
Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 937

 
 
 
 

Monitoring correlative financial data streams  
by local pattern similarity* 

 
Tao JIANG†1, Yu-cai FENG†1, Bin ZHANG2, Zhong-sheng CAO1, Ge FU1, Jie SHI1 

(1College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China) 
(2Department of Computer Science, Hengyang Normal University, Hengyang 421008, China) 

†E-mail: jiangtao_albert@yahoo.cn; fyc@dameng.com 
Received June 12, 2008;  Revision accepted Nov. 25, 2008;  Crosschecked May 8, 2009 

 

Abstract:    Developing tools for monitoring the correlations among thousands of financial data streams in an online fashion can 
be interesting and useful work. We aimed to find highly correlative financial data streams in local patterns. A novel distance metric 
function slope duration distance (SDD) is proposed, which is compatible with the characteristics of actual financial data streams. 
Moreover, a model monitoring correlations among local patterns (MCALP) is presented, which dramatically decreases the 
computational cost using an algorithm quickly online segmenting and pruning (QONSP) with O(1) time cost at each time tick t, 
and our proposed new grid structure. Experimental results showed that MCALP provides an improvement of several orders of 
magnitude in performance relative to traditional naive linear scan techniques and maintains high precision. Furthermore, the model 
is incremental, parallelizable, and has a quick response time. 
 
Key words:  Data mining, Model, Data streams, Correlation, Local pattern, Pattern similarity 
doi:10.1631/jzus.A0820445                     Document code:  A                    CLC number:  TP391 
 
 
INTRODUCTION 

 
In many domains, including financial markets 

and sensor networks, applications consist of data 
streams. It is very important to monitor correlative 
data streams for special applications but it is not easy 
to process such data in an environment of high speed 
data streams. This is because data stream time series 
have their own special characteristics compared with 
traditional archived data. First, in stream time series, 
data is frequently updated. Thus, previous methods 
applied to traditional archived data may not work in 
this scenario. Second, owing to the frequent updates, 
it is very difficult to store all the data in memory or on 
disk, therefore, efficient and one-pass algorithms are 
very important for achieving a real time response.  

In this study, we deal with an important scenario 

in stream applications where incoming data are from a 
set of continuous financial stream time series. At each 
timestamp t, a new data item is appended to the cor-
responding financial stream time series. We hope to 
quickly find all the similar stream pairs up to the 
current time, that have local pattern distances which 
do not exceed a user-specified threshold ε, i.e., locally 
correlated stream pairs. Fig.1 illustrates the problem. 
It can be seen from Fig.1 that A and B are locally 
correlated from t(187) to t(200). 

Previous studies have approached the problem as 
sub-sequence similarity matching with distance 
function Lp-norms (Agrawal et al., 1993) or dynamic 
time warping (DTW) (Berndt and Clifford, 1996). 
However, Lp-norms requires two sub-sequences to 
keep the same length, and DTW has a lower effi-
ciency by a direct implementation. In addition, many 
methods in these studies focused on detecting a single 
static pattern over multiple stream time series data, or 
checking which pattern (from multiple static patterns) 
was close to a single stream time series up to the  

Journal of Zhejiang University SCIENCE A 
ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 
www.zju.edu.cn/jzus; www.springerlink.com 
E-mail: jzus@zju.edu.cn 

 
* Project (Nos. 2006AA01Z430 and 2007AA01Z309) supported by 
the National Hi-Tech Research and Development Program (863) of 
China  



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

938 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
current timestamp. This differs from our goal in that 
we hope to automatically find all correlative data 
stream pairs in real time, but not report some corre-
lations with some given patterns or sub-sequences. So, 
these technologies are not applicable in our scenario. 

Some existing models, for example StatStream 
(Zhu and Shasha, 2002) and BRAID (Sakurai et al., 
2005), can be used to monitor correlations among 
financial data streams. StatStream was the first uni-
fied scheme to monitor correlations among thousands 
of data streams in real time. BRAID is also a uniform 
model which focuses on detecting lag correlations 
between data streams. Zhu and Shasha (2002) used a 
sliding window with length w which starts at the 
timestamp t−w+1 and ends at the current timepoint t 
as temporal span, and discrete fourier transform (DFT) 
(Agrawal et al., 1993) to reduce dimensions. They 
also proved the theoretical relationship between the 
correlation coefficient and the normalized Euclidean 
distance. The main ideas of Sakurai et al.(2005) in-
cluded incremental computing based on algebra and 
multi-resolution computing that made their approach 
dramatically faster than the traditional methods. 

