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Abstract:    RF power amplifiers (PAs) are usually considered as memoryless devices in most existing predistortion techniques. 
Nevertheless, in wideband communication systems, PA memory effects can no longer be ignored and memoryless predistortion 
cannot linearize PAs effectively. After analyzing PA memory effects, a novel predistortion method based on wavelet networks 
(WNs) is proposed to linearize wideband RF power amplifiers. A complex wavelet network with tapped delay lines is applied to 
construct the predistorter and then a complex backpropagation algorithm is developed to train the predistorter parameters. The 
simulation results show that compared with the previously published feed-forward neural network predistortion method, the 
proposed method provides faster convergence rate and better performance in reducing out-of-band spectral regrowth. 
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INTRODUCTION 
 

Scarcity of radio spectrum resources motivates 
modern wireless communication systems to adopt 
linear modulation schemes, such as QPSK and QAM. 
Although these modulation schemes make efficient 
use of bandwidth, they pose serious problems on RF 
PAs due to their non-constant envelopes. To increase 
efficiency, RF power amplifiers are often operated in 
compression region, where nonlinear distortion is 
severe. When used with such signals, nonlinear PAs 
generate significant inter-modulation distortion 
(IMD) leading to adjacent channel interference and 
increase in bit-error rate (Lin et al., 2006). PA lin-
earization techniques are necessary to compensate 
for these nonlinear effects. 

Digital predistortion is one of the most prom-
ising techniques due to its simplicity, flexibility, 

bandwidth capability, and adaptation to variable 
conditions. It inserts a digital predistorter in the 
baseband to create nonlinearities that are comple-
mentary to the characteristics of the PA. Thus the 
cascade of the predistorter and the RF PA would give 
a linear gain to the original input. In most existing 
predistortion techniques, RF PAs are usually con-
sidered as memoryless devices. Nevertheless, in 
wideband communication systems, such as WCDMA, 
CDMA 2000 and OFDM, the memory effects intro-
duced by wideband signals are significant and the 
performance of the traditional memoryless predis-
tortion is seriously degraded (Ding et al., 2004). 

Neural networks (NNs) have been successfully 
utilized to model PAs and design predistorters due to 
their capability to approximate any nonlinear func-
tion with arbitrary accuracy (Liu et al., 2004; Isaks-
son et al., 2005; Lee and Gardner, 2006). The 
feed-forward NN is one of the most commonly used 
NNs, in which every unit feeds only the units in the 
next layer. Wavelet networks (WNs) were introduced 
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as an alternative to feed-forward NNs in 1992. It has 
been reported that WNs outperform feed-forward 
NNs in terms of learning and representing dynamic 
system behavior. Therefore it is a natural thought that 
WN-based predistortion scheme may bring better 
linearization performance than previously published 
feed-forward NN predistortion. To process complex 
signals directly, a complex WN with complex inputs, 
outputs and network parameters was developed in (Li 
et al., 2003). In this study, we present a complex 
WN-based predistortion method for the linearization 
of wideband RF PAs exhibiting memory effects. 

 
 

MEMORY EFFECTS OF WIDEBAND PAS  
  

For wideband applications, PA memory effects 
cannot be neglected as memoryless predistortion has 
insufficient linearization performance. This is espe-
cially true for high power amplifiers used in wireless 
base stations, since several carriers are amplified by 
one RF PA. 

Memory effects mean that the current output of 
the PA depends on not only the current input, but also 
the past input signals. For a PA with memory effects, 
the PA response depends on not only the input en-
velope amplitude, but also its frequency. In the fre-
quency domain, memory effects are defined as 
changes in the amplitude and phase distortion com-
ponents caused by changes in modulation frequency 
(Vuolevi et al., 2001). Memory effects can arise from 
multiple sources, including bias circuit effects, 
self-heating, and trapping effects. 

