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Abstract:    A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular 
(CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and 
CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of 
prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with 
experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the 
effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of 
the bridge. 
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INTRODUCTION 
 

With the increasing applications of concrete 
filled steel tubular (CFST) structures in civil engi-
neering in China, arch bridges have become one of the 
competitive styles in moderate span or long span 
bridges. Taking the Fuxing Bridge in Hangzhou 
(Zhao et al., 2004), and Wushan Bridge in Chongqing 
(Zhang et al., 2003), China, as representatives, the 
structural configuration, the span and construction 
scale of such bridges have surpassed those of existing 
CFST arch bridges in the world. Therefore, it is of 
great importance to enhance the theoretical level in 
the design of CFST arch bridges for safety and 
economy. 

The calculation of ultimate bearing capacity is a 
significant issue in design of CFST arch bridges. As 
an arch structure is primarily subjected to compres-
sive forces, the ultimate strength of CFST arch bridge 
is determined by the stability requirement. A number 

of theoretical studies were conducted in the past to 
investigate the stability and load-carrying capacity of 
CFST arch bridges. Zeng et al.(2003) studied the load 
capacity of CFST arch bridge using a composite beam 
element, involving geometric and material nonlin-
earity. Zhang et al.(2006) derived a tangent stiffness 
matrix for spatial CFST pole element to consider the 
geometric and material nonlinearities under large 
displacement by co-rotational coordinate method. Xie 
et al.(2005) proposed a numerical method to deter-
mine the ultimate strength of CFST arch bridges and 
revealed that the effect of the constitutive relation of 
confined concrete is not significant. Hu et al.(2006) 
investigated the effect of Poisson’s ratio of core con-
crete on the ultimate bearing capacity of a long span 
CFST arch bridge and found that the bearing capacity 
is enhanced by 10% if the Poisson’s ratio is variable. 
On the other hand, many experimental studies on the 
ultimate strength of naked CFST arch rib or CFST 
arch bridge model had been conducted. Experimental 
studies on CFST arch rib under in-plane and 
out-of-plane loads were carried out by Chen and Chen 
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(2000) and Chen et al.(2006), showing that the geo-
metrical nonlinearity was significant for the 
out-of-plane strength and less significant for the 
in-plane strength. Cui et al.(2004) introduced a global 
model test of a CFST arch bridge with span of 308 m, 
and suggested that the influence of initial stress 
should be considered. 

The above papers mainly focused on the ultimate 
strength of CFST naked arch ribs or CFST arch 
bridges with floating deck. No attempt was made to 
study the ultimate strength of CFST arch bridges with 
stiffening girders whose nonlinear behavior and 
CFST arch should be simulated due to the redistribu-
tion of inner forces between arch ribs and stiffening 
girders. In general, stiffening girders can be classified 
into steel girder, PC (prestressing concrete) girder and 
steel-concrete combination girder. It is most difficult 
to simulate the nonlinear behavior of PC girder, due to 
the influence of prestressing reinforcement. In con-
trast to steel or steel-concrete combination beam, the 
prestressing reinforcements in PC girders not only 
offer strength and stiffness directly, but their tension 
greatly affects the stiffness and distribution of the 
initial forces in the structure. 

The aims of this paper are (1) to present an elas-
tic-plastic analysis of the ultimate strength of CFST 
arch bridge with arbitrary stiffening girders; (2) to 
study the ultimate load-carrying capacity of a com-
plicated CFST arch bridge with abnormal arch ribs 
and PC stiffening girders; and (3) to investigate the 
effect of construction methods on the ultimate 
strength of the structure. 
 
 
ANALYTICAL THEORY 
 
Elasto-plastic large deformation of PC girder 
element 

The elasto-plastic large deformation analysis of 
PC beam elements is based on the following funda-
mental assumptions: 

(1) A plane section originally normal to the 
neutral axis always remains a plane and normal to the 
neutral axis during deformation; 

(2) The shear deformation due to shear stress is 
neglected; 

(3) The Saint-Venant torsional principle holds in 
the elasto-plastic stage; 

(4) The effect of shear stress on the stress-strain 
relationship is ignored. 

