Parse
Controller

Scheduler

Administration
module

Constraints/Events
center

Information
center

Administrator
interface

Data streams

Access streams

Store media

Fig.3 The prototype of ACIAC

Fig.4 The functional organizations of Scheduler

Scheduler

Global Event
Controller

Privilege Level
Controller

Synchronous
Controller

Valid ID
Creator

where init denotes that when the user becomes a
validated user, ACIAC will do the initialization for
him, update means that during the user’s VPN ses-
sion, ACIAC updates his constraints/events list and
the value of any information element, work means
that the user is doing normal work, such as accessing
internal servers, terminal is a special update, in which
ACIAC will terminate the user’s session and reclaim
all resources allocated for the user.

(4) The user/role based hybrid privilege mecha-
nism. Apparently, if we just use the user privilege to
manage the access level, we need a very complicated
privilege management; if we just use the role privi-
lege to manage the access level, it is hard to satisfy
the requirements of all users. Hence, ACIAC uses the
hybrid privilege mechanism as described in Defini-
tion 4. For example, there is one role, r1, which con-
tains two users u1 and u2, and the other role, r2, and
two information elements info1 and info2 accessed
only by r2. If we want to allow u1 to access the info1,
but do not want to expose info1 to other users of r1

(such as u2) nor give u1 the privilege to access info2,
ACIAC can achieve the requirement through setting
the access privilege to info1 for u1 definitely.

Ongoing research activities in RBAC are as fol-
lows. Steinmuller and Safarik (2001) extended
RBAC with states aimed at include the notion of
states and state transitions into the RBAC model and
to view changes of components of RBAC model as
transitions between states of one access control pol-
icy. Ferraiolo et al.(2001) provided the first proposed
NIST standard for RBAC. Furthermore, Wolf et
al.(2003) showed how RBAC concepts can be ap-
plied to model cases in which identification mecha-
nisms can be used as a parameter to be evaluated in
access control.

PROTOTYPE OF ACIAC

In this section we will provide the module de-
sign of our ACIAC prototype and discuss all the
modules of the prototype and the relationship among
these modules.

As shown in Fig.3, the modules of the ACIAC
prototype include the Scheduler, the Valid User
Manager (VUM), the Access Streams Parse Con-
troller (ASPC) and the Administration Module (AM).

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 247

integrality of those shared resources, such as infor-
mation center and constraints/events center.

AS parse controller

The functionality of ASPC is straightforward.
As shown in Fig.5, ASPC classifies AS into the un-
known AS and the known AS. The unknown AS means
that ACIAC does not know who owns the AS because
there are no valid IDs in the AS. Hence, ASPC will
notify the VPN Authentication Server through its
Authentication Interface. After the user is authenti-
cated and authorized, ASPC can notify the Scheduler
to create a new ID and do initialization for the user. If
access stream is a known AS, ASPC uses its Callback
Controller to notify VUM, then VUM will find the
user owning this stream, and call his u(List(e)) and
u(List(c)) to deal with this stream.

Valid user manager

The internal organization of VUM is shown in
Fig.6. VUM manages every valid user in the form of
the user session entity. Each user entity has its own
constraints list, events list, subjects list, the Tunneling
Controller and the Objects Cache. The Tunneling
Controller in VUM is different from the VPN tun-
neling. The object of the Tunneling Controller is to
optimize the access control mechanism for data
streams, by which VUM can avoid unnecessary ac-
cess control operation in one tunneling.

The Object Cache is used to store the copy of the
recently used object elements <name, value>, which
is similar to the elements in subjects list. Compared
with {Obj} in ACIAC, object elements, one user’s
use of u({Obj}) is very limited and always centers on
a small scope. Hence, VUM can save some cost used
to search objects in the information center by the
Objects Cache.

Administration module

The internal organizations of AM include the
Web Interface, the Users/Roles Administration, the
Events/Constraints Administration, the Information
Administration, the Notification Mechanism and the
Store Interface, as shown in Fig.7.

