
Wu et al. / J Zhejiang Univ SCIENCE A   2006 7(7):1210-1214 1210

 
 
 
 

Curvature detail representation of triangular surfaces*
 

 
WU Jin-zhong1,3, LIU Xue-hui1, WU En-hua1,2 

(1State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100080, China) 
(2Department of Computer and Information Science, University of Macau, Macao, China) 

(3Graduate University of Chinese Academy of Sciences, Beijing 100039, China) 
E-mail: wjz@ios.ac.cn; lxh@ios.ac.cn; EHWu@umac.mo 
Received Apr. 10, 2006;  revision accepted Apr. 19, 2006 

 

Abstract:    Curvature tells much about details of surfaces and is studied widely by researchers in the computer graphics com-
munity. In this paper, we first explain the mean-curvature view of Dirichlet energy of triangular surfaces and introduce a curvature 
representation of details, and then present surfaces editing applications based on their curvature representation. We apply our 
method to surfaces with complex boundaries and rich details. Results show the validity and robustness of our method and dem-
onstrate curvature map can be a helpful surfaces detail representation. 
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INTRODUCTION 
 

With the favorites of finer and vivid 3D models 
in visual reality, games and entertainment community, 
researchers among academic institutions and indus-
trial organizations construct detail-rich models by 3D 
scanning tools and geometry modelling. These mod-
els usually contain millions of triangles and occupy 
hundreds and thousands of MB memories which give 
great difficulties for editing or operating onto them. A 
good representation of details makes these operations 
much easier. In this paper, we propose a detail rep-
resentation of surfaces by its mean curvature infor-
mation. Not just aiming to simplify mesh operations, 
our curvature detail representation has clear geomet-
ric explanation. 

 
Previous work 

First, we will list the technologies about detail 
representation, which are mainly used in mesh editing, 

shape deformation and animation. Second, curvature 
computation method and its applications in computer 
graphics are discussed. 

1. Detail representation  
In 3D triangular mesh space, geometry details 

can be represented in many ways. Ju et al.(2005) 
computed vertices weights by mean value coordinates 
method in 3D space onto a bounding coarse control 
mesh. The weights are used to compute deformed 
vertices position while control mesh deforms. The 3D 
mean value coordinates method is well-defined on 
both interior and exterior of the mesh surface and the 
deformation is real-time. Poisson equation-based 
method is another useful detail representation scheme 
and is studied in geometry completion, detail genera-
tion, mesh editing and deformation, etc. Poisson 
equation has its complex physical explanation but can 
be applied directly, on 2D images (Pérez et al., 2003) 
or on 3D meshes (Yu et al., 2004; Nguyen et al., 
2005). A parameterization of 2D pixel RGB or 3D 
coordinates onto a planar region is needed to get the 
gradient map of the surface function f. With this 
boundary condition and guidance gradient map a 
target image or surface is constructed. Here gradient 
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map works as details information in Poisson equation. 
Laplacian based method is also widely used as detail 
representation for mesh editing (Nealen et al., 2005; 
Au et al., 2005; Sorkine et al., 2004) or smoothing 
(Desbrun et al., 1999). In certain meaning, our mean 
curvature detail representation can be classified in 
this catalogue. But we explain the detail not as the 
displacement to its neighborhood but with a curvature 
meaning. Laplacian based method usually includes a 
sparse linear system, which makes it easy to operate 
and fast to compute. Igarashi et al.(2005) uses triangle 
shape and scales as the details of 2D triangular meshes 
which should be preserved during deformation. Lip-
man et al.(2005) represents the details as difference 
between local frames for neighbor vertices and de-
forms the object while keeping its original frame dif-
ferences. All these detail representation methods are 
practically efficient and some of them have their 
geometrical explanations. The detail representation 
proposed in this paper relates curvature of surfaces 
and Dirichlet energy of its triangular approximation. 

2. Curvature computation and applications  
In differential geometry, curvature is mainly 

studied on continuous surfaces. To deal with trian-
gular meshes, Meyer et al.(2002) defines mean cur-
vature normal operator and Gaussian curvature op-
erator with equations discretized from continuous 
surfaces. Other schemes base on curvature tensor 
method (Taubin, 1995) or on the theory of normal 
cycles (Cohen-Steiner and Morvan, 2003). We use 
scheme (Meyer et al., 2002) in which curvature can 
be formulated as a linear system of vertex position, 
simplifying latter operations. Curvature guides many 
applications in computer graphics, for mesh seg-
mentation of CAD models (Guillaume et al., 2004) 
and improves mesh parameterization of general 
meshes (Yamauchi et al., 2005), for mesh saliency 
(Lee et al., 2005), for mesh fairing while keeping 
desirable geometric features (Alliez et al., 2003; 
Desbrun et al., 1999). But curvature cannot be used in 
mesh editing easily as it is not as intuitive as vertex 
position. This paper proposes a mesh editing method 
guided by its mean curvature representation. 
 
