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Abstract:    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net 
production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of 
elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 con-
centrations (350 µmol/mol and 500 µmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to 
focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on 
soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts 
shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is 
just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to 
length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC 
soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and 
underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than under-
ground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical 
growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 
enrichment with sufficient water supply. 
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INTRODUCTION 
 

Current atmospheric carbon dioxide (CO2) 
concentration has increased by about 100 µmol/mol 
since the industrial revolution and is predicted to 
continue rising approximately 1~2 µmol/mol each 
year (Keeling et al., 1995). During this century CO2 
levels could be doubled or tripled compared to 
pre-industrial revolution levels (IPCC, 2001). And 
there is about 35% of land area covered with forest 
ecosystems producing about 70% of total land net 
production (Kramer, 1981; Melillo et al., 1993; 

Meyer and Turner, 1992). Forest plays very important 
roles in the global system than we have always 
thought. So it is important to consider both elevated 
CO2 concentrations and the differences in soil mois-
ture when the possible effects of elevated CO2 con-
centration on trees are assessed. 

Numerous experiments showed that high at-
mospheric CO2 concentration leads to increases in 
photosynthetic rate and whole-plant growth in many 
C3 species, while in C4 species the increasing effects 
were much lower (Bowes, 1993; Finzi et al., 2001; 
Ghannoum et al., 1997; 2000; Gifford, 1992; Griffin 
et al., 2000; Gunderson et al., 2000; Idso and Idso, 
1994; Hymus et al., 2001a; 2001b; Jach and Ceule-
mans, 2000; Watling et al., 2000). The effect of CO2 
enrichment on plants was limited by soil fertility 
levels (Coruzzi and Zhou, 2001; Cotrufo et al., 1998; 
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Deng and Woodward, 1998; Loladze, 2002; Poorter, 
1998; LaDeau and Clark, 2001; Oren et al., 2001; 
Walch-Liu et al., 2001) and varies under different 
soil moisture regimes (Wu et al., 2002; 2004). Most 
studies were carried out under favorable water con-
ditions. However, data on the interactive effects of 
CO2 and soil moisture on plants are scarce and often 
contradictory. Some authors claim that the percent-
age increase in plant growth due to elevated CO2 
concentration is generally not reduced by water stress 
(Idso and Idso, 1994; Kang et al., 2002) whereas the 
results of many other theoretical projections and field 
or greenhouse experiments suggest that the relative 
effects of CO2 enrichment on plants are constrained 
by less than optimal levels of soil moisture (Poorter, 
1993; 1998; Wu and Wang, 2000). Experiments on 
broad bean (Vicia faba), spring wheat under elevated 
CO2 concentration of different soil water contents 
had been conducted formerly by our group (Wu and 
Wang, 2000; Lin and Wang, 2002; Wu et al., 2002; 
2004).  

Our hypothesis is that plant morphology of shoot 
or root would vary to adapt to environment changes, 
and that the responses to elevated CO2 concentration 
may be controlled by soil water availability and ex-
periments with growing seedlings of Cinnamomum 
camphora under two CO2 concentrations (350 
µmol/mol and 500 µmol/mol) and three soil moisture 
levels [80%, 60% and 40% field water capacity 
(FWC)] were conducted to observe the effects of 
exposure of tree seedlings to elevated CO2 concen-
tration on the morphology and biomass of under-
ground and aboveground plant parts, and their de-
pendence on soil moisture. 
 
 
MATERIALS AND METHODS 
 
Plant materials and growth conditions 

Cinnamomum camphora is a dense broadleaved 
evergreen that can grow to 15~46 m tall and 5 m in 
diameter. The shiny foliage is made up of alternate 
2~10 cm oval leaves dangling from long petioles with 
each leaf having three distinct yellowish veins and 
with the area of whole adult leaf being about 
3000~6000 mm2. The flowers come out in the spring 
on branching, followed by large crops of fruit com-
prised of round pea sized berries. It comes from China, 

Japan, Korea and adjacent parts of East Asia, where it 
grows in mesic forests at well-drained sites.  

