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Abstract:    This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a 
parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and 
friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, 
and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in 
modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a 
single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) 
coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed 
to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the 
system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to 
disturbances. 
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INTRODUCTION 
 

A pneumatic muscle is a new kind of pneumatic 
actuator similar to human muscle, which has been 
gradually applied in robotic manipulators (Caldwell 
et al., 1995; Medrano-Cerda et al., 1995; Tondu and 
Lopez, 2000; Nakamura et al., 2002; Tsagarakis and 
Caldwell, 2003; Costa and Caldwell, 2006; Takuma 
and Hosoda, 2006; Ahn and Nguyen, 2007). The 
parallel manipulator driven by three pneumatic mus-
cles studied in this paper has the advantages of 
cleanness, light weight, low cost, easy maintenance, 
compact structure and high power/volume ratio, and 
will have promising wide applications in robotics, 
industrial automation and bionic devices (Zhu and 
Tao, 2004; Tao et al., 2005). 

Due to model errors of the static forces and fric-
tion forces of pneumatic muscles, simplified average 
flow rate characteristics of valves, and unknown 
disturbances of the entire system, there exist rather 
severe parametric uncertainties and nonlinear uncer-
tainties in modeling of the parallel manipulator. Re-
cently, an adaptive robust controller has been de-
signed to effectively deal with the above uncertainties 
with the guarantee of good transient performance and 
final tracking accuracy (Zhu et al., 2006). In order to 
reduce cost and complexity of the pneumatic system, 
pressure sensors should be used as little as possible in 
practice. Therefore, it is necessary to develop this 
controller without the need of measuring pressures for 
trajectory tracking of the parallel manipulator driven 
by pneumatic muscles. However, the absence of 
pressure sensors will bring a new challenge for con-
trolling such a system and achieving good perform-
ance since pressure feedback is really needed in the 
previous adaptive robust controller. 
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In recent years, many researchers have worked 
on applying observer theory to designing controller of 
pneumatic systems and cancelling pressure sensors. 

Specially, Hildebrandt et al.(2005) proposed a feed-
back linearization controller based on a pressure ob-
server for tracking control of a pneumatic system, 
which is realized by parameterizing the chamber 
pressures in respect of the actual position and corre-
sponding derivatives. Gulati and Barth (2005) pre-
sented a sliding mode controller based on either en-
ergy based or force-error based Lyapunov pressure 
observer for servo control of pneumatic actuators. 
Pandian et al.(2002) developed a continuous gain 
observer and a sliding-mode observer to estimate the 
pressures in the cylinder, and used the estimated pres-
sure in a sliding-mode controller for tracking control 
of a pneumatic cylinder. For the parallel manipulator 
studied, it must be noted that the system has MIMO 
coupling dynamics and large uncertainties associated 
with the pneumatic muscle, and that the unmeasured 
pressure could not be accurately represented by other 
measured state variables in linear form. Therefore, the 
designing method of this pressure observer is different 
from those in the above literature.  

In this paper, informed by research on the adap-
tive robust observer (Yao and Xu, 2001), a nonlinear 
pressure observer based on a simplified SISO de-
coupling model with large uncertainties, is integrated 
with an adaptive robust controller to accomplish high 
precision posture trajectory tracking of the parallel 
manipulator without the need of measuring pres-
sures. 
 
 
DECOUPLING DYNAMICS 
 

The parallel manipulator driven by three pneu-
matic muscles (manufactured by Festo, MAS-40- 
N600-AA-MCKK) is shown in Fig.1, which consists 
of a moving platform, a base platform, a central pole 
and three pneumatic muscles connected by six ball 
joints that are evenly distributed along the respective 
platforms. The central pole is fixed to the base plat-
form and is connected to the moving platform by a 
spherical joint. Two fast switching valves (manufac-
tured by Festo, MHE2-MS1H-3/2G-M7-K, 100 
L/min) are utilized to control the pressure inside each 
pneumatic muscle and this combination of compo-
nents is referred to as a driving unit subsequently. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SISO decoupling model in task-space  

The dynamics in task-space of the parallel ma-
nipulator is given by (Zhu et al., 2006; Tao et al., 
2007) 
 

