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Abstract:    In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated 
vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle’s movement 
equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region 
is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is 
proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an 
EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the 
transient FE analysis. 
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INTRODUCTION 
 

In the electromagnetically levitated transport 
system (EMS-Maglev), such as the German Trans-
rapid, the propulsion is supplied by a long-stator lin-
ear synchronous (LSM) motor whose stator (armature) 
is fixed all along the guideway and the moving poles 
with the excitation (levitation magnets) are on the 
vehicle. The direct current exciting windings create 
main field and levitation forces. The LSM armature 
windings are energized by three-phase alternating 
voltage over a power supply section. And the linear 
generator supplies the on-board electric power. Fig.1 
shows the EMS-Maglev transport system in overall 
view and the configuration of LSM longitudinal sec-
tion. Obviously the excitation current has to assure 
the system of an accurate levitation force and a high 
power factor. To find the current and optimize the 
system, an analysis of the mechanical dynamic char-
acteristic is necessary (Andriollo et al., 1996). Due to 

the complexity of the time-varying magnetic con-
figuration, a fully analytical approach enables to ob-
tain only the mean value of the motor propulsion 
force, whereas the determination of the instantaneous 
value requires the recurrent utilization of a numerical 
code. Numerical analysis method such as finite ele-
ment method (FEM) employs the time-stepping 
method to analyze the dynamic characteristics. Since 
the system matrix must be solved at each incremental 
time, this time-stepping method is time-consuming 
(Todaka and Enokizono, 1998; Lee et al., 2004).  

To solve these problems, this paper presents a fast 
solving method to analyze the dynamic characteristics, 
which can be used for both electro-mechanical static 
and electro-mechanical motional systems. In the 
method, the equivalent circuit parameters at each in-
cremental time are extracted by using a sequence of 
FE analysis. Then, the electro-mechanical coupled 
state equations are solved by Runge-Kutta method. To 
validate the proposed method, the dynamic perform-
ance of a transformer and an EMS-Maglev system was 
tested. The results are compared with the time-step-
ping method using FEM. 
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DIRECT COUPLED FIELD-CIRCUIT-MOTION 
FINITE ELEMENT ANALYSIS 
 

The dynamic performances of a movable elec-
trical device incorporated with a power system are 
determined by the external transient or periodic ex-
citing sources and the movement of the vehicle with 
constant excitation current. In this paper, it is assumed 
that a conducting part moving in only one direction 
with constant velocity u, and the conductor has an 
invariant cross section at right angles to the direction 
of motion. The governing equations of the eddy cur-
rent problems considering movement of a conductiv-
ity material, external excitation and load, are written 
as follows: 
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where A is the magnetic vector potential, u is the 
velocity of a moving conductor. ik, Rk, ψk and Vk are 
the unknown current, total resistance in a power sup-
ply loop, the flux linkage linking the winding and the 
terminal voltage of kth exciting coil respectively. σ is 
the electrical conductivity, Js the current density ex-

cited in a filamentary conductors, ν the magnetic 
resistivity. x indicates the relative position of the 
moving part, t the time, M the mass, D the damping 
coefficient, K the spring constant. F represents the 
mechanically applied force Fm, the gravitational force 
Fg, and the electromagnetic force Fe, respectively. 
After applying standard Galerkin procedure to Eq.(1) 
and Eq.(2) except the last term on right hand of Eq.(1), 
a matrix equation is produced as: 
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Magnetic flux linkage on the coil is 
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tion area of the element i, Ne for the number of ele-
ments in the whole winding region, and li for the path 
fraction in element i. In 2D case, D21=kLefC12, Lef is 
equivalent length in z direction. k is determined ac-
cording to the phase circuits of exciting coils.  

The characteristic computing process of an elec-
tro-mechanical motional system, in which the gov-
erning equations are Eqs.(1)~(3), is shown in Fig.2. 
From the computing flow chart, it is clear that the 
electromagnetic field computation is recurrent many 
times during the dynamic characteristic evaluation. 
 