However, using these two models to monitor the 
correlation of financial data streams will not be ef-
fective because they give little consideration to fi-
nancial domain features. Firstly, it is difficult to de-
cide the appropriate size of the sliding window. 
Formally, given two sliding window sub-sequences S 
and R with a length w (w≥3), if S[1:k] and R[1:k] are 
very similar and S[k+1:w] and R[k+1:w] are the least 
similar, 1<k≤w−1 (k∈ù), then how should we decide 
the size of w? Obviously, we should set up the size of 

the sliding window k. Secondly, using the sliding 
window will increase the storage space, especially for 
the lag correlation (Sakurai et al., 2005). 

In our study, we make use of the algorithm 
quickly online segmenting and pruning (QONSP) to 
produce local patterns of financial data streams. We 
use the slope and duration features to measure each 
local pattern, and local pattern similarity is based on 
our defined novel metric function slope duration dis-
tance (SDD). We also use a grid structure modified 
from Zhu and Shasha (2002), to quickly capture the 
correlations of large amounts of financial data 
streams. Our method can efficiently monitor all cor-
relative local pattern pairs with small errors. 

 
 

RELATED WORK 
 
There has been an increasing interest in data 

streams in recent years. Many methods for stream 
pattern discovery have been proposed. Wu et al.(2004) 
defined a new distance metric function to search for 
similar sub-sequences and the piecewise linear ap-
proximation (PLA) (Chen Q., et al., 2007) technique 
was used to segment financial stream time series. 
Lian et al. (2007) used a multi-resolution approach to 
match a data stream with a given query pattern, using 
a sliding window. To monitor a given stream pattern, 
an improved DTW algorithm was developed (Sakurai 
et al., 2007). The spatial assembling distance (SpADe) 
model (Chen Y.G., et al., 2007) can be used to find the 
patterns based on the shape of whole time series or 
sub-sequences. However, these studies were focused 
mainly on pattern similarity matching based on a 
given pattern (or some fixed patterns), using Lp-norms 
or DTW to measure the similarity between patterns. 

It is more difficult to monitor correlative stream 
pairs than to monitor special patterns over large 
amounts of data streams because correlative stream 
pairs need n(n−1)/2 comparisons when there are n 
existing data streams, using the linear scan compared 
method. The system StatStream (Zhu and Shasha, 
2002) was the first unified model to monitor correla-
tions among any pair of data streams in real time 
within a sliding window, in which DFT was used as a 
summary of the data. Guha et al.(2003) described an 
improved method for finding correlations by first 
carrying out dimensionality reduction with random 
projections and then periodically computing the 

Fig.1  Eight real stock price curves to illustrate locally 
correlated financial data streams 

0 50 100 150 200
0

20

40

60

80

Time (d)

D
ai

ly
 c

lo
se

 p
ric

e A

B

t(187)
t(200)



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

939

singular value decomposition (SVD) (Korn et al., 
1997). BRAID (Sakurai et al., 2005) is implemented 
to monitor the lag correlation over any pair of data 
streams. The proposed streaming pattern discovery in 
multiple time series (SPIRIT) method (Papadimitriou 
et al., 2005) used principle component analysis (PCA) 
technology and addressed the problem of capturing 
correlations and finding hidden variables corre-
sponding to trends in collections of data streams. 
Subsequently, they introduced a method to find op-
timal local patterns that concisely described the main 
trend in a time series (Papadimitriou and Yu, 2006), 
and an approach to track the local correlative time 
series streams (Papadimitriou et al., 2006). Recently, 
a Boolean representation based on the data-adaptive 
method (Zhang et al., 2007) was proposed for corre-
lation analysis among a large number of time series 
streams. 

However, these approaches gave little consid-
eration to the characteristics of financial data streams 
except that of Wu et al.(2004). Euclidean distance or 
DTW is used for measuring the distance between two 
time sequences or patterns in most of these ap-
proaches. But it is well-known that Euclidean meas-
ure is very sensitive to distortion and noise (Keogh, 
2002). Although DTW can handle local time shifting 
and scaling, it is still sensitive to amplitude shifting. 
Our method will overcome these problems. To our 
knowledge, little work has been done using a cor-
relative approach for monitoring financial data 
streams. Although Zhu and Shasha (2002) and Sa-
kurai et al.(2005) proposed a unified model to moni-
tor correlations between data streams, their models do 
not suit our scenario as described in the Section “IN-
TRODUCTION”. 

Our work differs from previous studies in some 
respects. Firstly, we propose a novel distance metric 
function which adequately considers the features of 
financial domains. Secondly, we present a novel 
model monitoring correlations among local patterns 
(MCALP) which uses a different partitioning and 
searching policy in its grid structure, and can effec-
tively and efficiently monitor the correlations of fi-
nancial stream time series. 