The cross-section of a PC box girder with one 
symmetric axis is depicted in Fig.1, where, G and s 
denote the geometry center and the shear center re-
spectively. According to the first and the third as-
sumptions listed above, the displacement increments 
of point A(x,y) in the section can be expressed in 
terms of the displacement increments at the geometry 
center and the shear center as 
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in which ∆wG is the longitudinal displacement in-
crement of point G, ∆us and ∆vs are the displacement 
increments of point s in the x- and y-directions re-
spectively, and ∆θz is the increment of torsional angle. 
The linear normal strain increment ∆εL, nonlinear 
normal strain increment ∆εN and shear strain incre-
ment ∆γ of point A(x,y) in the cross-section can be 
expressed with updated Lagrangian formulation as 
 

[ ] ( )

L

2 2

N

2 2

tor

∆ ∆ ∆ ∆ ,

1 ∆ 1 ∆∆
2 2
1 1       ∆ ( )∆ ∆ ∆ ,
2 2

∆ ∆ ,

G s s

s s z s z

z

w x u y v

U V
z z

u y y v x

K

ε

ε

θ θ

γ θ

′ ′′ ′′= − −


∂ ∂    = +    ∂ ∂   
 ′ ′ ′ ′= − − + +
 ′=

 

(2) 
 

where Ktor is the coefficient factor which is related to 
the geometry shape of the girder cross-section. 
 
 
 
 
 
 
 
 

 
Similar to 3D elastic beam theory, the dis-

placement increment of the girder can be expressed in 
terms of the nodal displacement increments as 

Fig.1  Cross-section of a PC box girder 
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where the shape functions are 
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in which L denotes the element length, and z is the 
axial coordinate of the local coordinate system of an 
element. Then, the displacement vector of any section 
of the element can be written as 
 

             e ,∆ = ∆u N u                                (5) 
  
where ∆u is the displacement vector of any section of 
the beam element, N is the shape function matrix and 
∆ue is the displacement vector of the element node. 
They are respectively expressed as 
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According to Eq.(2), the linear strain can be ex-
pressed as 
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in which BL is the linear strain matrix of the element 
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Correspondingly, the nonlinear strain may be 

expressed as 
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e
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where BNL is the nonlinear strain matrix of the ele-
ment 
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The stress increment ∆σ can be approximated 

using the linear strain increment as 
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where D is the material property matrix. Neglecting 
the influence of the shear strain, D can be expressed 
as 
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where E(ε) is the tangent modulus of the material 
which is dependent on the strain state, and G is the 
elastic shearing modulus regarded as a constant. 

According to the principle of virtual work, we 
have 
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( ) d ( ) d +( + ) ,
V L

V zδ δ δ+ ∆ ∆ = + ∆ ∆ ∆ ∆∫ ∫ q q u P P uσ σ ε  

(16) 
 

in which σ and ∆σ are the stress vector and stress 
increment of the current state, q and P are the dis-
tributed load and concentrated load vector, ∆q and ∆P 
are the increments of distributed load and concen-
trated load, δ∆u and δ∆ε are the virtual displacement 
and virtual strain, and V is the volume of the element. 
Substitute Eqs.(9), (11) and (14) into Eq.(16) and 
ignore the infinitesimal variable ∆σ∆εN, we have 
 

e e
ep( )+ ∆ = ∆σK K u F ,                    (17) 

 
where ∆Fe is the increment of element load vector 
corresponding to ∆ue, the element displacement vec-
tor. Kep and Kσ are the elasto-plastic and geometric 
stiffness matrixes of the beam element respectively as 
follows 
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The distribution of elastic and plastic zones is 

non-uniform in the element, and varies during de-
formation. It is very difficult to present an explicit 
expression of the property matrix D for the whole 
section. Hence, the section is divided into many su-
bareas, as shown in Fig.2, and the fiber model is 
adopted to calculate the element’s stiffness matrix, i.e. 
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Obviously, if the number of subareas is suffi-

ciently large, the result of Eq.(19) will approach the 
exact solution. The value of Kep is calculated using 
numerical integration, with Di being regarded as 
constant in subarea ∆Ai. 