An experiment was conducted at Huajiachi 
campus, Zhejiang University, Hangzhou, China. 
Plants were grown in two identical controlled 
greenhouses (Conviron, Controlled Environments 
Ltd., Canada), one supplied with ambient CO2 con-
centration ((350±30) µmol/mol), and another with 
elevated CO2 concentration ((500±30) µmol/mol). 
There were three water level treatments [80%, 60% 
and 40% field water capacity (FWC)] with ten repli-
cate pots per water level in each greenhouse. 

The environmental variables including CO2 
concentration, temperature and light intensity inside 
the two greenhouses were continuously monitored. 
Temperature and light intensity were the same in both 
greenhouses. Only CO2 concentration was varied in 
the two greenhouses, one with ambient CO2, the other 
with elevated CO2. The environmental sensors and 
controlling systems of the two greenhouses were 
carefully calibrated before start of the experiment, and 
the environmental factors in the greenhouses were 
periodically monitored during the entire course of 
experiment in order to minimize the variance induced 
by the station in the greenhouses and between green-
houses heterogeneity of environmental conditions. 

Air-conditionings inside the greenhouses facili-
tated the circulation and thorough mixing of air. The 
temperature inside the greenhouses was controlled at 
25~30 °C during daytimes, and to that of the atmos-
phere during nighttimes. Average relative humidity 
inside the greenhouses was about 40% during the 
growth seasons and was measured but not controlled. 
The environmental variables such as CO2 concentra-
tion, and daytime temperature inside the greenhouses 
were continuously monitored and controlled by a 
computer.  

Before sowing, the soil was irrigated to 80% 
FWC. Then, soil samples were taken and analyzed at 
the laboratory. The results of analysis revealed that 
soil properties were: pH 7.0, organic matter 1.61%, 
available N 85.38 mg/kg, available P 31.01 mg/kg, 
available K 46.58 mg/kg, and FWC 35.6%. 

Three soil water levels, 40%, 60% and 80% 
FWC, were applied to each greenhouse (ten pots per 
treatment), and kept constant throughout the entire 
experiment period by simply weighing each pot every 
2 d and adding the water lost accordingly (Wu et al., 
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2004). At the late growth phase, when total biomass 
of plant accounted for more than 0.5% of the total pot 
weight (plastic pot+soil+soil water+biomass), that 
fraction of biomass was taken into account. 

 
Growth measurements 

Shoot height and root length were measured at 
first, then six seedlings were randomly selected to 
determine the wet and dry weight of shoot and root 
before transplanting, and all the plants were harvested 
at the end of the experiment. All component dry 
weights were measured following oven-drying to 
constant weight at 85 °C. And the water content of 
shoot and root was calculated by (wet weight–dry 
weight)/(dry weight). Plants were finally harvested on 
20 July, 3 months (92 d) after transplanting.  

 
Experimental design and statistical design 

Our experiment consisted of two CO2 levels 
(350 µmol/mol and 500 µmol/mol) and three soil 
water levels (40%, 60% and 80% FWC). A factorial 
design was used with a total of six treatments, which 
were designated as HC, HD, MC, MD, LC and LD, 
respectively, where H, M and L represented high 
(80% FWC), medium (60% FWC) and low soil 
moisture (40% FWC), C and D represented current 
(350 µmol/mol) and elevated CO2 concentration (500 
µmol/mol), respectively. Each treatment had ten 
replicate pots in the greenhouses. Since the envi-
ronment was the same in the two greenhouses 
throughout the plant growth period, pot replication 
was adequate. Thirty pots were placed in each 
greenhouse and controlled to three soil moisture 
levels. H, M and L pots were placed alternately in the 
greenhouses and randomly changed every 2 d after 
weighing for soil moisture control, and the green-
houses were changed every week to minimize the 
variance induced by the station in the greenhouses 
and by the between-greenhouses heterogeneity of 
environmental conditions. 

