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Abstract:    A new, general type of planar linkages is presented, which extends the classical linkages developed by Kempe con-
sisting of two single-looped kinematic chains of linkages, interconnected by revolute hinges. Together with a locking device, these 
new linkages have only one degree of freedom (DOF), which makes them ideal for serving as deployable structures for different 
purposes. Here, we start with a fresh matrix method of analysis for double-loop planar linkages, using 2D transformation matrices 
and a new symbolic notation. Further inspection for one case of Kempe’s linkages is provided. Basing on the inspection, by means 
of some novel algebraic and geometric techniques, one particularly fascinating solution was found. Physical models were built to 
show that the derivation in this paper is valid and the new mechanisms are correct. 
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INTRODUCTION 
 

More than a century ago, Kempe (1878) syn-
thesized six classes of over-constrained planar link-
ages which became a classic in kinematics later on. 
For the first time Kempe listed conditions under 
which a plane linkage represented in Fig.1, consisting 
of two planar four-bar linkages pivoted together be-
came a movable system. Such combinations are 
called double-loop planar linkages, whose internal 
degree of freedom (DOF) is one. Kempe based his 
investigation on the assumption that the two quadri-
laterals respectively formed by attachment points of 
the two four-bar remained the same while the system 
was deforming. Darboux (1879), Fontené (1904), and 
Baker and Yu (1983), impressed by Kempe’s results, 
took up the task to re-examine Kempe’s findings. 
They isolated all solutions of the type sought by 
Kempe and gave some new linkages. However, their 
linkages were all limited to two four-bar. In the early 

1990s, Hoberman (1990; 1991) proposed a special 
planar linkage of angulated beams, which break the 
limit of number of bars. The concept was extended by 
You and Pellegrino (1997) which gave birth to a more 
general family of double-loop linkages. Later, 
Wohlhart (2000) presented another type of dou-
ble-loop. 

Together with a locking device, double-loop 
linkages can serve as deployable structures for dif-
ferent purposes. Therefore, the exploitation of the 
new type double-loop linkages has theoretical im-
portance. We intend, in this paper, to find a gener-
alization of Kempe’s linkages, in order to determine 
the conditions for its mobility. Meanwhile, the paper 
will explicitly state how to construct the generaliza-
tion of Kempe’s linkages. Besides the chief purpose 
of the paper, we are going to employ special notation 
which can be used to analyze in double-loop planar 
linkages. 

The layout of the paper is as follows. Section 2 
introduces a standard matrix method of analysis for a 
mechanism proposed by Denavit and Hartenberg 
(1955) and derives its 2D form. Section 3 firstly 
re-examines a case of Kempe’s linkages and lists two 
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geometric characteristics. According to these condi-
tions, describe Kempe’s linkages in a set of transform 
matrices by the matrix method. A fascinating gener-
alization of Kempe’s linkages is found. Section 4 
concludes this paper. 

 
 
 
 
 
 

             
 
 
 
 
MATRIX METHODS OF ANALYSIS FOR 
PLANAR LINKAGES 
 
Transformation matrices 

In a classical paper, Denavit and Hartenberg 
(1955) set forth a standard approach to the analysis of 
linkages, where the geometric conditions are taken 
into account. Beggs (1966) used similar methods for 
analysis of a set of mechanisms. According to coor-
dinate transformations and transformation matrices, 
these scholars were the first to demonstrate what 
closed-chain mechanisms form a movable system. 
However, they discussed mechanisms in 3D coordi-
nate system, which brings unnecessary complexity 
for analysis of planar linkages. For simplicity, we 
shall deduce transformation matrices in 2D coordi-
nate system. 