To compute the geometric stiffness matrix Kσ, 
the normal stress should be expressed in terms of 
axial force and bending moment, which actually has 
very little contribution to the geometric stiffness, so 
 

/ ,N Aσ =                              (20) 
 
where N is the axial force, and A is the sectional area. 
 
Prestressing reinforcement element 

The reinforced bars parallel to the beam axis 
may be regarded as fibers, whose contributions to the 
stiffness could be readily accounted for in Eq.(19). 
The contributions to the stiffness from those not par-
allel to the beam and the prestressing reinforcement 
(PR), will however be calculated in the following 
section. 

The displacement increment of two ends of the 
prestressing reinforcement in Fig.3 can be expressed 
by Eq.(21): 
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where the subscripts i and j indicate the parameters of 
the corresponding section. 
 
 
 
 
 
 
 
 
 
 Fig.2  Division scheme of section 
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Ignoring the bending stiffness, the stiffness 
equation of PR can be expressed as 
 

( )* * * *
ep ,σ+ ∆ = ∆k k fδ                   (22)  

 
in which kep

* and kσ* are respectively the 
elasto-plastic and the geometric stiffness matrixes, 
∆δ* is the nodal displacement vector, and ∆f * is the 
nodal force vector of the prestressing reinforcement 
element in the local coordinate system. According to 
Fig.4, ∆δ* and ∆f * can be written in the form 
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As PR is bonded with concrete, the deformation 
of PR can be transformed by that of the girder element 
by 
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The nodal force of PR also should be translated 
to that of the girder element by 
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Then, the elasto-plastic stiffness matrix of PR 
element in the coordinate system of the beam element 
can be obtained as 
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Then the stiffness matrix ep( + )k kσ  of the rein-

forcement can be added to the beam stiffness matrix 
accordingly.  

 
CFST arch rib, steel girder or steel-concrete girder 
element 

The fiber model mentioned above can also be 
used to simulate the CFST arch rib, steel stiffening 
girder or steel-concrete composite stiffening girder, 
with similar elasto-plastic stiffness matrix and stiff-
ness equation. The detailed description of the deduc-
tion can be found in (Xie et al., 2005).  

However, for the CFST arch rib, the stress-strain 
relation of structure is very complex due to the com-
bined influence of the confined concrete and outer 
steel tube. In this paper, the following stress-strain 
relation considering the confinement effect of the 
steel tube ring (Han, 2000) is adopted: 
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where σ and ε are the longitudinal compressive stress 
and strain respectively, and 
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Fig.4  Translation of the prestressing reinforcement 
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where fck is the characteristic value of compressive 
strength of concrete (MPa), As is the area of steel tube 
(m2), Ac is the area of concrete (m2), and fy is the yield 
strength of steel tube (MPa). 

The interaction between the radial stress σr and 
the tangential stress σθ has been considered in calcu-
lation of the tensile and compressive strengths of the 
steel tube. According to the Von Misess yield criterion 
as shown in Fig.5a, we have 
 

2 2 2
y ,z z fθ θσ σ σ σ− + =                     (32) 

 
where σz is the axial normal stress of steel tube. 

Substituting α=σθ/fy≈0.159 into Eq.(32), yields 
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where σyt and σyc are the yield strengths of the tension 
and compression sides of the steel tube respectively, 
βt and βc are the corresponding coefficients. Fig.5b 
depicted the bilinear stress-strain relationship con-
sidering the hardening of the material. 

The secondary modulus of the steel tube Eh, 
which is related to both material properties and the 
tendency of local buckling of the steel tube, is as-
sumed to be 1% of the initial elastic modulus. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Hanger element 

The mechanical behavior of cables such as that 
of hangers and tie bars, is similar to that of truss ele-
ments, except that cables cannot bear compressive 
forces and the initial sag will affect their stiffness. The 
elasto-plastic computation theory of flexible cable 
considering the effect of sag was presented by (Xie et 

al., 1998). In most bridges, however, sag has little 
effect on the mechanical behavior of hangers. Hence, 
hangers of arch bridges are treated as elasto-plastic 
trusses with no compression strength, and the stiff-
ness equation is expressed by Eq.(22). 
 