T
f t

T
m

( ) ( , ) ( )+ ( ) ( , , )+ ( )

             ( ) ( , ),

t+ +

=

M θ θ C θ θ θ G θ J θ F l l p d
J θ F p l (1) 

 
where θ=[θx,θy]T is the posture vector of the parallel 
manipulator, l=[l1,l2,l3]T is the contractive length vec-
tor of pneumatic muscles, p=[p1,p2,p3]T is the relative 
pressure vector of pneumatic muscles, M(θ) is the 
rotational inertial matrix, ( , )C θ θ θ  is the vector of 
centripetal and Coriolis torques, G(θ) is the vector of 
gravitational torques, f ( , , )F l l p  is the friction force 
vector of pneumatic muscles and link-joints, dt(t) is 
the disturbance vector in task-space, J(θ) is Jacobian 
transformation matrix and Fm(p,l) is the static force 
vector of pneumatic muscles with each component 
given by (Tondu and Lopez, 2000) 
 

m r( , ) ( ) ( ),i i i i i iF l p A l p F l= +                  (2) 
 
where A(li) and Fr(li) are the equivalent cylinder area 
and rubber elastic force of pneumatic muscle, respec-
tively. 

Substitute Eq.(2) into Eq.(1) while noting 
( ) ,=l J θ θ  one obtains 
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1: Moving platform; 2: Ball joint; 3: Spherical joint 
4: Pneumatic muscle; 5: Central pole; 6: Base platform 

Fig.1  Experimental test-rig of parallel manipulator 
driven by pneumatic muscles 
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a c b l( ) ( ) ( , ) ,= + +l H θ A l p H θ θ d             (3) 
where 
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Eq.(3) is a MIMO dynamics and there exist 

coupling effects between the pressures and the con-
tractive accelerations of different driving units. To 
remove such coupling effects, a SISO decoupling 
dynamics in task-space is proposed as follows for 
each driving unit i: 
 

a b( ) ( ) ( , ) ,i i i xil f A l p f d= + +θ θ θ                (4) 
 
where fa(θ) is the ith principal diagonal element of 
matrix Ha(θ), b ( , )f θ θ  is the ith element of b ( , ),H θ θ  
and dxi is the lumped disturbance including the 
disturbance of the ith driving unit and the coupling 
effects of the other two driving units.  
 
Simplified model in muscle-space 

The pressure dynamics of each driving unit is 
(Zhu et al., 2006)  
 

a 0 b m
m

( )
,i i i i i i

i i
i i

p p V RT q
p d

V V
λ λ+

= − + +          (5) 

 
where λai and λbi are the polytropic exponents, p0 the 
atmospheric pressure, Vi the pneumatic muscle’s in-
ner volume, R the gas constant, Ti the thermodynamic 
temperature of pneumatic muscle, dmi the disturbance 
in muscle-space, and qmi the mass flow rate of air 
through the valve given by 
 

m u d u( , , ),i i i i i iq u p p Tχ=                     (6) 
 
where ui is the duty cycle and χi is a nonlinear flow 
gain function, pui and pdi are the upstream pressure 
and downstream pressure respectively, and Tui is the 
upstream temperature. 

Considering that the pressure information of 
pneumatic muscle must be provided in the process of 

designing the controller while the pressure could not 
be obtained by measurement in the absence of pres-
sure sensors, the model-based pressure observer 
should be constructed according to Eqs.(5) and (6). 
However, since Eq.(6) is a nonlinear function of the 
unmeasured pressure, Eqs.(5) and (6) cannot be di-
rectly used to design the pressure observer. Hence, 
assuming the flow rate gain function χi(pui,pdi,Tui) to 
be constant and merging Eq.(6) with Eq.(5), a sim-
plified model in muscle-space could be expressed as 
Eq.(7), which is a linear function of the unmeasured 
pressure: 
 

a b c p( ) ( ) ( ) ,i i i i i i i ip g l u g l l p g l l d= + + +        (7) 

 
where ga(li), gb(li) and gc(li) are nonlinear functions of 
contractive length of pneumatic muscles: 
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and dpi is the model error during simplification which 
will be attenuated by robust feedback term.  
 