Assume that we have found two coordinate 
systems, X1O1Y1 and X2O2Y2, shown in Fig.2. X2 axis 
locates at the extension of O1O2, and the coordinates 
of point O2 in system X1O1Y1 is (x0, y0). Now let us 
show how to get a transform matrix [T12] that trans-
forms the coordinates of a point P in system X1O1Y1 to 
its coordinates in system X2O2Y2. Thus, the coordi-
nates of P is (x1, y1) in system X1O1Y1 and (x2, y2) in 
system X2O2Y2. The relationship of the above coor-
dinates can be written as 
 
x1=x2cosθ12−y2sinθ12+x0, y1=x2sinθ12+y2cosθ12+y0, (1) 
 
where θ12 is the angle of rotation from X1 to X2 posi-
tively about anti-clockwise. Here, it is specified that 

θ12 equals –θ21. Then, the distance between O1 and O2 
is denoted by a12, so Eq.(1) can be rewritten in matrix 
form as 

 

1 12 12 12 12 2

1 12 12 12 12 2

cos sin cos
sin cos sin

1 0 0 1 1

x a x
y a y

θ θ θ
θ θ θ

−     
     =
     
     

.    (2) 

 
Hence, the transformation matrix [T12] in planar 

case can be denoted by 
 

12 12 12 12

12 12 12 12 12

cos sin cos
[ ] sin cos sin

0 0 1

a
a

θ θ θ
θ θ θ

− 
 =
 
 

T .      (3) 

 
The inverse of [T12] is given as 

 

12 12 12

21 12 12

cos sin
[ ] sin cos 0

0 0 1

aθ θ
θ θ

− 
 = −
 
 

T .            (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Mobility condition 

Denavit and Hartenberg (1955) pointed out that, 
for a closed loop in a linkage, the necessary and suf-
ficient mobility condition is that the product of the 
transform matrices equals the unit matrix, i.e., 

 
[T12][T23][T34]...[Tn1]=[I].                        (5) 

 
Using mathematical induction, we can have 
 
[T12][T23]…[Tn1]= 

12 23 1 12 23 1 1

12 23 1 12 23 1 2

cos( + +...+ ) sin( + +...+ )
sin( + +...+ ) cos( + +...+ ) ,

0 0 1

n n

n n

K
K

θ θ θ θ θ θ
θ θ θ θ θ θ

− 
 
 
 

         

(6) 

Fig.1  Kempe’s linkage 

Fig.2  Two coordinate systems 



Mao et al. / J Zhejiang Univ Sci A   2007 8(7):1084-1090 1086

where, 
K1=a12cosθ12+a23cos(θ12+θ23) 

+…+an1cos(θ12+θ23+…+θn1), 
K2=a12sinθ12+a23sin(θ12+θ23) 

+…+an1sin(θ12+θ23+…+θn1).                    (7) 
 
According to Eq.(5), the following conditions 

must be met: 
 

       θ12+θ23+…+θn1=2kπ (k∈ù),   K1=K2=0.              (8) 
 

The advantage of applying this matrix method is 
that we can describe a double-loop into a set of 
transform matrices. According to the theory that the 
product of these transform matrices equals the unit 
matrix, we can code a short piece of software enabling 
rapid determination of suitability of the double-loop. 
 
 
CREATION OF A GENERALIZATION OF 
KEMPE’S LINKAGES 
 
Re-examine Case 5 of Kempe’s linkages 

Among six cases of Kempe’s linkages, we have 
found that Case 5, shown in Fig.3, has greater poten-
tial to be exploited than other cases. The geometrical 
characteristics of Case 5, given by Kempe, are as 
follows. First, the root polygon (the dashed quadri-
laterals in Fig.3) of two deploying four-bar always 
remain similar; secondly, in Fig.3, the triangles ABM, 
BCN, CDP, DAQ are similar and the triangles A′B′M′, 
B′C′N′, C′D′P′, D′A′Q′ are also similar. Hence, the 
following conditions can be obtained. 