Data were analyzed using SPSS 11.5 software 
for two-way ANOVA and standard deviation. 
Two-way ANOVA was carried out on shoot height/ 
root length, shoot/root weight, water content of 
shoot/ root, as well as length/weight ratio of root to 
shoot, and ratio of shoot/root weight to height/length 
to determine the effects of CO2 level, soil moisture 
level and their interactions. Because ANOVA and 

most other statistical tests of significance do not 
work very well with ratio in very high or very low 
numbers, the data on ratio of shoot weight to height 
(WH) and ratio of root weight to length (WL) whose 
values were less than 0.3 were arcsine transformed 
with the equation of y=arcsinx (where y is the data for 
ANOVA analysis, and x is the original data) before 
the analyses. Mean values and error bars are calcu-
lated on the ten replicate pots of each treatment. And 
the standard errors are shown with error bars in the 
figures, respectively. 
 
 
RESULTS 
 
Impacts on plant shoot growth of higher CO2 
concentration under three soil water levels 

Although there were no significant differences 
between the CO2 concentrations, higher CO2 concen-
tration increased shoot height by 6.39%, 6.92% and 
1.72%, and shoot weight by 1.45%, 27.04%, 36.25% 
under 40%, 60% and 80% field water capacity (FWC) 
soil moisture, respectively (Table 1). The positive 
effect of high CO2 concentration on shoot biomass 
growth of Cinnamomum camphora was greater under 
high soil moisture conditions. As a result, the differ-
ence in shoot weight among the three soil moisture 
levels was greater under elevated CO2. Elevated CO2 
concentration strongly affected shoot water content 
(SWC) (Table 2). SWC was increased greatly under 
40% and 60% FWC soil moisture, and decreased by 
7.38% under 80% FWC soil moisture. Plants grown 
under elevated CO2 concentration had larger ratio of 
shoot weight to height (WH), while plant height was 
no different between the two CO2 concentrations 
(Table 1). The WH exposed to the higher CO2 con-
centration increased by 39.58% and 20.45% under 
80% and 60% FWC soil moisture, respectively. 
However, under 40% FWC soil water level, the ratio 
decreased by 3.37% (Fig.1, P<0.05). On the other 
hand, water deficit significantly decreased plant WH 
under both ambient and elevated CO2 concentration 
(Fig.1, P<0.01). 

 
Effects of elevated CO2 concentration on plant 
root growth under different soil moisture 

Root length was increased by 5.57%, 28.37% 
and 3.40% by the higher CO2 concentration under 40%, 
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60% and 80% FWC soil moisture, and there was sig-
nificant difference between the CO2 concentrations 
(P<0.01, Table 1). While high CO2 concentration 
decreased root weight by 21.66% under low soil 
moisture (40% FWC), and increased by 21.26% under 
high moisture (80% FWC), but there was no signifi-
cant difference between them (Table 1). The positive 
effect of high CO2 concentration on C. camphora root 
growth was only shown under high soil moisture 
conditions. Root water content (RWC) was obviously 
increased by high CO2 concentration under favourable 
soil water condition (60% FWC, Table 2), while under 
40% and 80% FWC soil moisture, there were no sig-
nificant responses of RWC to CO2 content variability. 
The tendency of ratio of root weight to length (WL) 
was similar to that of root weight, and decreased under 
low water levels but increased under high soil mois-
ture conditions. However, there were no differences 
between the two CO2 concentrations and three water 
levels of plant W/L ratio (Fig.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Responses of ratio of root to shoot to elevated CO2 
concentration and different water supply levels 

The positive effect of high CO2 concentration on 
length ratio of root to shoot of C. camphora was only 
shown under 60% FWC soil moisture, while under 
40% and 80% FWC soil water levels CO2 enrichment 
resulted in 5.03% and 3.53% decrease, respectively 
(Fig.3). ANOVA analysis indicated that the interac-
tion between elevated CO2 concentration, soil water 
levels, and CO2 concentration×water on plant growth 
was not significant. The effects of CO2 concentration 
enrichment and different soil water conditions on 
weight ratio of root to shoot of C. camphora are 