PAs are traditionally modelled by a memoryless 
polynomial, which can be written as 
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where x(n) and y(n) represent the complex envelope 
of the input and output signals respectively and ck is 
the complex coefficient. The two-tone input signal 
can be described as 
 

c m c m( ) cos( ) cos( ) ,x t A t A tω ω ω ω= − + +      (2) 
 
where A is the magnitude, ωc is the carrier center 
frequency, and the tone spacing is 2ωm. Only con-
sidering the first four terms in Eq.(1), the amplitude 

of the third-order IMD in both lower and upper side-
bands is 3c3A3/4, which is not a function of tone 
spacing. However, for wideband applications, PAs do 
not behave like this. Asymmetries in lower and upper 
sidebands and IMD magnitude variation depending 
on modulation frequency (tone spacing) are often 
observed, as shown in Fig.1. As the input signal 
bandwidth widens, the gain curves of PAs exhibit 
dynamic characteristics (Liu et al., 2005), as shown 
in Fig.2. This means that the gains of PAs are not 
static, but change according to the history of past 
input levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
WN-BASED PREDISTORTION METHOD 
 
Predistorter model 

WNs can be considered as a special case of 
feed-forward basis function NNs. Many topologies 
of NNs have been reported in the literature for the 
modelling of different kinds of circuits exhibiting 
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different types of nonlinear behaviors. Here, a com-
plex WN, which has complex inputs, outputs, 
weights, dilation and translation parameters, is 
adopted to construct the predistorter. Therefore it is 
unnecessary to convert the complex signals into a 
rectangular representation or polar one and much 
simpler network architecture can be achieved. The 
configuration of the proposed predistorter is shown 
in Fig.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Memory effects are introduced into the predis-

torter by tapped delay lines, which make the predis-
torted signal be a function not only of the instanta-
neous input, but also of previous time samples. The 
notations used in the figure are as follows. x(n): input 
signal at instant n; p: memory length; wik: connection 
weight from the kth input to the ith wavelet neuron; ci: 
input of the ith wavelet neuron; gi: output of the ith 
wavelet neuron; m: number of nodes in the wavelet 
layer; vi: connection weight from the ith wavelet 
neuron to the predistorter output; xp(n): predistorted 
signal at instant n. 

The predistorted signal xp(n) is represented by 
the following equation: 
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where 
0
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i ikk

c w x n k
=

= −∑  bi is the translation 

parameter, and ai is the dilation parameter. The 
complex wavelet function Ψ(·) is defined as (Ben-
venuto and Piazza, 1992) 

R I( ) ( ) j ( ),s ψ s ψ sΨ = +                    (4) 
 
where s is a complex variable, the subscripts R and I 
denote the real part and imaginary part of the signals 
respectively, and ψ(·) is the conventional real-valued 
wavelet function. Here we choose the Mexico-hat 
wavelet 
 

2 2( ) (1 )exp( / 2)ψ x x x= − −                (5) 
 
as the mother wavelet. 
 
Predistortion scheme 

There are mainly two types of approaches to 
implement the predistortion scheme. One is to model 
the PA first and then identify the inverse of the PA 
model. However, identifying the inverse of a 
nonlinear system with memory is generally not easy 
(Ding et al., 2006). The other is to design the pre-
distorter directly. Since the nonlinear behavior of the 
amplifier is unknown, a feedback path is added to 
obtain the predistorter parameters directly, which is 
called indirect learning architecture (Eun and Powers, 
1997). 

The block diagram of the proposed system is 
shown in Fig.4. An indirect learning architecture is 
adopted to identify the predistorter parameters. The 
PA output signal yRF is attenuated and fed to the pre-
distorter training block after demodulation and A/D 
conversion. The predistorter training block, whose 
output is pˆ ( ),x n  has the same architecture as the 

predistorter. Ideally, when the error term e(n)=0, 
y(n)=Gx(n), where G is the desired gain of the PA. 
Once the identification algorithm converges, the 
training block is temporarily removed, until changes 
of PA characteristics require a predistorter parameter 
update. The benefit of such a predistortion scheme is 
that we can design the predistorter directly without 
identifying the inverse of the PA model. 
 
Training algorithm 

In this subsection, a training algorithm for ad-
justing the predistorter parameters is developed. The 
parameters to be estimated are as follows: 
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We note that all these parameters are complex  
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variables. The instantaneous error signal e(n) can be 
written as 
 

p pˆ( ) ( ) ( ).e n x n x n= −                         (7) 

The real-valued cost function is defined as 
2 *1 1( ) ( ) ( ) ( ),

2 2
E n e n e n e n= =                 (8) 

 
where the superscript * denotes the complex conju-
gate. We utilize the complex backpropagation algo-
rithm to train the established WN. The algorithm 
minimizes the cost function E(n) by recursively al-
tering the parameters based on the gradient search 
technique (Benvenuto and Piazza, 1992). The adap-
tation rule is  
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where η is the learning rate, a real positive constant. 
Thus, finding the gradient vector of E(n) is the main 
idea of deriving the training algorithm. 