 
 

SDD 
 
According to Wu et al.(2004), financial data 

streams can be represented by an up-down-up-down 
repetitive pattern, that is a zigzag shape. So, we can 
divide a financial data stream into a sequence of linear 
segments. Generally, the data points of their two ends 
are called End Points. Thus, a local pattern is the 
current linear segment, which starts from the last End 
Point and ends at the current data item. 
Definition 1 (End Point)    Given a sliding window W 
(={s1, s2, …, sw}) which consists of w data points from 
stream time series S, m≤w≤n, and a threshold μ (μ∈ù 
and μ<w), if si∈W (1<i≤w) satisfies the following 
conditions: (1) si is the maximum of W; (2) si is also 
the maximum of set {sw+1, sw+2, …, sw+μ}; (3) si is the 
last one satisfying the above two conditions, we call 
Ei=(si, ti) the upper end point where ti is the corre-
sponding timestamp of si. Similarly, we can define the 
lower end point by a symmetric method. An upper or 
lower end point is called an End Point. 

In the above definition, the parameter μ denotes 
a delay time which is used to decide the local extreme 
point, i.e., End Point, and will affect the length of 
segments during the procedure of segmenting. 

A financial market is inconstant owing to the 
influence of all kinds of factors. However, for a 
sub-sequence from financial data streams, there are 
only three possible local trends: an ascend trend, a 
descend trend or no trend. If the trend continues for a 
long time, we call the sub-sequence a local pattern. A 
local pattern lp from financial time series S can be 
described as lp=(trend, slope, duration), which in-
cludes the local trend of lp in S, the slope of the linear 
curve to approximate the original sub-sequence (for 
example, we can use PLA to approximate the 
sub-sequence) and the time duration of lp, respectively. 
Definition 2 (Local pattern)    For a sub-sequence 
subS from a financial stream time series S, if it satis-
fies the following conditions: (1) starting from the last 
identified End Point Elast and ending at the current 
data point (scur, tcur); (2) satisfying the inequality 

2
PLA 1

( ) / ,n
ii

Err subS s δ
=

≤∑  where ErrPLA is the ap-

proximation error when using PLA technology to 
approximate subS and δ  is a user-defined threshold, 
for example, δ=0.02; (3) tcur−Elast.t>SLenmin, where 
SLenmin is the minimum length of subS, we call subS a 
local pattern. 

In Definition 2, if the current data point (scur, tcur) 
is an End Point, the local pattern is called a whole 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

940 

local pattern; otherwise, it is called a semi-local pat-
tern. Following the above definition, we can now 
define two local pattern distances, the slope duration 
distance (Definition 3) and the local pattern similarity 
(Definition 4). 
Definition 3 (Slope duration distance)    Given any 
two local pattern objects, lp1 and lp2, whose local 
trends are the same, SDD(lp1, lp2)=λ1|k1−k2|/(k1+k2)+ 
λ2|t1−t2|/(t1+t2), where ki denotes the absolute value of 
the slope of lpi when using PLA to approximate lpi, 
and ti (ti∈ù) denotes the number of data items of lpi, 
that is the time duration of lpi, λ1 and λ2 (0<λ1, λ2<1 
and λ1+λ2=1) are user-defined parameters. fi (={ki, ti}) 
are called feature points of lpi. We also define 
SDD(fi, fj)=SDD(lpi, lpj). 
Definition 4 (Local pattern similarity)    For two local 
pattern objects, lp1 and lp2, if their distance satisfies 
the inequality SDD(lp1, lp2)≤ε, lp1 is similar to lp2, ε is 
a user-defined threshold, i.e., ε=0.1. 

Now, we will explain Definitions 1~4 using 
Examples 1 and 2, as follows: 
Example 1    Consider stream R in Fig.2. According 
to the definition of an End Point, points E11 (or r1), E12 
(or r7), and E13 (or r16) are End Points, but points r4 
and r6 are not End Points because r4 is not the 
maximum of {r1, r2, r3, r4} and r6 does not satisfy the 
third condition of Definition 1. Here, note that the 
starting point and last point must be End Points, i.e., 
r1 and r21. Because point r7 is an End Point, the local 
pattern lp17={r1, r2, …, r7} is a whole local pattern. 
However, the local pattern lp16={r1, r2, …, r6} is a 
semi-local pattern. 
Example 2    Consider two local patterns, that is, 17

