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Abstract:    In this work, we investigate the stabilization control design of nonholonomic stochastic system in strict-feedback form. 
Under the condition of all states being available for feedback, a state feedback controller was developed via the stochastic 
Lyapunov-like theorem and backstepping design technique. The controllers guarantee all states of the closed-loop system are 
bounded in probability, and largely asymptotically stable when the stochastic disturbances equal to zero at the equilibrium point of 
the open-loop system. Besides, the time-varying technique was introduced to avoid the uncontrollable state of chained system. 
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INTRODUCTION 
 

In recent years, much progress has been made in 
the design of control laws for systems subjected to 
nonholonomic constraint making it impossible to 
stabilize the system by any time-invariant continuous 
state feedback control law. This fact stimulates re-
searchers to construct time-varying (Jiang and Ni-
jmeijer, 1999; Jiang, 2001; Samson, 1995; Tian and 
Li, 2002) or discontinuous (Chang and Chen, 2002; 
Ge et al., 2003; Hu et al., 2004; Kim and Tsiotras, 
2002; Mnif, 2004; Fukao et al., 2000) feedback con-
trollers for the control of nonholonomic systems. For 
the deterministic system, some controllers have been 
proposed and tested (Kim and Tsiotras, 2002) on real 
mobile robot needing complete knowledge of the 
systems. Because most practical nonhonomic me-
chanical systems have uncertainties and may be per-
turbed by unknown disturbances, it is impossible or 
not exact to obtain the deterministic model. So, an 
important issue for practical system design is the 

adaptive or robust consideration against possible 
modelling errors and external disturbances. 

However, studies of stochastic nonholonomic 
systems were not carried out. To resolve the stabili-
zation of stochastic nonholonomic systems, a state 
feedback controller was designed in this work via 
backstepping design technique (Ke and Ye, 2006) and 
stochastic Lyapunov-like theorem (Deng and Krstic, 
1999; Fan and Ge, 2004) under the condition of all 
states being available for feedback. The remainder of 
the paper is organized as follows. Section 2 provides 
some necessary preliminaries. Formulation of sto-
chastic nonholonomic system to be considered is 
presented in Section 3. A state feedback controller is 
developed in Section 4 and a simulation example is 
given in Section 5. Finally, the paper is concluded in 
Section 6. 

 
 

PRELIMINARIES ON STABILITY IN PROB-
ABILITY  
 

Consider the nonlinear stochastic system 
 

dx=f(x)dt+g(x)dw,                       (1) 
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where n∈x  is the state, w is an r-dimensional in-
dependent standard Wiener process, f: n n→  and 
g: n n r×→  are locally Lipschitz.  
Definition 1    The equilibrium x=0 of Eq.(1) is said 
to be globally asymptotically stable in probability if 
for any t0≥0 and ε>0, 

0
0( ) 0

lim {sup | ( ) | } 0,t tt
P t ε≥→

> =
x

x  

and for any initial condition x(t0), {lim ( ) 0} 1.
t

P t
→∞

= =x   

Theorem 1 (Liu and Zhang, 2004)    Consider the 
stochastic nonlinear system of Eq.(1). If there exists a 
positive definite, radically unbounded, twice con-
tinuously differentiable function V(x): ,n → and 
constants c1>0, c2≥0 such that the infinitesimal gen-
erator 

 
2

T
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2

V VLV f Tr g g c V c
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(2) 
 

then  
(1) The system almost surely has a unique solu-

tion; 
(2) The system is bounded in probability; 
(3) In addition, if f(0)=0, g(0)=0, and LV(x) 

≤−c1V(x), the system is asymptotically stable in the 
large. 

Young’s inequality 
 

T 1 ,
p

p q
qp q

ε
ε

≤ +x y x y  

 

where ,  ,n∈x y ε>0, p>1, q>1 and (p−1)(q−1)=1. 
 