 
∠QAM=∠Q′A′M′=∠DAB, 
∠MBN=∠M′B′N′=∠ABC, 
∠NCP=∠N′C′P′=∠BCD, 
∠PDQ=∠P′D′Q′=∠CDA, 
AM/A′M′=AQ/A′Q′=CN/C′N′=CP/C′P′,  
BM/B′M′=BN/B′N′=DP/D′P′=DQ/D′Q′.   (9) 

 
Case 5 is a typical class of over-constrained 

mechanism because Kutzbach formula gives for the 
degree of mobility: F=−3. However, in fact if one 
relative angle of two adjacent links, for example 
∠AMB in Fig.3, is known, the quadrilateral AMBM′ 
is determined and the positions of all the other links 
are also uniquely determined, i.e., it can move with 

only 1 DOF. Accordingly, we dare to make a guess 
that a class of double-loop planar linkages matches 
the following conditions: (1) The root polygon stays 
similar to its initial shape throughout the motion; (2) 
The triangles built on each edge of the root polygon 
are cyclically similar. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is possible to extend the concept to a series of 

combinations of a pair of six-bar, eight-bar, even 
2n-bar where n is a positive integer greater than 2. For 
brevity, we shall henceforth refer to this kinematics 
chain as type SQ which has a 1 DOF motion. In the 
subsequent discussion we shall prove our guess, by 
the use of the matrix method mentioned in Section 2. 
 
Description of Kempe’s linkages 

Before using the matrix method, it is necessary 
to give the symbolic notation in double-loop planar 
linkages for applying the transformation. Denavit and 
Hartenberg (1955) gave the rules of notation in a 
closed single chain, which cannot be directly used in 
double-loop planar linkages for the geminate joints. 
Therefore, we rewrote the rules of notation as follows: 
(1) Number the revolute hinges in sequence around 
one loop, then the other loop; (2) The axis from i−1 to 
i is Xi. Suppose the total number of hinges is n, the 
axis from n to 1 is X1; (3) The distance between Xi−1 
and Xi is ai−1,i; (4) The angle between Xi−1 and Xi is 
θi−1,i, which is measured positively about anti- 
clockwise. 

This notation will now be used to describe Case 
5 of Kempe’s linkages in Fig.4. Additionally for 
simplicity, in the subsequent analysis, we shall use a 
set of angulated beams instead of the plates in Fig.1. 

Fig.3  Case 5 of Kempe’s linkages 
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The connections are located at exactly the same po-
sition as the original plates. The symbol  indicates ⊙

the positions of hinges. Note that 2 and 10 are used to 
describe the same hinge, the same with 4 and 12, 6 
and 14, 8 and 16. 

From Eq.(9), the relationship of all angles and 
lengths of bars in Fig.4 can be shown in Fig.5. Note 
that we respectively denoted the supplementary an-
gles of ∠DAB, ∠ABC, ∠BCD and ∠CDA as α, β, γ 
and δ. Geometrically we have 

 
α+β+γ+δ=2π.                                  (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore, the values of each ai−1,i and θi−1,i in 
Case 5 of Kempe’s linkages can be shown in Table 1. 

Substituting the values of every ai−1,i and θi−1,i 
into Eq.(8) yields 

 
θ12+θ23+…+θn1=−2(α+β+γ+δ)=−4π. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
So the first condition in Eq.(8) has been met. 

Moreover, we have 
 

K1=l1[mcos(α+λ2+λ4)+ncos(α+β+λ2+λ4) 
+pcos(α+β+γ+λ2+λ4)+qcos(α+β+γ+δ+λ2+λ4)] 
+l2[mcos(α−λ1+λ4)+ncos(α+β−λ1+λ4) 
+pcos(α+β+γ−λ1+λ4)+qcos(α+β+γ+δ−λ1+λ4)] 
+l3[mcosα+ncos(α+β)+pcos(α+β+γ) 
+qcos(α+β+γ+δ)]+l4[mcos(α+λ3+λ4) 
+ncos(α+β+λ3+λ4)+pcos(α+β+γ+λ3+λ4) 
+qcos(α+β+γ+δ+λ3+λ4)]=0, 