 
CURVATURE DETAIL REPRESENTATION 
 
Definitions and notations 

In continuous 3D surface space, curvature is de-

fined as the derivative of the tangent vector of space 
lines. Mean curvature is half of the sum of the two 
principal curvatures k1 and k2 of a point xi on a surface. 
Its discretization on triangular meshes is 
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Ki is the mean curvature normal operator. 
For a surface 2 3:f →  parameterized on a 

close region 2Ω ⊂ , usually an energy function is 
present as global metric. For most energy functions, 
Dirichlet energy function is among the most fre-
quently used and is defined as 2
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∇f is the gradient operator of f. Its discretization is 
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derivative. The discretization of mean curvature and 
Dirichlet energy are deduced many ways (Meyer et al., 
2002; Desbrun et al., 1999; 2002; Pinkall and Polthier, 
1993), but they use them for different purposes. 

 
Base presentation 

From previous discussion, it is obvious that 
∂ED(M)/∂xi=KiAi. This form views curvature as 
global Dirichlet energy metric for triangular meshes. 
It shows that the vertex differential of Dirichlet en-
ergy is twice the product of its mean curvature normal 
and area operators, and that it is an intrinsic property 
for meshes. Based on this analysis, we propose a 
curvature detail representation for triangular meshes 
and assume this detail representation contains the 
local and global information. Not like other proposed 
methods just aimed at practicality, our method has 
firm mathematical basic.  

For an unknown mesh M and its guidance mean 
curvature normal operator k, we aim to construct the 
mesh surface f with its vertex derivative of Dirichlet 
energy equaling to K. This is done quadratically by 
minimizing function Q D( ) ( ) / i

i
E f E f= ∂ ∂∑ x  

2 .i i−K A  
When f is discretized triangularly with a certain 

vertex connection, minimizing EQ is equal to mini-
mizing a linear system |Φx−d|2, which can be solved 
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efficiently by optimization methods. When guidance 
K changes, so does the mesh surface. This observation 
builds the key base of our scheme. 

Validity checks of EQ is introduced by con-
struction of minimal surfaces for open surfaces with 
fixed boundaries, with setting KA=0. It shows the 
feasibility of our method.  
 
 
IMPROVED DETAIL REPRESENTATION 
 
Curvature coefficients 

Base scheme needs improvements, as it is not 
rotation or scaling invariant. This drawback is mainly 
caused by K, a triple-vector attached to each vertex, 
whose direction and length remain the same while it 
rotates and scales. It should rotate and scale corre-
spondingly with the deformation. The relative angle 
and ratio between neighboring Ki and Kj need to be 
preserved before and after rotation and scaling, so do 
the details. 

Furthering the base representation we define the 
localization of KiAi as a linear equation of its neighbor 
vertices .

i

i i ij j j
j H

c
∈

= ∑K A K A  Here curvature coeffi-

cients {cij} contain the angle and ratio information 
which do not change while editing, aiming to preserve 
original mesh details. Ki and Kj are triple-vectors, 
mathematically speaking, Ki can be uniquely repre-
sented by three Kj if they are not in the same plane. 
When this occurs, other Kj will be useless and the 
solution of cij will be singular, which is undesirable. 
This drawback must be avoided. We put another 
constraint 2

min
ijc∑ on it to get a reasonable solution. 

Though this additional constraint may consume more 
time, this part of the work can be precomputed before 
mesh editing. 

Another two candidates are also tested to elimi-
nate rotation and scaling problem, one is to rotate and 
scale K correspondingly, and the other is to substitute 
KA with other scalar, for example principal curvature 
k1 or k2. The former one can be comprised in our 
scheme while the latter one is always unsteady, be-
cause of its two-order derivative property. This rota-
tion and scaling problem is common in mesh editing; 
it can be solved by interpolating (Yu et al., 2004) 
according to the deformation or by putting the rota-

tion and scaling metrics in the optimization stage 
(Sorkine et al., 2004). Not like either of them, we 
solve it as localized curvature coefficient of its 
neighbors. 

At the stage of editing, curvature normal con-
straints are imposed on some vertices. The curvature 
normal of other vertices are derived by the constraints 
and curvature coefficients {cij}. This can be done by 
solving a linear system or a quadratic minimization 
function: 
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K0A0 are known curvature normal constraints and 
unknown KiAi are solved accordingly. In our imple-
mentations, the latter is used. 
 