Rlp  

from stream R and 17
Slp  from stream S in Fig.2 with 

λ1=0.65, λ2=0.35 and ε=0.1. According to the defini-
tion of SDD, 17 17( ,  ) 0.65 1.705 1.6 /R SSDD lp lp = −  

(1.705+1.6)+0.35|7−7|/(7+7)=0.0207. 17
Rf (={1.705, 

7}) and 17
Sf (={1.6, 7}) are feature points of 17

Rlp  and 

17
Slp . Obviously, 17

Rlp  is similar to 17
Slp  on the condi-

tion of SDD( 17
Rlp , 17

Slp )≤0.1. 
Next we will show that our distance function 

SDD is a metric function by Theorem 1 and we can 
use metric distance indexing methods for a faster 
search. First, we introduce the following lemmas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lemma 1    If a, b, c≥0, then the following inequality 
is true: 

 
| | | | | | .a c a b b c
a c a b b c
− − −

≤ +
+ + +

                   (1) 

 
Proof    We prove Lemma 1 by induction. For three 
non-negative numbers a, b and c, there are six possi-
ble arrangements, that is, a≥b≥c, a≥c≥b, b≥a≥c, 
b≥c≥a, c≥a≥b and c≥b≥a. Firstly, we consider the 
case a≥b≥c. 

Assume inequality Eq.(1) is correct, then 
a≥b≥c⇒(a−c)/(a+c)≤(a−b)/(a+b)+(b−c)/(b+c). If a 
=0 or b=0 or c=0, obviously the above inequality is 
true. So, we need only to consider the situation of 
a>b>c>0. Thus, we have (a−c)/(a+c)≤{(a−b)(b+c) 
+(a+b)(b−c)}/{(a+b)(b+c)}, that is (a−c)/(a+c)≤ 
2(ab−bc)/{(a+b)(b+c)}. Multiplying (a+c)(a+b)(b+c) 
on both sides of the above inequality, we have 
(a−c)(a+b)(b+c)≤2(a+c)(ab−bc), that is, ac+b2≤ 
ab+bc⇒b(b−c)≤a(b−c). Because b−c>0, we have 

b≤a. So Lemma 1 is correct in the first case. 
The other cases can be proved using a procedure 

similar to that used in the first case. Here, we omit 
them due to space limitations. So, Lemma 1 is correct. 
Lemma 2    If a, b, X1, X2, Y1, Y2≥0, X1≤X2 and Y1≤Y2, 
then a·X1+b·Y1≤a·X2+b·Y2. 
Theorem 1    Given two local pattern objects lp1 and 
lp2, their distance SDD(lp1, lp2) is metric.  
Proof    To prove SDD(lp1, lp2) is metric, we need to 
prove that it is symmetric and reflexive, and that it 

211272
30

35

40

45

50

55

60

Time tick

St
re

am
 d

at
a 

va
lu

e

E12

E13

E22

Stream R
r6

r4

r7

r1
E11

Stream S

E23
E21

11=1.705 +43.32y t

12 = 1.7 +55.72y t−

22 1.37 45.66y t= − +
21 1.6 30.94y t= +

17

Fig.2  An example to illustrate Definitions 1~4 with 
SLenmin=5, μ=5 and δ=0.02 

r21



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

941

satisfies the triangle inequality. It is obvious that 
SDD(lp1, lp2)=SDD(lp2, lp1)≥0 and SDD(lp1, lp2)=0, 
so SDD(lp1, lp2) is symmetric and reflexive. Next, we 
will prove that SDD(lp1, lp2) satisfies the triangle 
inequality, i.e., 

 
SDD(lp1, lp3)≤SDD(lp1, lp2)+SDD(lp2, lp3).    (2) 

 
By the definition of the distance function SDD, it 

is obvious that the distances of two local patterns are 
the summation of a slope component and a duration 
component. If we prove the triangle equality for both 
components, it will certainly be true for SDD by 
Lemma 2. Through Lemma 1, we have the following 
two equalities, that is, |k1−k3|/(k1+k3)≤|k1−k2|/(k1+k2) 
+|k2−k3|/(k2+k3) and |t1−t3|/(t1+t3)≤|t1−t2|/(t1+t2) 
+|t2−t3|/(t2+t3). In other words, inequality Eq.(2) is 
correct in each component of Theorem 1. So, Theo-
rem 1 is true. 