SISO dynamics in state-space 

For each driving unit, state variables are defined 
as T[ , , ]i i il l p=x  (i=1,2,3). According to Eqs.(4) and 
(7), the following SISO dynamics in state-space can 
be obtained: 
 

1 2

2 a 1 3 b x

3 a 1 b 1 2 3 c 1 2 p

,
( ) ( ) ( , ) ,
( ) ( ) ( ) .

x x
x f A x x f d
x g x u g x x x g x x d

 =
 = + +
 = + + +

θ θ θ      (8) 

 
 
PROBLEMS TO BE ADDRESSED 
 

The nonlinear disturbances in task-space and 
muscle-space can be decomposed into unknown 
constant nominal values and time-varying 
uncertainties, i.e., x x0 x ,d d d= +  p p0 p .d d d= +  Let β 

be the unknown parameter vector, β̂  the estimate of 

β and ˆ= −β β β  the estimation error.   
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Assumption 1    The x3-subsystem in Eq.(8) with x3 as 
the state and u, x1, x2 as the inputs, is bounded-input- 
bounded-state stable in the sense that for every x30∈ú 
and every 1

1 2, , [0, ),u x x L∞∈ ∞  the solution x3 starting 
from the initial condition x30 is bounded, i.e., 

1
3 ( ) [0, )x t L∞∈ ∞ (Yao and Xu, 2001) . 

Assumption 2    The extents of the parametric uncer- 
tainties and nonlinear uncertainties are known, i.e., 
 

{ }min max

x xmax p pmax

: ,

    | | , | | ,

Ω∈ = ≤ ≤

≤ ≤

ββ β β β β

d d d d
 

 
where βmax=[β1 max,…,βn max]T is the maximum pa-
rameter vector and βmin=[β1 min,…,βn min]T is the 
minimum parameter vector, dx max and dp max are 
known vectors. 
 
Parameter projection 

A discontinuous projection can be defined as 
Eq.(9) in order to guarantee that the parameter esti-
mates given by Eq.(10) remain in the known bounded 
region all the time (Yao and Tomizuka, 1997). 
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The adaptation law is given by 
 

     ˆ
ˆ ( ),Proj= ββ Γσ                        (10) 

 

where Γ>0 is a diagonal matrix and σ is an adaptation 
function to be synthesized later. It can be shown that 
for any adaptation function, the projection mapping 
used in Eq.(10) guarantees 
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T 1
ˆ
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Difficulties in designing observer/controller  

For trajectory tracking control of the parallel 
manipulator driven by pneumatic muscles without the 
need of measuring pressures, the main difficulties are 
analyzed as follows. 

(1) Due to the nonlinearities of robotic dynamics, 
pressure dynamics and flow rate characteristics, the 

unmeasured pressure could not be accurately repre-
sented by other measured state variables in linear form. 
Thus, it is impossible to design a linear pressure ob-
server based on the accurate model (Brogan, 1985).  

(2) It must be noted that there exist large uncer-
tainties in the system dynamics, such as the parametric 
uncertainties from modeling the static force and the 
friction force of pneumatic muscle, the nonlinear un-
certainties from simplifying pressure dynamics of 
pneumatic muscle and flow characteristic of fast 
switching valves and the coupling effects of MIMO 
dynamics, and the dynamic uncertainties from esti-
mating the unmeasured pressures. The above uncer-
tainties could not be attenuated only by robust ob-
server-controller method (Tarek and Francoise, 1999). 
Therefore, an adaptive robust observer-controller 
method should be adopted for compensating and 
attenuating these uncertainties. 

(3) The model uncertainties are mismatched, i.e., 
both parametric uncertainties and nonlinear uncer- 
tainties appear in the dynamic equations that are not 
directly related to the control input u. Therefore the 
backstepping design technology should be employed 
to overcome the design difficulties for achieving 
asymptotic stability (Bu and Yao, 2001). 
 
