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Abstract:    Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature 
method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the 
weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat 
transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and 
double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, 
respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and 
that the system total energy can remain conservative in the numerical computation. 
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INTRODUCTION 
 

The differential quadrature method (DQM) was 
proposed by Bellman and Casti as an analogous ex-
tension of the quadrature method for integrals 
(Bellman and Casti, 1971; Bellman et al., 1972). It 
can be essentially expressed as the values of the de-
rivatives at each grid point as weighted linear sums 
approximately of the function values at all grid points 
within the domain under consideration. As a distinct 
numerical solution technique to obtain the initial 
and/or boundary value problems of engineering and 
physical sciences, the advantage of producing highly 
accurate solutions with minimal DQM computational 
effort is gradually emerging (Bert and Malik, 1996; 
Malik and Civan, 1995) compared with the conven-
tional numerical solution techniques such as the finite 
difference and finite element method. Currently, the 
research areas where DQM is applied include fluid 
mechanics, static and dynamic structural mechanics, 
heat transfer, biosciences, transport processes, 
aeroelasticity, lubrication mechanics and petro-

chemical engineering. Bert et al.(1988; 1989) first 
applied DQM to solve structural mechanics problems 
in 1987. The algorithm was successfully applied to 
static and dynamic structural analysis of the structural 
components soon afterwards (Bert et al., 1993) and 
highly accurate solutions can be achieved for free 
vibrational analysis of beam and plate (Wang et al., 
2004; Malekzadeh, 2005; Karami et al., 2006). DQM 
can be used for both spatial and temporal discretiza-
tion. In general, the boundary conditions are ex-
pressed by applying differential quadrature analog 
equations at the sampling grid points on or near the 
boundaries, these analog equations are then used to 
replace the differential quadrature analog equations of 
the governing differential equations at these points in 
order to solve the boundary value problems. However, 
this procedure will become very tedious when higher 
order derivations or multi-boundary conditions are 
involved along the boundaries. A δ-technique was 
proposed (Bert et al., 1988; Jang et al., 1989) to im-
pose the first derivative boundary conditions, al-
though this technique may also create problems of 
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ill-conditioned weighting coefficient matrices and 
unexpected oscillation behaviour of the solution (Bert 
and Malik, 1996). Several methods were proposed 
(Wang et al., 1993; Malik and Bert, 1996) to incor-
porate the boundary conditions in the weighting 
coefficient matrices. Shu and Du (1997) pointed out 
that these techniques have some major limitations and 
cannot be used to tackle general boundary conditions. 
Some methods (Chen et al., 1997; Wang and Gu, 
1997) have also been proposed for the higher-order 
derivatives boundary conditions imposed exactly by 
modifying the trial functions to incorporate the de-
grees of freedom of the higher-order derivatives at the 
boundary or by using the differential quadrature 
element method directly. However, the general for-
mulas for the explicit weighting coefficients are not 
yet available. In order to solving second- and 
higher-order initial value problems based on DQM, a 
scheme on how to impose the given initial conditions 
has to be considered. Fung (2001a; 2001b; 2003a; 
2003b) proposed unconditionally stable higher-order 
accurate time step integration algorithms, whose 
numerical solutions are found to be equivalent to the 
generalized Pade approximations, for second- and 
higher-order initial value problems based on DQM. In 
this paper, some numerical examples dealing with the 
heat transfer problem, the second-order differential 
equation of imposed vibration of linear single-degree- 
of-freedom systems and double-degree-of-freedom 
systems, the nonlinear move differential equation and 
a beam forced by a changing load (Pu, 2004) were 
computed, respectively. Highly precise computa-
tional results can be obtained and the system total 
energy can remain conservative in the numerical 
computation (Kuhl and Crisfield, 1999).  
 
 
DIFFERENTIAL QUADRATURE METHOD 
 

A differential form can be written approximately 
as Eq.(1) by virtue of the coefficient matrix Aij de-
termined in various fashions 
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This procedure is called “differential quadra-
ture”, and in essence is expressed as the values of the 