 
FAST SOLVING TECHNIQUE BASED ON 
ELECTRO-MECHANICAL EQUATIONS COU-
PLED FINITE ELEMENT ANALYSIS 
 

In order to reduce the computation of the elec-
tro-mechanical motional system, a fast solving tech-
nique is proposed. To simplify the model, constant 
permeability of the ferromagnetic material is assumed. 
The loss in the iron core is neglected. For multi- 
windings, the flux linkage in Eq.(2) is then expressed 
in matrix form as follows: 
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Fig.1  EMS-Maglev system. (a) Overall view; (b) The
configuration of LSM longitudinal section 
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where [L] denotes the inductance matrix, which con-
sists of self inductance and mutual inductance. The 
parameters of [L] are only dependent on the geometry 
of the system during movement. They are calculated 
according to magnetic energy. The electromagnetic 
force is obtained by the derivative of electromagnetic 
energy with respect to the position variable: 
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The state variables are chosen as the currents in 

each coil, relative position x and moving velocity u. 
Eqs.(2) and (3) are converted into a set of state equa-
tions as follows: 
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Above state Eqs.(7)~(9) are solved by using 

Runge-Kutta method. During a time period, the in-
ductance matrix [L] is calculated by FEM corre-
sponding to the different position of the vehicle. 
When Runge-Kutta method is applied to solving the 
state equations, the inductance and its derivatives are 
interpolated by B-spline method. The propulsion 

force Fx versus the vehicle position is calculated ac-
cording to Eq.(6). The flow chart of this technique is 
shown in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NUMERICAL RESULTS OF TEST EXAMPLES 
 
Example 1  Transformer performance  in the short 
circuit experiment 

Two-winding 240 MVA, 550 / 3 : 20 kV sin-
gle-phase transformer, the turns of the primary and 
secondary windings are 508 and 32 respectively. To 
simulate the short circuit experiment of the trans-
former, the voltage sources applied to the primary and 
secondary terminal are 45.6322 2sin(100πt) kV  and 
0 respectively. The RMS value of steady state cur-
rents in both windings calculated by directly coupled 
field-circuit method are 764.18 A and 12127 A re-
spectively. The matrix [L] extracted through FE 

analysis is 
0.57605 9.1418

[ ] .
9.1418 145.27

 
=  
 

L  The RMS 

value of steady currents in both windings calculated 
by Rung-Kutta method are 763.68 A and 12126 A 
respectively. The results reveal that the proposed fast 
solving technique is effective. 
Example 2  The dynamic force characteristics of an 
EMS-Maglev system 

The suspending magnet of the test system is ex-
cited by 25×270 [AT] direct current. The linear syn-
chronous motors are energized by 3000 V alternating 
voltage over 1200 m in length. When the levitation 
magnet moves, electromagnetic forces, field distribu-
tions, and inductance are shown in Figs.4~6.  

Fig.2  The flow chart of direct coupled method 

k=k+1 

t=∆t(k−1); k=1,…,N 

Predict moving position kx′  

Field computation by FEM Modify kx′  

Solve motion equation and obtain xk 

Stop 

|xk− kx′ |<ε 

k>N 

Fig.3  The flow chart of the fast solving technique 

k>N 

t=∆t(k−1); k=1,…,N 
Solve electric and mechanical
state equations 

Divide the motional range into proper steps 

Sequence field computation by FEM 

Extract equivalent parameters 

k=k+1 

Stop 
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The comparison of the propulsion forces calculated 
by two methods, as shown in Fig.7, reveals that the 
fast solving technique generates the reasonable me-
chanical dynamic characteristic with less computa-
tion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

Two procedures for the simulation of elec-
tro-mechanical dynamic characteristics are described. 
The test examples show the fast solving technique, 
which is valid in conditions of linear magnetic circuit, 
generates the reasonable results with a much-reduced 
number of FE analyses.  
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Fig.4  Levitation force versus the position 
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Fig.5  Flux at different time in electrical angle. (a)
ωt=0°; (b) ωt=96° 
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Fig.6  The inductance versus the moving position 
(a) Self inductance of levitation winding; (b) Self inductance
of phase A, B, C 
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