Embedding 

Two optimization stages are involved in our 
scheme, one is curvature optimization stage (Section 
3.1) and the other is embedding optimization stage 
(Section 2.2). After curvature is specified for some 
vertices, curvature optimization method is used to 
compute the best approximation curvature normal to 
the original surface, for other unspecified vertices. 
The approximation metric is the minimal of the op-
timization function. When curvature for every vertex 
is known, embedding optimization is used to get the 
position for unspecified vertices, with user selected 
vertices’ positions being specified, as the curvature 
optimization stage does. In this section, we demon-
strate the applications of our curvature-detail repre-
sentation. 

 
Mesh editing 

A region of interest for editing is specified in our 
demonstration. Users can select any inner vertices, 
modifying their 3D coordinates or curvature normal 
direction and length. With these constraints and pre-
computed curvature coefficients, embedding is con-
structed directly. As Fig.1 shows, just a few vertices 
are modified, the whole model deformed accordingly. 

The more vertices are modified with specified 
3D coordinates or curvature normal, less time is con-
sumed at optimization stage. If less unknown vertices 
remain, more user interaction is needed. In our im-
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plementation, boundary position and curvature are 
fixed for convenience, but actually this is not a nec-
essary condition, they also can be edited and modi-
fied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shape editing 
Big deformation such as shape editing is also 

available with our scheme. In this application, the 
boundary vertices coordinate or curvatures normal are 
modified. Fig.2 shows the results. The whole head of a 
cow is selected as region of interest. Curvature normal 
directions of the feature points on it are modified to-
wards readers, and then the embedding is constructed. 
For terrain patch, large deformation of the boundary is 
available. Meaningful results are optimized by our 
scheme, even big deformation are present. 

  
Remeshing 

Remeshing and retriangulariztion are imple-
mented without any special settings, except that a 
parameterization is present to map curvature infor-

mation from source surfaces to its retriangularization. 
Various complex surfaces, with complex boundaries 
and long and narrow parts are used to test our repre-
sentation scheme. As shown in Fig.3, our scheme can 
generate good results for detail rich surfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Mesh editing using curvature detail representa-
tion. (a) Elephant model with left ear lengthened and
right ear deformed towards readers; (b) Operation on
three features points of cactus model and other vertices
are embedded accordingly, with precomputed curva-
ture coefficient; (c) Curvature normal of feature points
of the horn is shortened, which means the horn must be
lengthened. Whole head is reconstructed for this op-
eration. 

(a) 

(b) (c) 

Fig.2  Shape editing of cow model (a) and terrain patch 
(b). (a) The head of cow is moved towards readers and 
knee of the leg is shown when it is not salient in the 
original model; (b) The boundary of original terrain 
patch (top) is modified with sine function in y (middle) 
and z (bottom) directions. Curvature normal of 
boundary is modified accordingly. 
 

(a) 

(b) 

Fig.3  The remeshing of three different complex sur-
faces. (a) and (c) are the nose and ear surfaces extracted 
from the mannequin model; (b) is the nose of an ele-
phant model. These surfaces have complex boundaries 
or long and narrow parts. Curvature normal informa-
tion is mapped from original model onto its retriangu-
larization, with the help of mesh parameterization. 

(a) (b) (c)
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TEST AND FUTURE WORK 
 

Our applications are implemented on PC with 
platform Windows 2000, 2.5 GHz CPU and 512 MB 
main memory. Time consuming parts are the two 
optimization stages, which is dominated by the size of 
Φij and Cij. Table 1 illustrates the data collected. The 
number of vertices and the time spent in optimization 
procedure are listed. 

 
 
 
 
 
 
 
 
 
 
Curvature is an important property of surfaces. 

But because of its second order differential property, 
it changes drastically even on smooth surfaces. This 
drawback makes it difficult to use it directly in mesh 
editing and mesh operation, preventing it from wider 
use. This paper proposes a curvature detail represen-
tation to solve the mesh editing problem with curva-
ture. It is rotation and isotropic scaling invariant, 
which makes it easy for editing. The test result shows 
that our method works well for mesh editing, shape 
editing and remeshing. Our scheme enriches the tools 
used for mesh operations. 

Further work is needed to widen the applications 
of curvature detail representation, such as morphing 
between multi-surfaces or putting desired features of 
different models together. The seamless connection 
between different parts is anther concern. 
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Table 1  Size of test surfaces and time for optimization 
procedure 

Models Vertices Facets Optimization time (s)
Nose1 601 1135 007.4 
Nose2 383 0732 002.6 
Nose3 874 1717 035.9 

Ear 951 1851 113.3 
Cat 135 0257 000.5 

 