derivatives at each grid point regarded as weighted 
linear sums approximately of the function values at all 
grid points within the domain under consideration. In 
the method, all sampling grid points are used to 
analogize the each-order derivation of the function at 
each point, so a highly accurate numerical solution 
can be obtained by using a few sampling grid points. 
The numerical method for solving initial or boundary 
value problem is to seek a transformation through a 
differential or an integral formulation so that the 
governing differential or integro-differential equa-
tions are changed into a set of first-order or algebraic 
analogous equations in terms of the discrete values of 
the field variable at some prespecified discrete points 
of the solution domain. In DQM, this is accomplished 
by expressing at each grid point, the calculus operator 
value of a function with respect to a coordinate di-
rection at any discrete point as the weighted linear 
sum of the function values at all the discrete points 
chosen in that direction. For a function ψ=ψ(x,y) in 
the given domain, the values of the rth-order x-partial 
derivations of the function at a discrete point x=xi 
along any line y=yj parallel to the x-axis can be ex-
pressed approximately as the weighted linear sums of 
the function values  
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and sth-order y-partial derivations at a discrete point 
y=yj along any line x=xi  parallel to the y-axis 
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where ψij=ψ(xi,yj) with ( )r
ikA  and ( )s

jlB  standing for the 

respective weighting coefficients. According to the 
quadrature rules, Eq.(2) can be written in matrix form 
as 
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where, ψj and ( )
,
r

x jψ  are the column vectors of the Nx 

values each of  the function and its rth-order x-partial 
derivations, respectively, at the sampling points on a 
line y=yj. A(r) is the Nx×Nx matrix of weighting coef-
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ficients of the rth-order derivations. According to the 
definition of the differential operators, the quadrature 
rule from Eq.(2) can be expressed as 
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In Eqs.(4) and (5) there are given with respect to 
the x-coordinate only, the formulae with respect to the 
y-coordinate would follow in an identical manner. 
Following Eqs.(4) and (5), a recurrence relationship 
for the weighting coefficients can be obtained as   
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It is shown that the matrix A(1) of first-order de-
rivative weighting coefficients can obtain more 
weighting coefficients of higher-order derivatives by 
successive multiplications of the A(1) matrix by itself. 
The weighting coefficient matrix in Eq.(2) is the 
Vandermonde rank expressions, so the unique value 
of the weighting coefficient ( )r

ikA  can be obtained in 
the process of solving it. 
 
 
CHOOSING WEIGHT COEFFICIENT AND 
SAMPLE GRID POINTS 
 

Noticing the recurrence relationship of the 
weighting coefficients in Eq.(6), a first-order 
weighting coefficient can be expressed as 
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By substituting Eqs.(7) and (8) into Eq.(6), the 

weighting coefficient of higher-order derivative can 
be obtained by successive multiplications. An explicit 
formulae proposed by Shu and Richards for the 
off-diagonal and diagonal terms of the weighting 
coefficient matrix of the first- and higher-order de-
rivative are given detailedly in (Bert and Malik, 1996), 
a simple and convenient choice for simplifying grid 

points is that of equally spaced points, although more 
accurate results will be obtained with unequally 
spaced points such as in the Chebyshev-Gauss-Lo- 
batto scheme in (Bert and Malik, 1996). In (Fung, 
2001), an explicit formula was proposed for the 
weighting coefficient matrices of the first-order de-
rivative, the sample grid points τ1, …, τn can be re-
garded as the roots of the nth order polynomial given 
by 
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                                     0≤µ≤1.                              (10) 
 
 
DQM FOR INITIAL PROBLEM GOVERNED BY 
HIGHER-ORDER EQUATIONS 
 

For N-degree-of-freedom systems governed by 
higher-order equations, a linear mth-order ordinary 
differential equation can be expressed as Eq.(11) 
using the DQM 
 

1

0 1 1

d d ( ),
d d

m m

mm m t
t t

−

−+ + + =
q qK K K q f  m≥1,  (11) 

 
where, f(t)=[f1(t),…,fN(t)]T is the excitation vector; 
q=[q1,…,qN]T includes the N generalized coordinates; 
K0, …, Km are N×N square matrices. Each order 
variable at the end of the time interval can be obtained 
by external interpolation according to Eq.(12). 
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The weighted coefficient matrix can be ex-
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pressed as follows: 
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The higher-order derivatives can be expressed as 
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NUMERICAL EXAMPLES 
 
Example 1 

Consider a one-dimensional heat transmission 
case, the equation governing the temperature may be 
written in dimensional form as 
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where Θ is the nondimensional temperature and ξ is 
the nondimensional axial coordinate, m is a dimen-
sionless parameter and taken as 1. The boundary 
conditions for Eq.(18) are: dΘ/dξ=0 at ξ=0 and Θ=1 at 
ξ=1. According to the rules of DQM, the quadrature 
analog of the governing differential equation and the 
boundary condition at ξ=0 can be written as follows, 
respectively: 
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The boundary conditions at ξ=1 have been built into 
Eqs.(19) and (20), a set of (N−1) linear equations 
yielding temperature values at the sampling points ξi 