The Web Interface provides the Web browser-
based administration mechanism for the administrator
to manage the registration/deregistration and modi-
fication of ACIAC’s users, roles, events, constraints
and information for administrator. The Store Interface
provides the transform mechanism from the media
form to the memory form for these resources. ACIAC
adopts the XML (Extensible Markup Language)
technique to implement the management of these
resources. Any change of those resources can trigger

A(u)

AS Parse Controller

A′(u)

VPN authentication
Server

Valid User
Manager

Parse
AS

Authentication
 Interface

Callback
Controller

Scheduler

Fig.5 The basic flow of AS Parse Controller
Administration Module

Constraints/Events
administration

Information
administration

W
eb

in
te

rf
ac

e

St
or

e
in

te
rf

ac
e

Notification
mechanism

Scheduler

Administrator

St
or

e
m

ed
ia

Users/Roles
administration

Fig.7 The internal organizations of Administration
module

DS(u1(Tun1))
DS(u1(Tun2))

DS(u2(Tun1))

Tunneling Controllor

1(())u List c

User Entity 1

1(())u List e

Objects Cache

1(())u List Sub

Tunneling Controllor

User Entity 2

Objects Cache

2 (())u List c 2 (())u List e 2 (())u List Sub

User Entity n

Valid User Manager

Fig.6 The internal organizations of Valid User Manager

…

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 248

AM’s Notification Mechanism, which can notify the
Scheduler of the change of some resources. The
Scheduler can synchronize the change if necessary.

RELATED RESEARCHES AND ANALYSIS

Access control for network, by the broadest
definition, is to implement the ultimate goal of all
network security—granting access when appropriate
and denying it when inappropriate. In this section, we
will discuss the recent researches on access control
technique for VPN and compare them with ACIAC.

As we have shown in the “Characteristic” ses-
sion, the conventional RBAC and CDAC can provide
sufficient level of fine-grained access control for all
users’ AC requirements. A separate AC module is
required for RBAC and CDAC to manage the access
control to a server providing different application
services. It is an administrator’s nightmare to main-
tain all applications’ access control without a cen-
tralized architecture.

The existing application-layer firewall can
hardly work with any type of VPN technology as all
data transmitted in VPN tunnels are encrypted. The
application-layer firewall also lacks centralized
fine-grained access control, which is the core of our
ACIAC.

Guo et al.(2003) presented a policy-based net-
work management system for IP VPN in the ICCT
2003 conference. Its basic object is to implement an
IP-layer based access control for VPN through
PBNM (Policy-Based Network Management) (Wang,
2000). PBNM mainly includes four components:
policy management tool, policy repository, Policy
Decision Point (PDP) and Policy Enforcement Point
(PEP). And it is based on FreeS/WAN IPSec that is a
Linux implementation of the IPSec protocols. To
implement this system, Guo et al.(2003), therefore,
mainly provided three mechanisms in the PDP com-
ponent to implement this system: the Service Level
Agreement (SLA) Management, the Key Manage-
ment and the Internet Key Exchange (IKE) Man-
agement. They also provided a high-level policy
definition language for the system in order that the
administrator adds and changes policies in the policy
repository, and designs an object oriented information
model to represent the IP VPN management policies.

Generally they put emphasis on the network man-
agement level of IP VPN. Ku et al.(2002) presented
the design and implementation of Web-based IP-VPN
policy deployment manager (PDM), which was de-
veloped aiming at helping ISP network administration
in VPN system deployment and management. Yague
et al.(2003) presented the application of Semantic
Web concepts and technologies to the access control
area. They designed the Semantic Access Control
Model (SAC) that uses different layers of metadata to
take advantage of the semantics of the different
components relevant to the access decision. Com-
pared with the above researches, ACIAC has one
outstanding characteristic: ACIAC is not the access
model used in VPN, but the access model tightly
coupled with VPN, in which every access decision is
based on the VPN stream.

On the other hand, considering that traditional
access control mechanisms have little ability to sup-
port or respond to the detection of attacks. Ryutov et
al.(2003) presented a generic authorization frame-
work that supports security policies that can detect
attempted and actual security breaches and can ac-
tively respond by modifying security policies dy-
namically. We also consider the disadvantage of the
current intrusion detection and anti-virus systems
working in isolation from access control for the ap-
plication the systems aim to protect. Hence, in the
ACIAC design, we use the features of the
CDAC/CBAC working mechanism to implement the
intrusion detection and anti-virus functions by the
ACIAC’s constraints/events mechanism. Further-
more, because these protection mechanisms for the
internal application servers always work after the
VPN tunneling is established, we can optimize the
access decision by classifying the constraints/events
into AS’s and DS’s.