We first find the partial derivative of E(n) with 
respect to the complex connection weight vi on the 
output layer, and then extend to other parameters. 
Since E(n) is not analytic, we need to derive the par-
tial derivative of E(n) with respect to the real and 
imaginary part of vi separately. For simplicity, n is 
omitted in the following derivation. For example, viR 
is a short notation for viR(n). The gradient of E(n) 
with respect to the real part and imaginary part of vi 
can be respectively described as 
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We note the following partial derivatives: 
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By substituting Eq.(12) into Eqs.(10) and (11), the 
gradient of E(n) with respect to vi can be compactly 
written as 
 

*/ .i iE v eg∂ ∂ = −                          (13) 
Therefore, vi is updated according to 

( 1) ( ) ( ) ( )i i iv n v n e n g n∗+ = + η .            (14) 
 

We now apply the chain rule to the translation 
parameter bi. The gradient of E(n) with respect to the 
real part of bi can be expressed as 
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where ( ) / .i i i iz c b a= −  Similarly, 
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Combining Eqs.(15) and (16) into complex form, the 
partial derivative of E(n) with respect to bi is 
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Hence, the translation parameter bi is updated ac-
cording to 
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Since the procedures of deriving the training 

formula for the dilation parameter ai and connection 
weight wik are quite similar, we do not present them 
here. 

Training of the WN predistorter is done in a 
similar manner as that for the usual feed-forward NN. 
First, the output error is calculated (forward pass). 
Then the error is backpropagated to every node in the 
network and the parameters are adjusted accordingly 
(backward pass). When the error is acceptably small, 
the training process is discontinued. 
 
 
VALIDATION RESULTS 
 

Computer simulations were performed to vali-
date the proposed predistortion method. An equiva-
lent circuit model of an LDMOS transistor based RF 
PA was implemented in the Agilent Advanced De-
sign System (ADS) simulator. The amplifier, whose 
output power is about 40 W, is suitable for cellular 
base stations. The PA input is a two-carrier WCDMA 
signal with 10-MHz bandwidth and carrier frequency 
of 2.14 GHz. The training process was carried out in 
Matlab. 

To evaluate the performance of the proposed 
predistortion method, a feed-forward NN predistor-
tion system with similar architecture was also im-
plemented for comparison. To make the comparison 
as fair as possible, the number of hidden layer nodes 
was selected in such a way that the resulting numbers 
of adjustable parameters in NN and WN predistorter 
were approximately equal. 

The convergence curves of two types of pre-

distorters are shown in Fig.5 showing that compared 
with the feed-forward NN predistortion, the proposed 
method with similar network size provides faster 
convergence rate and improved normalized mean 
square error. Fig.6 and Fig.7 show AM-AM and 
AM-PM characteristics of the PA respectively. From 
the significant dispersion of the curves without 
predistortion, it can be concluded that the PA exhibits 
important memory effects (Liu et al., 2005). With 
WN-based predistortion, the nonlinearities and 
memory effects of the PA are compensated simulta-
neously. The spectral correction achieved by differ-
ent predistortion methods is shown in Fig.8. The 
performance of memoryless predistortion, which 
works well in narrowband applications, is severely 
degraded in wideband applications. Compared with 
the feed-forward NN predistortion, the proposed 
method achieves further about 8 dB improvement in 
suppressing spectral regrowth. 
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CONCLUSION 
 

In this paper, a WN-based predistortion method 
has been proposed for the linearization of wideband 
RF PAs exhibiting memory effects. A complex WN 
with tapped delay lines is applied to construct the 
predistorter. Since the predistorter can process com-
plex signals directly, much simpler network archi-
tecture is achieved. Moreover, to identify the pre-
distorter parameters, a complex backpropagation 
algorithm has been developed. Validation results 
showed that the proposed predistortion method out-
performs the previously published feed-forward NN 
schemes in convergence rate and reducing out-of- 
band spectral regrowth. 
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Fig.8  Performance of different predistortion methods
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