Table 1  Effects of elevated CO2 on shoot height (SH), 
shoot weight (SW), root length (RL) and root weight 
(RW) under three soil moisture levels 
  350 µmol/mol 500 µmol/mol P

40% FWC 30.83±2.24 a 32.80±1.57 a NS
60% FWC 33.11±1.46 ab 35.40±1.69 a NS

SH 
(cm) 

80% FWC 37.66±3.22 b 38.31±2.30 a NS
40% FWC 04.15±0.64 a 04.21±0.57 a NS
60% FWC 04.59±0.67 a 05.83±0.59 a NS

SW 
(g) 

80% FWC 05.90±1.02 a 08.04±0.97 b NS
40% FWC 37.18±1.65 a 39.25±2.25 a NS
60% FWC 34.22±3.91 a 43.93±1.39 ab ** 

RL 
(cm) 

80% FWC 46.24±1.91 b 47.81±0.80 b NS
40% FWC 04.48±1.00 a 03.69±0.63 a NS
60% FWC 05.11±0.73 a 04.94±0.67 a NS

RW 
(g) 

80% FWC 4.48±0.71 a 05.44±0.84 a NS
Significance between 350 µmol/mol and 500 µmol/mol CO2 con-
centration (NS: P>0.05, **P<0.01, n=10); for each element, values 
in the same list followed by different letters are significantly dif-
ferent (P<0.05, n=10), and the data are shown with mean 
value±SE 

Table 2  Effects of elevated CO2 on shoot and root water 
content (SWC and RWC) under three soil moisture levels 

  350 µmol/mol 500 µmol/mol P
40% FWC 1.89±0.04 a 2.06±0.08 a * 

60% FWC 1.96±0.03 a 2.52±0.04 b ** 
SWC 

80% FWC 2.14±0.02 b 1.99±0.05 a * 

40% FWC 1.46±0.06 a 1.69±0.20 a NS
60% FWC 1.22±0.03 a 1.93±0.03 a ** 

RWC 

80% FWC 1.81±0.03 b 1.93±0.07 a NS
Significance between 350 µmol/mol and 500 µmol/mol CO2 con-
centration (NS: P>0.05, *P<0.05, **P<0.01, n=10); for each ele-
ment, values in the same list followed by different letters are sig-
nificantly different (P<0.05, n=10), and the data are shown with 
mean value±SE 
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Fig.1  Effects of elevated CO2 on ratio of shoot weight
to height (WH) (g/cm) under three soil moisture levels
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Fig.2  Effects of elevated CO2 on ratio of root weight to
length (WL) (g/cm) under three soil moisture levels 
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shown in Fig.4 indicating that high CO2 concentration 
decreases the ratio. And high soil water content (80% 
FWC) decreases the ratio by 42.4% and 29.4% 
compared with 60% FWC under current and elevated 
CO2 concentration, respectively. CO2 concentration 
enrichment decreased the ratio by 20.42%, 32.78%, 
20.59% under 40%, 60% and 80% FWC soil water 
conditions, respectively. There were significant dif-
ferences between different CO2 concentration (P< 
0.01) and soil moisture (P<0.01), while the interac-
tion between CO2 enrichment and soil water levels 
was not significant. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISCUSSION 
 