 
PROGRAM SCHEME FOR ULTIMATE BEARING 
CAPACITY CALCULATION 
 

As usual, a long-span CFST arch bridge is con-
structed by progressive erection without brackets, and 
consists of many construction stages. Thus, the func-
tion of simulating the construction process must be 
taken into account in the developed program for cal-
culating ultimate bearing capacity, including the 
gradual action of load, the step-by-step formation of 
the structure, the influence of initial displacement and 
initial stress. The scheme for the program is indicated 
in Fig.6. The modified arc-length increment tech-
nique is adopted to solve the resulting nonlinear 
equation (Crisfield, 1981). 
 
 
VALIDATION OF THE METHOD FOR A PC 
GIRDER 
 

The accuracy of computation of the ultimate 
strength for CFST element has been confirmed in 
(Xie et al., 2005). In this paper, the precision of the 
present theory is checked for a PC girder by com-
parison with the experimental result. 

Fig.7 shows the cross-section and reinforce-
ments of the girder, which spans 13 m, with 9 bundles 
of prestressing reinforcements and 11 branches of 
nonprestressing reinforced bars. The design strength 
of the concrete is 22.4 MPa, and those of non-
prestressing reinforced bars A and B depicted in 
Fig.7a are 195 MPa and 280 MPa respectively of 
which the diameters are 12 mm and 8 mm. The 
prestressing reinforcement is high-strength low-rela- 
xation steel strand with design strength of 1860 MPa 
and the control force of each bundle is Nk=195 kN. 
More detailed information about the experiment on 
this PC girder is available in (Chen, 2005). 

Comparison of the deflection at the midspan is 
depicted in Fig.8, showing good consistency between 
the numerical simulation and experimental result. 
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APPLICATION IN BRIDGE DESIGN  
 

The ultimate strength of Fenghuajiang Bridge in 
Ningbo, Zhejiang, China is studied involving the 
effect of construction process to demonstrate the ap-
plicability of the present approach in bridge design. 
Fig.9 shows the design scheme of Fenghuajiang 
Bridge which is a girder and arch combination bridge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6  Program scheme for ultimate bearing capacity
calculation 

Calculate the controlling para-
meter of load increment in arc
length increment method 

Obtain the tangent stiffness matrix for element:
(1) the tangent stiffness matrix for the fiber
model beam element; (2) the tangent stiffness
matrix for the prestressing reinforcement
element 

Compute the 
unbalanced force 

Judge the  
convergence? 

Yes 

Calculate the structural stiffness 
matrix and load vector

Subtract the displacement of rigid
motion and compute the inner
force increment of structure 

Solve the linear equation to obtain the 
displacement increment of structure

Update the coordinate 
of the structure 

Next construction stage 
or load increment ? 

No 

Input the information of current  
construction stage or the load increment

Calculate the load  
coefficient increment

Iteration 
number>Nmax? 

Output the stress, strain, 
inner force and displace-

ment 

Input the information of the
element and material for 
the model of the bridge

Construction 
stage or load 

increment 
circulation 

Start 

Iteration 

End 

Yes 

Yes 

No No 

End 
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(a) Load-deformation curves for Case I; (b) Load-deformation curves for Case II 
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with central span of 138 m. The central span of the 
stiffening girder is made up of steel and PC composite 
box. The side span of the stiffening girder is made up 
of PC box. The abnormal CFST arch in the central 
span is composed of three arches, with one main arch  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rib in the center and two secondary arch ribs. The 
diameter of the main arch rib is 1.8 m, and those of the 
other two are 1.5 m. The design strength of the con-
crete used in the bridge is 22.4 MPa. The arch ribs are 
linked with steel pipes and I-steel bearing members, 
forming a truss arch bridge. The main arch and the 
deck are connected with vertical hangers. The sec-
ondary arches and the deck are connected with in-
clined hangers. 