 
 

OUR PROPOSED MCALP MODEL 
 

Segmenting and pruning of stream time series 
Compared with DFT (Zhu and Shasha, 2002), 

PLA provides greater fidelity. So, we use PLA to 
approximate each local pattern (lp) of financial data 
streams. Formally, for a given local pattern, lp=(s1, s2, 
…, sn) of length n, PLA can use one line segment, 
yt=a·t+b (t∈[1, n]), to approximate lp, where a and b 
are two coefficients in a linear function such that the 
approximation error, ErrPLA(lp), of lp is minimized. 
ErrPLA(lp) is defined in the following Eq.(3) by the 
squared Euclidean distance between the approxi-
mated and actual time series segments: 

 
2

PLA
1

( ( )) .
n

t
t

Err s a t b
=

= − ⋅ +∑                 (3) 

 
In particular, a and b must satisfy two conditions: 

(1) PLA ( ) 0,Err lp
a

∂
=

∂
 and (2) PLA ( ) 0.Err lp

b
∂

=
∂

 

Through solving the two equations, we can obtain the 
coefficients of a and b using the following equations: 

 

1

( 1) / 212 ,
( 1)( 1)

n

t
t

t na s
n n n=

− +
=

+ −∑                         (4) 

1

(2 1) / 36 .
( 1)

n

t
t

n tb s
n n=

+ −
=

−∑                     (5) 

 
When segmenting stream time series, ErrPLA will 

also be computed. If ErrPLA(lp)≤σ is satisfied, we 
approximate local pattern lp with PLA, where σ is a 
user-defined threshold, i.e., σ=10; otherwise, we 
throw away the local pattern. In fact, the above con-
dition is not precise because different streams may 
have a bigger difference value on their data points. So, 
we define the relative approximation error as RErrPLA, 
that is, the improved condition: 

 
2

PLA PLA
1

( ) ,
n

i
i

RErr lp Err s δ
=

= ≤∑              (6) 

 
where δ is a user-defined threshold, i.e., δ=0.02. 

To decrease the impact of shorter-time random 
oscillation, we use moving average technology, 
which is widely used in financial markets, to smooth 
financial data streams. Formally, given a data stream 
S, the value of the current timestamp i is S(i), and the 

r-period moving average is 
1

)1( () ,
j i r

i
r S jMA i

r = − +
= ∑  

where S(j) is the previous value of timestamp i 
(i−r+1≥1), including the current timestamp, and r 
denotes the number of aggregations over the time 
interval of the moving average (i.e., one day, one 
week or one month) which assigns equal weight to 
every point in the averaging interval. In our scheme, 
we generally set the parameter value of r to 3 or 5. 

 
QONSP algorithm 

The QONSP algorithm uses the sliding window 
method and a data-driven mechanism to segment 
multiple data streams in real time. It receives all 
newly arrived data dvS from stream S∈SS, where SS is 
the set of all data streams. Then, it indexes dvS into a 
B+-tree index, indexlp (subsection “Update of grid 
structure and index”). Next, it invokes the algorithm 
Calculating_Err to compute RErrPLA. Finally, it 
makes use of two policies to finish segmentation: (1) 
judging if the current new data dvS is the extreme 
value (maximum or minimum) of lpS; (2) using μ to 
confirm if Exmum is the local extreme value. In the 
QONSP algorithm, there exist some temporary vari-
ables. Among them, OffDS, OffSeg, and Offμ represent 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

942 

the offset of the data stream, the offset of the segment, 
and the offset of dvS relative to the extreme value, 
Exmum, respectively, and posExmum denotes the 
offset of Exmum relative to left End Point. 

The detailed algorithm is shown below as Algo-
rithm 1. In Algorithm 1, lines 7~22 divide financial 
time series into line segments, according to 
RErrPLA(lp) computed by the Calculating_Err algo-
rithm (line 7). Pruning is implemented along with the 
segmentation process. At line 8, QONSP judges if the 
current data dvS is the extreme value of the current 
segment lp. When it is true, Exmum and posExmum 
are used to store its value and its position (line 10), 
respectively. At the same time, segmentation begins 
to move to the next point (line 11). When it is false, 
QONSP adds 1 to Offμ (line 12). If Offμ passes the 
threshold μ, we output the new segment Segnew (line 
14), and move to the next segment (line 16). Line 17 
makes segmentation move to the next point. In fact, a 
new segment will also come into being when 
RErrPLA≥δ. Here, it includes two cases: (1) Exmum is 
a local extreme value of lp, which is denoted by the 
condition Offμ>0 at line 20; (2) Exmum is not a local 
extreme value of lp, indicated by Offμ==0. For the 
former, QONSP increases the offset of OffDS with 
posExmum−1 (lines 15, 20). However, for the latter, 
QONSP adds offset OffSeg−2 (remove current point) 
to OffDS at line 21. In QONSP, the new segment 
Segnew begins at the current position of OffDS and ends 
at the next position of OffDS, i.e., Segnew= 
S(OffDS[S]:OffDS[S]+posExmum−1). 