(i=1, 2, 3, …, N−1). The quadrature solutions of the 

problem are obtained by solving Eqs.(19) and (20) 
using uniformly sampling grid points, Cheby-
shev-Gauss-Lobatto sampling grid points and the 
sampling grid points according to Eq.(9). The com-
puting results are shown in Table 1 at ξ=0.1 intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 shows that the precision using uniformly 
sampling points is lower than that using Cheby-
shev-Gauss-Lobatto sampling grid points. Using 
sampling grid points for n=9 and µ=1 according to 
Eq.(9), the numerical computing precision is higher 
than using that Chebyshev-Gauss-Lobatto grid points. 
The results are shown in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2 

Consider a linear single-degree-of-freedom 
system, with governing differential equation given by 
 

2
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2
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ξω ω+ + =             (21) 

Table 1  Solution of the DQ with different methods 
Θ 

ξ 
Exact Uniformly Chebyshev n=9, µ=1 

0.0 0.438676 0.480540 0.451936 0.443566 
0.1 0.483653 0.502338 0.486722 0.484453 
0.2 0.530897 0.542570 0.532956 0.530785 
0.3 0.580485 0.588618 0.581550 0.579804 
0.4 0.632494 0.638352 0.633721 0.633201 
0.5 0.687003 0.691231 0.687756 0.687074 
0.6 0.744096 0.747070 0.744454 0.743595 
0.7 0.803855 0.805815 0.804334 0.804085 
0.8 0.866367 0.867476 0.866595 0.866470 
0.9 0.931718 0.932079 0.931809 0.931585 
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Fig.1  Error comparison with different methods 
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In Eq.(21) the initial conditions and the coefficients 
are: f(t)=0, u0= 2 , v0=0 at ξ=0 and ω=1. The exact 

solution of the differential equation is u(t)= 2 cos( ),t  
the system total energy is equal to one and should be 
conservative. The displacement and energy were 
computed numerically by various methods, using 
time step ∆t=0.2π. Taking n=3 and µ=1, the energy of 
the numerical solution is 1.0003 at the end of 1000 
time steps, the error of the numerical solution is only 
ε=(1−1.0003)×100%=−0.03%. Fig.2 shows that the 
precision and stability of the algorithm are better than 
those of the conventional numerical algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Eq.(21) taking each item as: ξ=0.3, ω=2, f(t)= 
hsin(θt), θ=1, u0=1 and v0=1, the time step is ∆t=6.28, 
the coefficients are h=0 and h=3, respectively. The 
curves of displacements for free and forced vibration 
with various methods are shown in Fig.3. 
 
Example 3 

Considering a simple pendulum consisting of a 
mass attached to a hinged weightless rod, the 
nonlinear motion equation can be expressed as  
 

2
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d sin 0,
dt

Φ ω Φ+ =                   (22) 

 

where Φ(t) is the angle between the rod and a vertical 
line at time t, / ,g Lω =  g is the gravitational 
acceleration, L is the rod length. 

The DQM can be used to solve this nonlinear 
problem. First Eq.(22) is rewritten in a nondimen- 
sional form; the quadrature rule equation can be exp- 
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where Φ0 and Ω0 are initial angle and initial velocity, 
respectively. Using Newton-Raphson iterative method, 
Φi for i=1, 2, …, n for each time step ∆t can be ob-
tained according to Eq.(24) 
 

1 .k k+ = + ∆Φ Φ Φ                           (24) 
 

Taking coefficient ω=1 and Φ0=0, the nonlinear 
equation is solved by using different numerical 
methods; the computing results is shown in Table 2. 
The change curves of amplitude Φ and angular ve-
locity Ω are shown in Fig.4. 
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Example 4 

Consider double-degree-of-freedom system 
differential equations in the form 
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with  initial  condition { } { } 0i iu u= =  for  i=1,  2.  The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
system dynamic response equations were computed 
for different time steps by using DQM with the nu-
merical results (µ=1) compared with Newmark 
method (NM) and precise integral method (PIM) 
(Table 3). 

Table 3’s computational results show that values 
are changed minimally with time step ∆t and changed 
remarkably when DQM is used, and that the solving 
process is stable so that the solving efficiency is quite 
remarkable. 
 