Effects of CO2 enrichment on plant morphology of 
Cinnamomum camphora  

In the present experiments, CO2 enrichment 
significantly increased shoot weight as reported pre-

viously in many other studies (Curtis and Wang, 1998; 
DeLucia et al., 1999; Eichelmann et al., 2004; Nik-
laus et al., 2001; Norby et al., 1999; Smith et al., 2000; 
Tissue et al., 2001; Usami et al., 2001; Woodward, 
2002) but without obvious impacts on its height, the 
ratio of shoot weight to height (WH) was bigger under 
elevated CO2 concentration (P<0.05, Fig.1). While 
the effects of CO2 concentration enrichment on root 
growth was significant on length rather than weight, 
especially under favorable conditions (60% FWC soil 
moisture), the ratio of root weight to length (WL) in 
higher CO2 concentration was half of that in current 
concentration (Fig.2). The positive effects of high 
CO2 concentration on length ratio of root to shoot of 
C. camphora was not significant, while there was 
significant differences between different CO2 con-
centration (P<0.01) on weight ratio. CO2 and soil 
water levels had significant effects on plant water 
content (Table 2, P<0.01). Then we concluded that 
CO2 enrichment should favour plant water conserva-
tion which accords with reported positive effects of 
elevated CO2 concentration on plant water use effi-
ciency (Allen, 1990; Ellsworth, 1999; Gavazzi et al., 
2000; Hui et al., 2001; Liao and Wang, 2002; Wu and 
Wang, 2000; Wu et al., 2002; 2004). Then we suggest 
that plant morphology could be altered under future 
high CO2 concentration conditions. High CO2 en-
hances plants shoot lateral growth more than vertical 
growth, whereas there was little effect on root growth.  

 
Interactive effect of CO2 concentration and soil 
moisture on plant growth 

Observation results indicated that CO2 concen-
tration and soil moisture had significant interactive 
effects on plant growth. High CO2 could alleviate the 
negative effects of water deficit on plants on the one 
hand, and the positive effects of high CO2 concentra-
tion on plant growth were constrained by less favor-
able soil moisture conditions on the other hand. This 
accords with most previous reports (Conroy and 
Hocking, 1993; Poorter, 1998; Catovsky and Bazzaz, 
1999; Ward et al., 1999; Wu and Wang, 2000).  

Moreover, still other reports on similar experi-
ments suggested that growth induced by high CO2 
was greater under drought stress than under high soil 
moisture (Gifford, 1992). This may be partly attrib-
uted to the different method of water control. In their 
experiments, dry treatment was realized by periodi-
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Fig.3  Effects of elevated CO2 on length ratio of root to
shoot under three soil moisture levels 
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Fig.4  Effects of elevated CO2 on weight ratio of root to
shoot under three soil moisture levels 
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cally supplying a preset amount of water (very little) 
or giving no water. The quantity of water added to 
maintain the soil moisture gradient did not give out 
the actual soil moisture. This may lead to actually 
better soil water conditions in high CO2 treatment 
than in ambient treatment since plants use water more 
economically under high CO2 concentration condi-
tions. Additionally, use of different factors, such as 
temperature and light intensity, may alter the interac-
tion between CO2 concentrations and soil moisture. 

Thus, based on the results of ours and those from 
the literature, it can be concluded that the positive 
effects of CO2 enrichment on plants are greater under 
more suitable conditions. Depending on the life his-
tory and evolutionary traits of species, different spe-
cies of wild plants and their cultivated relatives or 
even different cultivars of the same domesticated 
species may respond differently to an environmental 
gradient as realized by the researchers. For instance, 
Catovsky and Bazzaz (1999) found that under ele-
vated atmospheric CO2 levels, the seedling growth of 
paper birch often found on more xeric, well-drained 
soils, was enhanced more by low soil moisture 
treatment than by high soil moisture treatment, while 
yellow birch usually associated with more mesic sites, 
showed more improved growth under high soil 
moisture treatment (Catovsky and Bazzaz, 1999). 
 
 
CONCLUSION 
 

Morphologically, high CO2 concentration en-
hances shoot lateral growth more than vertical growth, 
but the responses of root were just opposite. 

That high CO2 concentration beneficial to tree 
aboveground biomass is consistent with many other 
study results reported in the literature, but its effects 
on plant underground biomass growth is relatively 
lower. 

The responses of plants to elevated CO2 depend 
on soil water availability, and plants may benefit 
more from CO2 enrichment under favorable envi-
ronment such as sufficient water and nutrients. 
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