 
Algorithm 1    QONSP (SS, μ, δ, SLenmin) 
Input: SS—the set of streams, 

μ—a threshold of delay time, 
δ—the maximal relative approximation error, 
SLenmin—the shortest length of local pattern. 

Output: whole local patterns. 
1 Initialize arrays OffDS[], OffSeg[], Offμ[] with 1, 2, 0, and 

indexlp with first data from all streams Ti∈SS; 
2 while (segmentation is not finished) 
3   Receive a new data dvS from stream S∈SS; 
4   Update indexlp with dvS; 
5   if (OffSeg[S]<SLenmin) {OffSeg[S]++; 

continue;} 
6   Get local pattern lp of S from indexlp; 
7   if (Calculating_Err(lp)<δ) 
8     if (dvS is the extreme value of lp) { 
9       Offμ=1; // Offμ—the offset vs Exmum 
10 Exmum=dvS; posExmum=OffSeg; 

11 OffSeg[S]=OffSeg[S]+1; continue;} 
12 if (1≤Offμ<μ) Offμ++; 
13 if (Offμ==μ) { 
14   Offμ=0; Output new segment Segnew; 
15   OffDS[S]=OffDS[S]+posExmum−1; 
16   posExmum=OffDS[S]=2;} // to next segment 
17   OffSeg[S]=OffSeg[S]+1; // to next point 
18  else { 
19    Output new segment Segnew; 
20     if (Offμ>0) OffDS[S]= OffDS[S]+posExmum−1; 
21     if (Offμ==0) OffDS[S]=OffDS[S]+ OffSeg[S]−2; 
22         Offμ=0; posExmum=OffSeg[S]=2;} 

 
Now, we will give an example to illustrate the 

processing of segmentation as follows: 
Example 3    Consider the stream time series R in 
Fig.3. In the beginning, OffDS[R], OffSeg[R] and Offμ[R] 
are initialized with 1, 2 and 0. The first End Point is E1 
(or r1), which is used to initialize indexlp. Then, the 
data r1 is received at tick t=2 and inserted into indexlp. 
At present, lp is {r1, r2}. When line 5 of the QONSP 
algorithm is finished, OffSeg[R] increases to 5 and lp 
turns into {r1, r2, …, r5}. Because RErrPLA(lp)<0.03, 
QONSP enters line 8 and starts to judge if r5 is the 
extreme value of lp. In fact, r5=1.634 (<r1=1.636) is 
the minimum of lp. So, the algorithm now sets up Offμ, 
Exmum and posExmum with 1, r5 and 5, respectively, 
and will be ready for the next data r6 (OffSeg[R]=6). 
Because r5<r6, r5<r7, we have Offμ=1+1+1=3 by line 
12. But, when OffSeg[R]=8, r8=1.628 is less than r5, 
then Offμ, Exmum and posExmum change into 1, r8 
and 8, respectively. Repeating the process until  
OffSeg[R]=22, Offμ, Exmum and posExmum change 
into 1, r22 and 22, respectively. Obviously, some 
shorter segments, i.e., {r11, r12} and {r14, r15, r16}, are 
pruned during the process. Because r22<r23, r24, r25, 
r26, r27, and the corresponding RErrPLA(lp)<δ (i.e., 
RErrPLA({r1, r2, …, r27})<δ), then Offμ arrives at μ 
(=6). Therefore, QONSP outputs the new segment 
Segnew={r1, r2, …, r22} and will begin to process the 
next segment by lines 14~16. Now, the new End 
Point is E2 (or r22). By a similar analysis, the next End 
Points will be E3, E4 and E5, and the next segments 
are {r22, r23, …, r31}, {r31, r32, …, r36}, {r36, r37, …, 
r50}. 