Example 5 

A simply supported beam was forced by a sine 
load at the middle of the beam with length of L=6 m, 
section area A=0.12 m2, inertia moment I=0.0036 m4, 
elastic modulus E=2.0×105 MPa, density ρ=7850 
kg/m3, load P=320sin(200t) kN. The beam was di-
vided into 100 beam elements, at each end of which 
are two freedom degrees such as a vertical displace-
ment and angular displacement.  

The computing results for the beam were ob-
tained by using NM, PIM and DQM (n=3, µ=1), re-
spectively (Fig.5). The numerical solution accuracy 
will be lost at time step ∆t=0.0025 with NM, so a 
smaller time step ought to be selected to obtain ac-
curate solution, but at the cost of erectly increased 
time consumption, the computational results being 
not precise enough due to cumulating error. Use of 
DQM yields relatively stable numerical results at time 
step ∆t=0.005, when the precision is the same as that 
by using the precise time integral method at 
∆t=0.0025, but the computational efficiency is obvi-
ously enhanced. 

Table 2  Numerical solution with various methods 
Method/grid points Tf /∆t Φ(Tf) Error in Φ (%) 

Exact − 1.04720 − 
n=2, µ=1 1 1.04485 −0.2240 
n=2, µ=1 2 1.04713 −0.0067 
n=2, µ=1 3 1.04718     0.0019 
[0,1/2,1] 1 0.87809 −16.1487 
[0,1/2,1] 5 1.04412 −0.2941 
[0,1/2,1] 10 1.04664 −0.0534 
n=3, µ=1 1 1.04721 0.0008 
n=3, µ=1 2 1.04719 −0.0006 

[0,1/4,3/4,1] 1 1.04051 0.6388 
[0,1/4,3/4,1] 3 1.04751 −0.0296 
[0,1/4,3/4,1] 5 1.04728 −0.0076 
[0,1/3,2/3,1] 1 1.03787 0.8909 
[0,1/3,2/3,1] 3 1.04812 −0.0878 

Ω
0=

1,
 T

f=
1.

68
58

 

[0,1/3,2/3,1] 5 1.04742 −0.0210 
 

Exact − 2.35619 − 
n=2, µ=1 1 2.20934 −6.2327 
n=2, µ=1 3 2.35707 −0.0373 
n=2, µ=1 5 2.35623 0.0014 
[0,1/2,1] 1 1.56487 −33.5847 
[0,1/2,1] 5 2.30487 −2.1781 
[0,1/2,1] 10 2.34464 −0.4902 
[0,1/2,1] 20 2.35351 −0.1137 
n=3, µ=1 1 2.37920 0.9764 
n=3, µ=1 2 2.35571 −0.0204 
n=3, µ=1 3 2.35609 0.0042 

[0,1/4,3/4,1] 1 2.02710 13.9670 
[0,1/4,3/4,1] 3 2.35610 0.0038 
[0,1/4,3/4,1] 5 2.35653 −0.0144 
[0,1/4,3/4,1] 10 2.35627 −0.0034 
[0,1/4,3/4,1] 20 2.35621 −0.0008 
[0,1/3,2/3,1] 1 1.78101 24.4114 
[0,1/3,2/3,1] 3 2.35613 0.0025 
[0,1/3,2/3,1] 5 2.35721 −0.0433 
[0,1/3,2/3,1] 10 2.35640 −0.0089 

Ω
0=

1.
84

77
6,

 T
f=

2.
40

01
 

[0,1/3,2/3,1] 20 2.35623 −0.0017 
 

        Tf is the oscillation period, Φ(Tf) is the oscillation angle 
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Fig.4  Changing curves of pendulum angle Φ and an-
gular velocity Ω  with time 
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When there are some initial displacements with 
unit force P=1 in the middle of the beam, the total 
energy is then defined as the sum of the kinetic energy 
and the potential energy. Taking the time step as 
∆t=0.005, the energy computations are shown in Fig.6 
within 10000 time steps. It is evident that the total 
energy can remain conservation with coefficient n=3, 
µ=1, taking five Chebyshev grid points; the energy is 
rapidly dispersed and the effectiveness of the algo-
rithm will be lost. 
 
 
CONCLUSION 
 

Using unconditionally stable higher-order ac-
curate time step integration algorithms for second- 
order  initial  value  problems,  the  dynamic  response 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was computed numerically for double-degree-of- 
freedom systems and a beam forced by a changing 
load based on the DQM. Numerical results changing 
is not distinct for the algorithm with changing time 
step ∆t; the solving process is stable. The time step 
can be taken to be much larger than that of other al-
gorithms and the solving efficiency is remarkable.  