 
PROBLEM FORMULATION 

 
Consider the following stochastic nonholonomic 

system in the chained form 
 

       dx0=u0dt,                            (3.1) 
T

1 0 2 1 1

T
2 0 3 2 1 2

T
1 0

d [ d ( )d ],

d [ d ( , )d ],
                      
d d ( )d ,n n

x u x t g x

x u x t g x x

x u t u g

= +
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

= + 

w
w

x w

           (3.2) 

where 0x ∈  and T
1 2[ , , , ] n

nx x x= ∈x  are the 
states, 0u ∈  and 1u ∈  are control inputs, w is an 
r-dimensional independent standard Wiener process, 
nonlinear function ( )  (1 )r

i ig x i n∈ ≤ ≤  are known, 
smooth and locally Lipschitz. 
 
 
CONTROLLER DESIGN 
 

In this section, under the condition that the full 
state of system (3) is available for feedback, we de-
sign a state feedback controller via the Lyapunov-like 
theorem and backstepping technique. First, we design 
the stabilizing controller of system (3.1). Then, on the 
basis of the former step, we develop the stabilizing 
controller of system (3.2). Finally, the stability of the 
closed-loop system is given. 
 
Controller design of sub-system (3.1) 

 From system (3), it is obvious that the 
sub-system (3.2) is stable when u0=0 and is control-
lable as long as u0≠0. This fact leads us to construct 
the following time-varying control law u0 

 
u0=−c0x0+λsint,                           (4) 

 
where c0>0, λ>0. Clearly, u0 is a smooth function of 
time and 0lim ( ) 0.

t
u t

→∞
≠  

Proof    We prove 0lim ( ) 0
t

u t
→∞

≠  by contradiction. If 

0lim ( ) 0,
t

u t
→∞

≠  then u0(t)=0, ∀t≥T, from Eq.(3.1), then 

0 ( ) 0,x t t T= ∀ ≥  and therefore x0(t) is a constant *
0 ,x  

.t T∀ ≥  This together with Eq.(4) implies that  
 

*
0 0 sinc x tλ= .                           (5) 

 
This leads to a contradiction. Therefore, we have 

0lim ( ) 0.
t

u t
→∞

≠  

Define the candidate Lyapunov function as 
 

2
0 0 / 2.V x=                              (6) 

 
Differentiating the function V0 along the solution of 
Eq.(3.1) yields  
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*
0 0 0 0 0 0 0( sin ) | |V x c x t c x xλ λ= − + ≤ − + .      (7) 

 
From Eq.(7), we can easily conclude that states x0 and 
u0 are bounded on [0, ∞). 
 
Controller design of sub-system (3.2) 

When u0 is considered as a function of time, the 
sub-system (3.2) looks like a time-varying nonlinear 
system with a lower triangular form. Therefore, we 
can proceed with our control design via backstepping 
method as long as u0≠0. The procedure consists of n 
steps. At the ith step, 1≤i≤n−1, the state variable xi+1 is 
viewed as a fictitious control, for which a “reference” 
signal αi is designed. At the nth step, the fictitious 
control equals the actual control u1 which completes 
the design. 

As the fact that the sub-system (3.2) is stable 
when u0=0 and is controllable as long as u0≠0. For 
simplicity, it is without loss of generality to assume 
that u0≠0 in the course of design. 

To begin with, we can define a smooth function 
φi as   
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where l is a nonnegative integer and l≥n−1. 

Step 1: Let z1=x1. From Eq.(3.2) we have 
 

T
1 0 2 1 1d [ d ( )d ]z u x t g x= + w .                   (9) 

 
Since g1(x1) is a smooth function of x1, we can de-
compose g1(x1) as   
 

1 1 1 1 1 1( ) (0) ( )g x G G x x= + ,               
 

where g1(0)=G1(0) and G1(x1) is a known continuous 
function. 