In the algorithm Calculating_Err, efficiency is 
very important over high speed data streams. To de-
crease the cost of computing, we use a buffer BufMAr 
to store the last r raw data item value si (i is  



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

943

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
timestamp) and a variable lastMAr to store the last 
r-period moving average when computing the current 
r-period moving average curMAr at timestamp t. Thus, 
we can compute curMAr by the equation curMAr= 
(lastMAr−BufMAr(t−r+1)+si)/r. When computing the 
coefficients a, b and ErrPLA (lines 2~15 in Algorithm 
2), we make use of an accumulative method which 
only needs three variables, PreSumts, PreSums and 
PreSumss, to store the last corresponding aggregation 
values, and we can obtain the current aggregation 
values only by a addition operation. We transform a, 
b, ErrPLA and RErrPLA into incremental computing 
forms by rewriting Eqs.(4), (5), (3), and (6), respec-
tively. Then, they can be quickly computed by the 
following Eqs.(7)~(10): 

 
12( ( 1) / 2) , (7)

( 1)( 1)
6( (2 1) / 3 ) , (8)

( 1)

ts s

s ts

PreSum PreSum ta
t t t

PreSum t PreSumb
t t

− ⋅ +
=

+ −
⋅ + −

=
−

 

2
PLA

2

( 1)(2 1) / 6

( 1) 2 2 ,
ss

ts s

Err PreSum a t t t

abt t b t aPreSum bPreSum

= + + +

+ + + − −
 

(9)  

PLA PLA / , (10)ssRErr Err PreSum=  

 
where 1≤t≤n. Of course, there is still a need of a circle 
to implement when the length of pattern segment is 
equal to SLenmin (lines 4~8). In fact, Calculating_Err 
is only invoked at that time. The detailed algorithm is 
as Algorithm 2. 

Algorithm 2    Calculating_Err (PreSumts, PreSums, 
PreSumss, st, t) 
Input: PreSumts—the last sum of previous OffSeg data st·t, 
PreSums—the last sum of previous OffSeg data st, 
PreSumss—the last sum of previous OffSeg data st·st, 
Segcur—current data of current segment, t—length of Segcur. 
Output: relative approximation error RErrPLA. 
1  Compute moving average Ar(S) for current data st; 
2  if (OffSeg==SLenmin)  
3     PreSumts=PreSums=PreSumss=0; 
4  for i=1 to OffSeg do 
5     PreSumts=PreSumts+i·si; 
6     PreSums=PreSums+si; 
7     PreSumss=PreSumss+ si·si; 
8   end for 
9   else  

10    PreSumts=PreSumts+t·st; 
11    PreSums=PreSums+st; 
12    PreSumss=PreSumss+st·st; 
13  end if 
14 Compute coefficients a and b by Eqs.(7) and (8); 
15 Compute ErrPLA and RErrPLA by Eqs.(9) and (10); 
 

Specifically, the efficiency of QONSP can be 
described by Theorem 2: 
Theorem 2    Given m data streams with length n, the 
QONSP algorithm is a one-pass algorithm and can 
finish segmentation in linear time O(mn). 
Proof    Owing to the adoption of a sliding window, 
QONSP is clearly a one-pass algorithm. Firstly, we 
will prove that the Calculating_Err algorithm only 
needs constant time O(1) to compute RErrPLA at each 
time tick t, irrespective of the length of segment 
LenSeg. By the previous analysis, we know that Cal-
culating_Err algorithm adopts an accumulative 
method to obtain the corresponding aggregation val-
ues, only by an addition operation, and then can 
compute RErrPLA using Eqs.(7)~(10). So, the above 
proposition is correct. Meanwhile, we also know that 
the total data points are m×n. Thus, the total time of 
segmentation will be m×n×O(1)=O(mn) for m 
streams with length n. 

 
Monitoring correlations among data streams 

Monitoring correlations among thousands of 
data streams and then efficiently reporting the most 
correlative data stream pairs is not a trivial task since 
these patterns usually reside in large amounts of high 
dimensional and noisy data. The data distribution and 
underlying clustering structure may also change 
whereby a previously uncovered pattern may become 

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Time tick

V
al

ue
 o

f s
tre

am
 d

at
e 

po
in

t

Stream R

E1 (r1)

E4 (r36)

E3 (r31)

E2 (r22)

E5 (r50)

1 6 11 16 21 26 31 36 41 46 51 56

Fig.3  An example to illustrate the QONSP algorithm 
with parameters SLenmin=5, δ=0.03 and μ=6 
 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

944 

obsolete as time goes by. It is no different from the 
sub-sequence similarity matching technology in 
which the query patterns are known beforehand.  

So finding an efficient approach to solve this 
problem is the key to success. One straightforward 
way is by indexing each local pattern into an R*-tree. 
However, the method is inefficient, in terms of both 
space and search speed. This is because almost every 
local pattern will correspond to a point in the (k, t) 
feature space. Moreover, the search performance will 
also suffer because the R*-tree will become tall and 
slow. In addition, our system needs to update fre-
quently. So, it will not be competent for our task, 
owing to the index cost being too high. Due to the 
characteristics of high speed and frequent updating, 
the clustering method also cannot complete the task 
efficiently.  