The results showed that the algorithm can yield 
highly accurate solutions with minimal time con-
sumption compared with the conventional numerical 
method, and that the energy is perfectly conserved for 
dynamic response analysis. 
 
References 
Bellman, R., Casti, J., 1971. Differential quadrature and 

long-term integration. Journal of Mathematical Analysis 
and Applications, 34(2):235-238.  [doi:10.1016/0022- 
247X(71)90110-7] 

Table 3  Computational results of the displacement and velocity (t=5.6) 
Methods ∆t u1 u2 1u  2u  

Analytical solution − 0.4093294 −0.1133778 −0.4854754 −0.0788401 
DQM n=5 1.4 0.4096396 −0.1134443 −0.4852643 −0.0790288 
DQM n=5 0.7 0.4093266 −0.1133765 −0.4854741 −0.0788393 
DQM n=5   0.28 0.4093256 −0.1133760 −0.4854734 −0.0788387 
DQM n=9 2.8 0.4114815 −0.1159241 −0.4842253 −0.0770746 
DQM n=9 1.4 0.4115752 −0.1134285 −0.4879472 −0.0794684 
DQM n=9 0.7 0.4096207 −0.1132396 −0.4868947 −0.0787022 

PIM 2.8 1.2323203 −0.1209424 −0.5132277 −0.5509784 
PIM 1.4 0.3169916 −0.9783549 −0.5018512 −0.0396914 
PIM 0.7 0.4105805 −0.1137822 −0.4850493 −0.0792688 
PIM   0.28 0.4093320 −0.1133786 −0.4854747 −0.0788410 
NM   0.28 0.2953956 −0.0685144 −0.2893168 −0.1206785 
NM     0.028 0.4081649 −0.1129032 −0.4829121 −0.0795419 
NM       0.0028 0.4093177 −0.1133731 −0.4854498 −0.0788471 

 

9.60 9.65 9.70 9.75 9.80

-0.01

0.00

0.01

0.02

D
is

pl
ac

em
en

t (
m

)

 Exact
 Newmark (∆t=0.0025)
 Precise integration (∆t=0.0025)
 DQM (∆t=0.005)

t (s)

Fig.5  Vertical displacement in the middle of a beam by
various methods at 9.6~9.8 s 

0 10 20 30 40 50

0

2

4

6

8

10

12

5 Chebyshev grid point

n=3, µ=1

En
er

gy
-in

iti
al

 e
ne

rg
y

t (s)

Fig.6  Energy computation for a beam (Time step
number: 10000; ∆t=0.005) 

 

En
er

gy
−i

ni
tia

l e
ne

rg
y 



Pu et al. / J Zhejiang Univ SCIENCE A   2006 7(11):1831-1838 1838

Bellman, R., Kashef, B.G., Casti, J., 1972. Differential quad-
rature: a technique for the rapid solution of nonlinear 
partial differential equations. Journal of Computational 
Physics, 10(1):40-52.  [doi:10.1016/0021-9991(72) 
90089-7] 

Bert, C.W., Malik, M., 1996. Differential quadrature method in 
computational mechanics: a review. Applied Mechanics 
Reviews, 49(1):1-28. 

Bert, C.W., Jang, S.K., Striz, A.G., 1988. Two new approxi-
mate methods for analyzing free vibration of structural 
components. AIAA Journal, 26(5):612-618. 

Bert, C.W., Jang, S.K., Striz, A.G., 1989. Nonlinear bending 
analysis of orthotropic rectangular plates by the method 
of differential quadrature. Computational Mechanics, 
5(2-3):217-226.  [doi:10.1007/BF01046487] 

Bert, C.W., Jang, S.K., Striz, A.G., 1993. Differential quad-
rature for static and free vibration analysis of anisotropic 
plates. Int. J. Solids and Structures, 30(13):1737-1744.  
[doi:10.1016/0020-7683(93)90230-5] 

Chen, W.L., Striz, A.G., Bert, C.W., 1997. A new approach to 
the differential quadrature method for forth-order equa-
tions. International Journal for Numerical Methods in 
Engineering, 40(11):1941-1956. [doi:10.1002/(SICI)1097- 
0207(19970615)40:11<1941::AID-NME145>3.0.CO;2-V] 