We now view x2 as a virtual control and design 
for it the following stabilizing function 

 

1 1 1 1 1 1 0
0
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where φ1 is defined as before, c1, ε1 are positive con-
stants to be designed. It is clear that α1(φ1,0)=0. De-
fine  
 

z2=x2−α1(x1),                             (11) 
4

1 1 / 4V z= ,                                (12) 
 
By Itô formula, we have 
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where the following inequality was used 
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Step i (2≤i≤n−1): Assume the smooth function αj 

(1≤j≤i−1) has been designed such that 
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Using the definition of zi, we have  
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Taking the change of coordinates 
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Since the smoothing of gj(1≤j≤i), αj−1(2≤j≤i) and 
αj−1(0, 1jφ − )=0 (2≤j≤i), ( )i iG x  can be decomposed 

into the following forms 
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are  known continuous functions. 
We now view xi+1 as a virtual control and design 

for it the following stabilizing function 
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Choose Lyapunov candidate function as 
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By Itô formula, we have 
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Step n: Using the definition of zn, we have 
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We now design the actual control as follows 
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and define the Lyapunov candidate function of sys-
tem (3.2) as  
 

4
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By Itô formula, we have 
 

1 42 2 4 4 2
0 0

1 1

3(1 ) (0)
2

n n
l

j j n n j
j j

LV c u z c z u G
−

+

= =

≤ − − + +∑ ∑ (26) 

 
We now summarize the result of this work in the 

following theorem. 
Theorem 2    Consider the stochastic nonholonomic 
system (3). A time-varying feedback controller u0 and 
a state feedback controller u1 can be constructively 
designed so that the closed-loop system is bounded in 
probability. Besides, when Gi(0)=0 (1≤i≤n), the 
closed-loop system is asymptotically stable in the 
large. 
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Proof     From the transformation z1=x1, zi=xi−αi−1  and 
αi−1(0,…,0,φ1,…,φi−1)=0 (2≤i≤n), it can be concluded 
that x(t) is bounded or asymptotically stable when z(t) 
is bounded or asymptotically stable. Therefore, we 
only need to prove z(t) is bounded or asymptotically 
stable.  

When we design the control law as Eqs.(4) and 
(24), we have   
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Noting that V is a positive definite, radically un-
bounded and twice continuously differentiable func-
tion in terms of states of the closed-loop system (3.2) 
and that u0 is bounded, then by Theorem 1 we con-
clude that all states zi(t) (1≤i≤n) in closed-loop system 
(3.2) is bounded in probability. Furthermore, if 
gi(0)=0, then (0)iG =0 (1≤i≤n), which leads to  
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To prove the convergence of x(t), i.e. z(t), we intro-
duce  
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ψ(t) is uniformly continuous since its derivate is 
bounded. This together with Eq.(28) implies that ψ(t) 
is bounded. Therefore, by application of Barbalat’s 
lemma, it can be concluded that ψ(t) converges to 
zero as t→∞. 

As 0lim ( ) 0
t

u t
→∞

≠  and the nonnegative function V 

is decreasing and tends to a finite number, it follows 
by a contradiction argument that z(t) converges to 
zero in the ultimate. 

 
 

ILLUSTRATIVE EXAMPLE 
 

Consider the following stochastic chained sys-
tems 
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For this system, the virtual control α1 and control u0 
and u1 are designed as  
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We choose ε1=1, c0=0.3, c1=2.5, c2=1, l=1 and 

set the initial condition at x0(0)=1.5, x1(0)=1, x2(0)=2. 
Fig.1 depicts the simulation results. 

These simulation results clearly showed that the 
robust controllers presented in this work guarantee 
the boundedness and convergence of all the states in 
the closed-loop system. 
 
 
CONCLUSION 
 

In this paper, a state feedback controller was 
constructively designed by employing the stochastic 
Lyapunov-like theorem and backstepping design 
technique. The controllers guarantee all states of the 
closed-loop system bounded in probability, and 
moreover are asymptotically stable in the large when 
the stochastic disturbances equal to zero at the equi-
librium point of the open-loop system. The 
time-varying technique was introduced to avoid the 
uncontrollability of the chained system. The simula-
tion results illustrate the feasibility of the design 
procedure. 
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Fig.1  Evolution of the states (a) and the controls (b) 