CONCLUSION

The application-layer based centralized infor-
mation access control model (ACIAC) is the outcome
of our application-layer based VPN architecture.
Based on the analyses of current access control mod-
els and the working features of VPN, we present the
design of ACIAC for VPN and discuss the definitions,
rules and control mechanism of ACIAC. Firstly,

Ouyang et al. / J Zhejiang Univ SCIENCE A 2006 7(2):240-249 249

ACIAC is based on the VPN communication stream
so that it could tightly couple with VPN. Secondly,
any access control can be decided by users’ attributes,
subjects’ attributes or objects’ attributes. Thirdly,
ACIAC is not only the access control model but also
the intrusion detection and anti-virus system.

Furthermore, we provide our prototype of
ACIAC. In this prototype, we detail the design of the
logical modules and point out the key techniques for
implementing an efficient and flexible system.

Compared with other related researches, we
think our application-layer based centralized infor-
mation access control model is a novel tool for re-
search on the VPN access control and management.

ACKNOWLEDGEMENT

These ideas resulted from many helpful discus-
sions with Zhang Ming, Liu Wei and Dong Li-jun.
We would also like to thank Tang Fang and Guo Hui
for their valuable suggestions to improve the paper.
The researchers in the System Architecture Depart-
ment of Huazhong University of Science and Tech-
nology thank the National Natural Science Founda-
tion for its support and funding.

References
Bertino, E., Catania, B., Ferrari, E., Perlasca, P., 2002. A

System to Specify and Manage Multipolicy Access Con-
trol Models. Policies for Distributed Systems and Net-
works, p.116-127.

Cohen, R., 2003. On the establishment of an access VPN in
broadband access networks. Communications Magazine,
IEEE, 41(2):156-163.

Dierks, T., Allen, C., 1999. The TLS Protocol Version 1.0.
RFC2246.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli,
R., 2001. Proposed NIST standard for role-based access
control. ACM Trans. Inform. and System Security,
4(3):224-274. [doi:10.1145/501978.501980]

Guo, X., Yang, K., Galis, A., Cheng, X., Yang, B., Liu, D.,

2003. A Policy-based Network Management System for
IP VPN. Communication Technology Proceedings. ICCT
2003, 2:1630-1633.

Jason, J., Rafalow, L., Vyncke, E., 2003. IPSec Configuration
Policy Information Model. RFC3585.

Kent, S., Atkinson, R., 1998. Security Architecture for the
Internet Protocol. RFC2401.

Ku, H., Son, H.G., Facsko, J., Tyrrell, J., Haines, A., 2002.
Web-based Policy Deployment Management System.
Proceedings of Policies for Distributed Systems and
Networks, p.240-243.

Moffett, M.D., Sloman, M.S., 1991. Content-dependent access
control. ACM SIGOPS Operating Systems Review,
25(2):63-70. [doi:10.1145/122120.122125]

Ryutov, T., Neuman, C., Dongho, K., 2003. Integrated access
control and intrusion detection for Web servers. IEEE
Trans. on Parallel and Distributed Systems, 14(9):
841-850. [doi:10.1109/TPDS.2003.1233707]

Sanchez, L., Condell, M., 2002. Security Policy Specification
Language. Internet Draft, http://www.csie.nctu.edu.tw/
~jkzao/Publication/draft-ietf-ipsec-spsl-01.pdf.

Sandhu, R.S., Coyne, E.J., Feinstein, H., Youman, C., 1996.
Role-based access control models. IEEE Computer,
29(2):38-47.

Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen,
D., Lepreau, J., 1999. The Flask Security Architecture:
System Support for Diverse Security Policies. Proceed-
ings of the Eighth Security Symposium, p.123-139.

Steinmuller, B., Safarik, J., 2001. Extending Role-based Ac-
cess Control Model with States. EUROCON’2001, In-
ternational Conference on Trends in Communications,
2:398-399.

Verschuren, J., Govaerts, R., Vandewalle, J., 1992. Simulta-
neous Enforcement of the Bell-LaPadula and the Biba
Security Policy Models in an OSI-distributed System.
ICCS/ISITA’92, Singapore, p.257-263.

Wang, C., 2000. Policy-based Network Management. Com-
munication Technology Proceedings. ICCT 2000,
1:101-105.

Wolf, R., Keinz, T., Schneider, M., 2003. A Model for Con-
tent-dependent Access Control for Web-based Services
with Role-based Approach. Database and Expert Systems
Applications, Proceedings 14th International Workshop,
p.209-214.

Yague, M.I., Mana, A., Lopez, J., Troya, J.M., 2003. Applying
the Semantic Web Layers to Access Control. Proceedings
of Database and Expert Systems Applications, p.622-626.