Fung, T.C., 2001a. Solving initial value problems by differen-
tial quadrature method—Part 1: first-order equations. 
International Journal for Numerical Methods in Engi-
neering, 50(6):1411-1427.  [doi:10.1002/1097-0207 
(20010228)50:6<1411::AID-NME78>3.0.CO;2-O] 

Fung, T.C., 2001b. Solving initial value problems by differ-
ential quadrature method—Part 2: second-and 
higher-order equations. International Journal for Nu-
merical Methods in Engineering, 50(6):1429-1454.  
[doi:10.1002/1097-0207(20010228)50:6<1429::AID-NME7
9>3.0.CO;2-A] 

Fung, T.C., 2003a. Imposition of boundary conditions by 
modifying the weighting coefficient matrices in the dif-
ferential quadrature method. International Journal for 
Numerical Methods in Engineering, 56(3):405-432.  
[doi:10.1002/nme.571] 

Fung, T.C., 2003b. Generalized Lagrange functions and 
weighting coefficient formulae for the harmonic differ-
ential quadrature method. International Journal for Nu-
merical Methods in Engineering, 57(3):415-440.  
[doi:10.1002/nme.692] 

Jang, S.K., Bert, C.W., Striz, A.G., 1989. Application of dif-
ferential quadrature to static analysis of structural com-
ponents. International Journal for Numerical Methods in 
Engineering, 28(3):561-577.  [doi:10.1002/nme. 
1620280306] 

Karami, G., Malekzadeh, P., Mohebpour, S.R., 2006. DQM  
 

 
 
 
 
 

free vibration analysis of moderately thick symmetric 
laminated plates with elastically restrained edges. Com-
posite Structures, 74(1):115-125.  [doi:10.1016/j. 
compstruct.2006.02.014] 

Kuhl, D., Crisfield, M.A., 1999. Energy-conserving and de-
caying algorithms in non-linear structural dynamics. In-
ternational Journal for Numerical Methods in Engi-
neering, 45(5):569-599.  [doi:10.1002/(SICI)1097-0207 
(19990620)45:5<569::AID-NME595>3.0.CO;2-A] 

Malekzadeh, P., 2005. Free vibration analysis of variable 
thickness thin and moderately thick plates with elastically 
restrained edges by DQM. Thin-Walled Structures, 
43(7):1037-1050.  [doi:10.1016/j.tws.2004.11.008] 

Malik, M., Civan, F., 1995. Comparative study of differential 
quadrature and cubature methods vis-a-vis some conven-
tional techniques in context of convec-
tion-diffusion-reaction problems. Chemical Engineering 
Science, 50(3):531-547.  [doi:10.1016/0009-2509(94) 
00223-E] 

Malik, M., Bert, C.W., 1996. Implementing multiple boundary 
conditions in the DQ solution of higher-order PDE’s: 
application to free vibration of plates. International 
Journal for Numerical Methods in Engineering, 
39(7):1237-1258.  [doi:10.1002/(SICI)1097-0207 
(19960415)39:7<1237::AID-NME904>3.0.CO;2-2] 

Pu, J.P., 2004. Numerical Analysis for Structural Dynamic 
Responses Using a Highly Accurate Differential Quad-
rature Method. In: Yao, Z.H., Yuan, M.W., Zhong, W.X. 
(Eds.), Computational Mechanics, WCCM VI in Con-
junction with APCOM’04. Tsinghua University and 
Springer Press, Beijing, China, p.78. 

Shu, C., Du, H., 1997. Generalized approach for implementing 
general boundary conditions in the GDQ free vibration 
analysis of plates. International Journal of Solids and 
Structures, 34(7):837-846.  [doi:10.1016/S0020-7683(96) 
00056-X] 

Wang, X., Gu, H., 1997. Static analysis of frame structures by 
the differential quadrature element method. International 
Journal for Numerical Methods in Engineering, 
40(4):759-772.  [doi:10.1002/(SICI)1097-0207(19970228) 
40:4<759::AID-NME87>3.0.CO;2-9] 

Wang, X., Bert, C.W., Striz, A.G., 1993. Differential quadra-
ture analysis of deflection, buckling, and vibration of 
beams and rectangular plates. Computers & Structures, 
48(3):473-479.  [doi:10.1016/0045-7949(93)90324-7] 

Wang, X., Wang, Y., Zhou, Y., 2004. Application of a new 
differential quadrature element method to free vibrational 
analysis of beams and frame structures. Journal of Sound 
and Vibration, 269(3-5):1133-1141.  [doi:10.1016/S0022- 
460X(03)00405-X] 