K2=−l1[msin(α+λ2+λ4)+nsin(α+β+λ2+λ4) 
+psin(α+β+γ+λ2+λ4)+qsin(α+β+γ+δ+λ2+λ4)] 
−l2[msin(α−λ1+λ4)+nsin(α+β−λ1+λ4) 
+psin(α+β+γ−λ1+λ4)+qsin(α+β+γ+δ−λ1+λ4)] 
−l3[msinα+nsin(α+β)+psin(α+β+γ)+qsin(α+β+γ+δ)] 
−l4[msin(α+λ3+λ4)+nsin(α+β+λ3+λ4) 
+psin(α+β+γ+λ3+λ4)+qsin(α+β+γ+δ+λ3+λ4)]=0.          (11) 

 
It must be noted that λ1, λ2, λ3, λ4 are a group of 

linearly dependent variables which demonstrates type 
SQ has a DOF motion. It is easy to know the sufficient 
condition of Eq.(11) is the following condition: 
 

mlcos(α+ε)+nlcos(α+β+ε)+plcos(α+β+γ+ε) 
+qlcos(α+β+γ+δ+ε)=0, 

mlsin(α+ε)+nlsin(α+β+ε)+plsin(α+β+γ+ε) 
+qlsin(α+β+γ+δ+ε)=0.                    (12) 

 
where ε is variable angle. Evidently, Eq.(12) is true if 

Fig.4  Symbolic notations in double-loop planar linkages

Fig.5  The value of each ai−1,i and θi−1,i in Case 5 of Kempe’s
linkages 

Table 1  The value of ai−1,i and θi−1,i (i=17, ai−1,i=a16,1, 
θi−1,i=θ16,1) 

ai−1,i Value θi−1,i Value 
a1,2 ml1 θ1,2 −(α+λ2+λ4)
a2,3 ml2 θ2,3 λ1+λ2 
a3,4 nl2 θ3,4 −β 
a4,5 nl1 θ4,5 −(λ1+λ2) 
a5,6 pl1 θ5,6 −γ 
a6,7 pl2 θ6,7 λ1+λ2 
a7,8 ql2 θ7,8 −δ 
a8,9 ql1 θ8,9 −(λ1+λ2) 
a9,10 ml3 θ9,10 −(α−λ2−λ4)
a10,11 ml4 θ10,11 −(λ3+λ4) 
a11,12 nl4 θ11,12 −β 
a12,13 nl3 θ12,13 λ3+λ4 
a13,14 pl3 θ13,14 −γ 
a14,15 pl4 θ14,15 −(λ3+λ4) 
a15,16 ql4 θ15,16 −δ 
a16,1 ql3 θ16,1 λ3+λ4 
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we explain it in vector space. 
Assume that we have found four vectors AB, BC, 

CD and DA, which are shown in Fig.6 and expressed 
in Eq.(13): 

 
AB=ml(icos(α+ε)+jsin(α+ε)), 
BC=nl(icos(α+β+ε)+jsin(α+β+ε)), 
CD=pl(icos(α+β+γ+ε)+jsin(α+β+γ+ε)), 
DA=ql(icos(α+β+γ+δ+ε)+jsin(α+β+γ+δ+ε)),     (13) 

 
 
 
 
 
 
 
 
 
 
 
From Fig.6, we know that ABCD is a closed 

quadrilateral, which leads to 
 
AB+BC+CD+DA=0.                                  (14) 

 
Substituting Eq.(13) into Eq.(14), Eq.(12) can be 

obtained, which indicates we have K1=K2=0 in Case 5 
of Kempe’s linkages. That means, the second condi-
tion in Eq.(8) has been met, too. Hence, according to 
Denavit and Hartenberg’s standard approach to the 
analysis of linkages, we can prove all double-loop 
planar linkages have one DOF. 

 
A generalization of Kempe’s linkages 

From Section 3.2, for a group of closed vectors, 
the conditions similar to Eq.(12) can be always ob-
tained: 

 
m1cos(α1+ε)+m2cos(α1+α2+ε)+… 

+micos(α1+α2+…+αi+ε)=0, 
m1sin(α1+ε)+m2sin(α1+α2+ε)+… 

+misin(α1+α2+…+αi+ε)=0.      (15) 
 

Consequently, a generalization of Kempe’s 
linkages can be derived from the root polygon. Now 
let us show how to construct a general type SQ. 