 
PRESSURE ESTIMATATION  
 

Define a variable as follows (Yao and Xu, 2001): 
 

3 1 2( , ),x x xζ ω= −                         (12) 
 
where ω(x1,x2) is a design function yet to be 
determined. From Eq.(8), the derivative of Eq.(12) is 
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For simplicity, let 
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Then, Eq.(13) is rewritten as  
 

01 02 1 x0 2 p0 1 x 2 p.A d d d dζ η η η η η ηζ ζ ζ ζ ζ ζ ζ ζ= + + + + + +

       (15) 
 

If dx0 and dp0 were known, a nonlinear observer would 
be designed as 
 

01 02 1 x0 2 p0
ˆ ˆ .A d dζ η η η ηζ ζ ζ ζ ζ ζ= + + + +        (16) 

 

Then, the state estimation error ˆζ ζ ζ= −  would be 
governed by the following dynamic system: 
 

     1,Aζζ ζ ∆= −                         (17) 
where 

1 1 x 2 p .d dη η∆ ζ ζ= +  

 
Since dx0 and dp0 are unknown, the observer 

Eq.(16) is not implementable, but it provides 
motivation for the design of the following nonlinear 
filters: 
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A A
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
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The pressure estimation can thus be represented by 
 

01 02 1 x0 2 p0
ˆ .d dθ θ θ θζ ζ ζ ζ ζ= + + +            (19) 

 
From Eqs.(18) and (19), it can be verified that 

the observer error dynamics is still described by 
Eq.(17). Therefore, the unmeasured pressure is  
 

3 01 02 1 x0 2 p0 .x d dθ θ θ θζ ζ ζ ζ ω ζ= + + + + −     (20) 

 
Let Aζ=−k (k>0) such that the unperturbed 

system of observer error dynamics is exponentially 
stable, i.e., when 1 0,∆ =  the observation error ζ  
converges to zero exponentially. Thus, from Eq.(14), 
ω(x1,x2) is obtained.  
 

1 2
1 2 a 1 b 1 2 2( , ) ( , )[ ( ) / 2 ],x x n x g x x kxω −= +θ     (21) 

 
where na(θ,x1)=fa(θ)A(x1) is a positive function. 

Hence, according to Assumption 1, the 
observation error would be bounded. 
 
 
ADAPTIVE ROBUST CONTROLLER DESIGN  
 

A discontinuous projection based adaptive ro-
bust controller integrated with the above pressure 
observer is developed to accomplish the high preci-
sion posture trajectory tracking of the parallel ma-
nipulator with dynamic uncertainties (Yao and 
Tomizuka, 1997; Yao and Xu, 2001). The procedure 
of backstepping design is illustrated as follows.  

Step 1: Define a switching-function-like quantity 
as 

 

2 1 c 1,z z k z= +                             (22) 
 
where z1=x1−x1d is the trajectory tracking error and kc 
is a positive feedback constant. If z2 converges to a 
small value or zero, then z1 will converge to a small 
value or zero since the transfer function from z2 to z1 is 
stable. Substituting Eqs.(8) and (20) into Eq.(22), z2 
dynamics is 
 

2 a 01 a 02 a 1 x0 a 2 p0

a a b d c

( 1)

   .

z n n n d n d

n n f x k e
θ θ θ θζ ζ ζ ζ

ω ζ

= + + + +

+ − + − + (23) 
 

For the purpose of z2 converging to zero, define 
the unknown parameters in task-space as β2=[dx0,dp0]T 
and the virtual input as ν=ζθ01. Then, the regressor for 
parameter adaptation is ϕ2=[naζθ1+1, naζθ2]T. And 2β̂  

is updated by ˆ2 2 2
ˆ ( )Proj= ββ Γ σ  with the parameter 

adaptation function given by 2 2 2.z=σ ϕ  
The desired virtual input consists of two terms: 
 

d da ds ,v v v= +                           (24a) 
1 T

da a a 02 a b d c 2 2
ˆ[ ],v n n n f x k eθζ ω−= − − − + − − βϕ (24b) 

 
where vda functions as the adaptive control part used 
to achieve an improved model compensation, and vds 
is a robust control law including the following two 
terms: 
 

1
ds ds1 ds2 ds1 a 2 2, ,v v v v n k z−= + = −            (25) 
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where k2 is a positive definite control gain, vds2 is 
synthesized to dominate the model uncertainties 
coming from both parametric uncertainties and 
nonlinear uncertainties, which is chosen to satisfy the 
following conditions: 
 

T
2 a ds2 2 2 a 2

2 ds2

( ) ,
0,

z n v n
z v

ζ ε − − ≤


≤

βϕ
            (26) 

 
where ε2 is a positive design parameter. 