To take into account the effect of the construc-
tion method on the ultimate bearing capacity, it is 
assumed that the bridge is constructed by two kinds of 
methods. In Case I, there is only a construction 
process, the supporting frames for construction fal-
ling once after the completion of the whole bridge. In 
Case II, there are two construction processes, as 
shown in Fig.10. The first process is construction of 
the PC girder on the supporting frames. The second 
process is to fix the steel girder, assemble the arch rib, 
and tension the tie-bar and hangers to separate the 
steel girder from the frame. 

Prestressing reinforcements in the girder are 
properly simulated in construction stages, but the 
reinforced bars are not modelled due to their large 
number. The elasto-plastic mechanical behaviors of 
CFST arch ribs, hanger, bearing member, steel pipe, 
tie-bar, etc. are analyzed. 

The ultimate strength analysis process is shown 
in Fig.11. First, the initial stress of the established 
bridge is calculated under dead load and prestressing 
force including initial tension of the hangers, the tie 
and prestressing reinforcements. Then the stress and 
displacement under live load are computed. At last, 
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the ultimate strength is investigated for load propor-
tionally exerted on the bridge by the arc length in-
crement method. The initial state of each step is based 
on the result of the last step. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The influence of construction method on the 

initial internal forces is investigated. The axial force 
and bending moment of the main arch rib are shown 
in Fig.12, showing that the initial internal forces of 
the two construction methods differ with a relative 
error of 10% for the axial force (Fig.12a) and 25% for 
bending moment (Fig.12b). 

The buckling modes for the two construction 
methods are depicted in Fig.13. The bridge is pri-
marily subjected to vertical loads, so the deformation 
is mainly in the vertical plane. However, in order to 

obtain out-of-plane buckling modes, a small 
out-of-plane initial displacement is set to simulate the 
erection error. It is observed that the buckling modes 
for the two methods are quite similar. 
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Fig.13  Buckling modes of the bridge 
(a) Buckling mode for Case I; (b) Buckling mode for Case II
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The out-of-plane deformation curves at the 
quarter points of the main arch rib are shown in Fig.14. 
The vertical axis denotes the load coefficient µ which 
does not contain the original dead load and live load 
exerted in Figs.11a and 11b. When 3.1≤µ≤3.2, the 
nonlinear behavior of the arch rib becomes obvious in 
the lateral direction. As shown in the figure, the 
buckling modes in both cases are antisymmetric 
out-of-plane, and the buckling load factor of the arch 
rib is about 4.1 considering the initial dead and live 
load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A comparison of the lateral and vertical defor-

mations at the quarter point of the main arch between 
two cases is shown in Fig.15, showing that the de-
viation of the load-displacement curves of the two 
cases is very small, indicating that the influence of the 
construction method on the stability strength is very 
slight. Besides, when out-of-plane buckling occurs, 
the bridge still has certain vertical stiffness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 

 
In analyzing the ultimate strength of the CFST 

arch bridges with stiffening girders, simulating the 
nonlinear behavior of stiffening girders is as impor-
tant as that of the CFST arch rib due to the redistri-
bution of inner force between arch ribs and stiffening 
girders. In this paper, an analytical approach for es-
timating the ultimate bearing capacity of CFST arch 
bridge with stiffening girder is proposed, which takes 
account of the effects of material and geometric 
nonlinearity and the contribution of prestressing re-
inforcement. Based on the fiber beam element theory, 
the degrees of freedom of the whole structure can be 
reduced, making it very feasible to predict the ulti-
mate strength of the complex structure. The accuracy 
of the present method was examined by comparison 
with the experimental results for a PC girder.  

To demonstrate the applicability of the present 
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Fig.14  Out-of-plane deformation curves of the main
arch rib. (a) Out-of-plane deformation in Case I; (b)
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approach in bridge design, the ultimate strength of an 
abnormal CFST arch bridge with stiffening girder is 
studied considering the effect of construction process. 
The result shows that the construction process influ-
ences the initial internal force of the bridge signifi-
cantly. But it has little effect on the ultimate strength 
of the bridge. Therefore, the relatively accurate sta-
bility strength can be obtained by ignoring the influ-
ence of the construction process. 
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