For n even and greater than 2: (1) draw an arbi-
trary n-sided root polygon, for instance a closed 
vector hexagon shown in Fig.7a which satisfies 

Eq.(15), (2) choose four suitable angles, λ1, λ2, λ3, λ4, 
and (3) construct similar triangles on the sides of the 
root polygon in the pattern of Fig.7b. In this case, the 
pattern using λ1, λ2, closes up with triangles only on 
one side of each edge of the root polygon, and the 
pattern using λ3, λ4, fills in the other triangles. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For n odd and greater than 1: similarly, (1) draw 

an arbitrary n-sided root polygon, for instance a 
closed vector pentagon shown in Fig.8a which satis-
fies Eq.(15), (2) choose two suitable angles, λ1, λ2, and 
(3) construct similar triangles on the sides of the root 
polygon alternating in the pattern of Fig.8b. In the odd 
case, the pattern, by sequence as shown in Fig.8b, 
using just λ1, λ2, fills in all inner and outer triangles 
before closing up. It must be pointed out that all 
quadrilaterals are similar parallelograms which were 
found by You and Pellegrino (1997). 

The most symmetric linkage, Hoberman linkage 
as shown in Fig.9a, also belongs to the generalization 
of Kempe’s linkages, whose triangles are all equal. It 
is the most special case in type SQ for λ1=λ2=λ3=λ4. As 
an extension of this concept, the Elliptic-like linkage 
shown in Fig.9b can be built which is also highly 
symmetric. 

Fig.6  Four closed vectors 

Fig.7  A generalization of Kempe’s linkage in the even
case. (a) An arbitrary root polygon; (b) Constructional
pattern 
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By now, the guess in Section 3.1 has been totally 
confirmed. Physical models built to demonstrate all of 
the extended concepts have shown that the above 
derivation is valid and the new mechanisms are cor-
rect, which is shown in Fig.10. Following the geo-
metrical conditions of type SQ, the model consists of 
double-loop six-bar linkages made of red and blue 
Perspex. With a single degree of freedom, these 
models can move perfectly well as expected, which 
make them ideal for use as foldable structures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Fig.8  A generalization of Kempe’s linkage in the odd case.
(a) An arbitrary root polygon; (b) Constructional pattern

Fig.10  (a)~(c) Motion sequence of a model consisting of 
double-loop six-bar linkages 

Fig.9  Highly symmetrical linkages. (a) Hoberman link-
age; (b) Elliptic-like linkage 



Mao et al. / J Zhejiang Univ Sci A   2007 8(7):1084-1090 1090

CONCLUSION 
 
This paper has extended Case 5 of Kempe’s 

linkages to a generalization of Kempe’s linkages. 
Using transformation matrices rewritten by us in 2D 
coordinate system, we have introduced a matrix 
method into the analysis of planar linkages. A new 
symbolic notation for the double-loop planar linkages 
has been introduced and thus the designers can use 
this symbolic notation to transform double-loop pla-
nar linkages into a set of transformation matrices.  

It was found that, adopting the matrix methods 
of analysis extended by us, Case 5 has been 
re-explained, mathematically. More significantly, 
basing on the two geometric characteristics of Case 5 
described in Section 3.1, we have given birth to type 
SQ mechanisms, including the even case and the odd 
case. Physical models built have shown that the 
derivation in this paper is valid and the new mecha-
nisms are correct. 

The new linkages provide more choices to de-
signers of foldable structures for applications such as 
retractable roofs. However, due to the lower manu-
facturing costs, highly symmetrical linkages are pre-
ferred in applications, as far as possible. Based on the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analysis in the paper, we have coded a short piece of 
software enabling rapid determination of suitability of 
double-loop. 
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