Define the positive semi-definite (p.s.d) function 
2

2 2 / 2V z=  and denote the input discrepancy as 
z3=v−vd. From Eqs.(23) and (24), the time derivative 
of V2 is 
 

2 T
2 2 2 2 2 2 a 3 a a ds2[ ].V k z z n z n n vζ= − + − + − +βϕ  (27) 

 
Step 2: Synthesize a control input u so that z3 

converges to zero or a small value with a guaranteed 
transient performance. 

The time derivative of z3 is given by Eq.(28) 
while noting Eqs.(14), (18) and (24): 
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where 
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where 2x̂  and 2x̂  are deduced from x1 by a sec-
ond-order differential filter (Zhu et al., 2006). Note 
that dcv  represents the calculable part of dv  and can 
be used to design control functions, but duv  can not 
due to various uncertainties. 

 To attenuate the effect of du ,v  let duv  be de-
composed into a constant nominal value and 
time-varying uncertainties, i.e., du v0 v .v d d= +  For 
the purpose of z3 converging to zero or a small value 
with a guaranteed performance, define the unknown 

parameter in muscle-space as β3=dv0. Then, the re-
gressor for parameter adaptation is ϕ3=1. And 3β̂  is 

updated by ˆ3 3 3
ˆ ( )Proj= ββ Γ σ  with the parameter 

adaptation function given by σ3=−ϕ3z3. 
The desired control input consists of two terms: 

 
1

da ds da a 01 dc a 3 v0
ˆ, ( ),u u u u g A v n z dζ θζ

−= + = − + − + (29) 
 
where uda is used for adaptive model compensation 
and the robust control law uds consists of the follow-
ing two terms: 
 

1
ds ds1 ds2 ds1 a 3 3, ,u u u u g k z−= + = −           (30) 

 
where k3 is a positive feedback gain, uds2 is a robust 
control function chosen to satisfy the following con-
ditions to dominate all model uncertainties: 
 

T
3 a ds2 3 3 v 3

3 ds2

( + ) ,
0,

z g u d
z u

ε − ≤


≤

βϕ
          (31) 

 
where ε3 is a positive design parameter which can be 
arbitrarily small. 

To see how the above control function works, 
define a p.s.d. function 2

3 2 3 / 2.V V z= +  The time 
derivative of V3, when Eqs.(28) and (29) are substi-
tuted into, is 
 

 

2 2 T
3 2 2 3 3 3 a ds2 3 3 v

T
2 2 2 a a ds2

[ ]

[ ].

V k z k z z g u d

z n n vζ

= − − + + −

+ − − +

β

β

ϕ

ϕ   (32) 
 

Substituting Eqs.(26) and (31) into Eq.(32), then 3V  
is bounded above by  
 

2 2
3 2 2 3 3 2 3.V k z k z ε ε≤ − − + +                (33) 

 
The solution of inequality (33) satisfies  
 

 v
3 v 3 v

v

( ) exp( ) (0) [1 exp( )],V t t V t
ε

λ λ
λ

≤ − + − −     (34) 

 
where λv=2×min{k2, k3}, εv=ε2+ε3. 

The parameters k2, k3, ε2, ε3 could be designed to 
guarantee that the tracking error be bounded in a 
preset ball all the time, whereas, in fact, these pa-
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rameters are constrained by the bandwidth of the total 
control system due to unmodeled high frequency 
dynamics, saturation of control inputs, and sampling 
frequency of digital implementation, etc. 

If after a finite time, x p v 0,d d d= = =  i.e., in the 

presence of parametric uncertainties and dynamic 
uncertainties only, then asymptotic output tracking (or 
zero final tracking error) is also achieved. 
 
 
RESULTS AND DISCUSSION  
 

The pressure observer based adaptive robust 
controller (POARC) is implemented on the parallel 
manipulator driven by pneumatic muscles without 
pressure sensors. Experimental results are illustrated 
as follows. 

The controller is first tested for a smooth step 
response with initialized and generated trajectory 
shown in Fig.2. The estimates of lumped disturbances 
and pressures are shown in Fig.3. The steady-state 
errors are exF=0.03852° and eyF=0.03317° and the 
maximal absolute values of the tracking errors are 
exM=0.93118° and eyM=0.73650°. Despite the fact that 
there exist rather severe uncertainties in task-space 
and muscle-space due to model simplification and 
nonlinearties associated with the pneumatic muscle 
system, the satisfactory transient performance and 
excellent steady-state errors could be achieved due 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to the lumped disturbances and pressures being esti-
mated and the unknown uncertainties being attenu-
ated.  

For tracking a sinusoidal posture trajectory (am-
plitude θx=2°, θy=5° and period 15 s), response com-
parison between the POARC without pressure sensors 
and the adaptive robust controller (ARC) with pres-
sure sensors (Zhu et al., 2006) are shown in Fig.4. The 
control inputs of POARC are shown in Fig.5, and the 
estimated pressures and measured pressures are shown 
in Fig.6. As can be seen from Fig.4, the average 
tracking errors of POARC are L2[ex]=0.07146° and 
L2[ey]=0.15243°, and the maximal absolute values of 
the tracking errors are exM=0.20250° and eyM= 
0.44423°. It is obvious that the maximal absolute 
values of the tracking errors of POARC are a little 
larger than those of ARC. In Figs.5 and 6, the control 
inputs and the estimates of pressures are bounded all 
the time and the movement is smooth without control 
chattering since the discontinuous projection based 
adaptive robust controller is adopted. Though there are 
fairly large errors between estimated pressures and 
measured pressures, the tracking errors could be al-
ways small due to large parametric uncertainties and 
large dynamic uncertainties being compensated 
through using POARC. 

Fig.7 shows the error responses of the contractive 
lengths of pneumatic muscles both with POARC and 
with sliding mode controller (SMC) (Tao et al., 2005) 

under the condition of tracking the same trajectory 
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as above. It must be noted that neither of the two 
controllers uses pressure sensors. Obviously, the er-
rors of the contractive lengths with SMC in Fig.7 have 
severe vibration and the parallel manipulator is suf-
fering from vibration all the time since SMC utilizes 
the tracking errors to design the controller regardless 
of system model and pressure estimations. Conse-
quently, the fast switching valves switch continuously, 
which will result in noises of the parallel manipulator 
and reduce useful life of the fast switching valves. In 
contrast, POARC makes full use of the available 
structural information of the unmeasured state dy-
namics and the prior knowledge about the parameter 
bounds to design the controller. As a result, small 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tracking errors with smooth movement and little 
control chattering are achieved. 

For testing the robustness of POARC, the posi-
tion transducers are given a sudden dither at t=12 s, 
which can be regarded as a sudden large output dis-
turbance to the system. As can be seen from Fig.8, the 
system experiences large tracking errors due to the 
wrong feedback information of position transducers 
when the dither is introduced. But after the dither 
disappeared, the system comes back to the stable 
posture quickly with no fluctuation. This demon- 
strates the robustness of the proposed control algo-
rithm to disturbances. 
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CONCLUSION 
 

A nonlinear pressure observer based adaptive 
robust controller is developed for trajectory tracking 
control of a parallel manipulator driven by pneumatic 
muscles without pressure sensors. The nonlinear 
pressure observer is constructed to recover the un-
known states, i.e., pressures on the basis of a SISO 
decoupling model which is simplified from the actual 
MIMO coupling model. A robust filter structure is 
utilized to provide the practical pressure estimation. 
By integrating the adaptive robust control with the 
pressure observer, the parametric uncertainties, 
nonlinear uncertainties coming from model simplifi- 
cation and dynamics uncertainties coming from 
pressure estimation errors, are effectively compen-
sated and attenuated. 

The pressure observer based adaptive robust 
controller (POARC) is proved to be effective by ex-
perimental results. The steady-state errors are less 
than 0.04° under a smooth step response and the av-
erage tracking errors less than 0.16° under a sinu-
soidal trajectory. Compared with SMC, the proposed 
POARC performs much better with smooth move-
ment and without control chattering. At the same time, 
it must be noted that the tracking errors remain small 
and are not influenced by large estimation errors of 
the observer. 
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