1. Grid structure partition 
Through the analysis of the previous section, we 

know that the indexing and clustering methods are not 
well suited to monitoring the correlations among 
large amounts of data streams. However, a grid 
structure (Bentley et al., 1980) provides a good 
scheme to report the most correlative local patterns. 
The improved performance of the scheme depends on 
the following factors: (a) the data distribution of the 
local pattern points; (b) how the grid structure is par-
titioned; (c) how the grid structure is updated; (d) 
having a perfect searching algorithm. 

Firstly, let us consider the point distribution of 
local patterns. In fact, we can obtain the statistical 
information from historical data. We need only to get 
the maximum for the duration and slope of each local 
pattern, respectively, because the minimal duration is 
certainly 1, and the minimal slope is 0 when consid-
ering the local pattern trend. Generally, we use the 
previously defined threshold SLenmin for the minimal 
duration, because it is not important to report cor-
relative local patterns that are very short. 

After finding the distribution of points, we can 
divide the grid structure into grid units. The partitions 
are obtained by dividing the domain of each local 
pattern attribute into intervals. The critical problem is 
how to decide the length of intervals and the number 
of intervals. One simple method is to use equal in-
tervals and then to keep a suitable number of intervals 
in the direction of each axis, that is, Numk and Numt, 
which play an important role in the number of grid 

units Numg (=Numk×Numt). A smaller Numg will re-
duce the number of empty units but result in poor 
searching performance; a larger Numg will increase 
the space. So we should keep a balance between them. 
A good approach is to keep a few empty units. In our 
scheme, we use the straightforward method to parti-
tion the grid structure with the maximal t=99, the 
maximal k=2.9 (that is tan 71°). The intervals of slope 
and duration are 3 and 0.3, respectively. 

2. Grid searching algorithm (GSA) 
In our model, the definition of correlation is 

different from that of (Zhu and Shasha, 2002) who 
used the standard correlation coefficient equation, 
namely the Pearson correlation equation. We consider 
not only the similarity, but also the number of similar 
local patterns. In other words, we consider only some 
special types of correlations, for example, the mini-
mal number correlation (denoted as minCorr) which 
includes the least similar local patterns and the 
maximal number correlation (denoted as maxCorr) 
which contains the most similar local patterns. This 
idea is derived from the following observations: 
Observation 1    In financial markets, many factors 
will affect the trend of a financial data stream. It is not 
generally a coincidental phenomenon, if two local 
patterns lp1 and lp2 are highly correlative. It may be 
caused by an underlying event, for example, the na-
tional economic policy or an incident within corpo-
rations. If the causal factor is the economic policy, 
generally most financial data streams will be affected 
and they will maintain the same movement trend. So 
many local patterns will remain correlative. However, 
if a specific incident occurs within corporations, there 
will be few correlative local patterns. 
Observation 2    Finding the maxCorr is less impor-
tant than finding the minCorr because it is easier to 
obtain information on national economic policy than 
information within corporations.  
Observation 3    A local pattern point lpPoint can be 
treated as a random variable. When mapping all 
lpPoints from all data streams to a grid structure, there 
are some empty grid units, a few grid units with a few 
lpPoints and a few grid units containing many 
lpPoints. 

Based on the above three observations, our 
model will focus on finding minCorr. Of course, other 
situations can be monitored according to need, for 
example, finding maxCorr or all correlative local 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

945

patterns. We denote the GSA as Algorithm 3 which 
uses a data-driven mechanism reflected in lines 2~9. 
GSA can selectively monitor special types of corre-
lations, for example minCorr, by line 4, and thereby 
decrease the computation cost. In line 5, GSA invokes 
the subroutine Correlative_Search (as Algorithm 4). 

 
Algorithm 3    GSA (ε, p) 
Input: ε—the threshold of local pattern similarity, 
p—the number of searching grid units. 
Output: the correlative local pattern pairs. 
1  Construct the grid structure according to the data distribution 

of local pattern points and the corresponding partition 
method; 

2  While (a new data item (st, t) arrives)  
3   Insert the corresponding semi-local pattern point grid 

structure by the hashed method; 
4     Sort the number of local pattern points contained in each 

grid unit in ascending order; 
5   Choose the first p grid units and invoke Correlative_ 

Search to report the correlative local patterns; 
6      If (the data item (st, t) is an End Point)  
7        Clear all local pattern points of the End Point from the 

corresponding grid units; 
8      End if 
9   End While 

 
The detailed algorithm of Correlative_Search is 

as follows: 
 

Algorithm 4    Correlative_Search (pArray, ε) 
Input: pArray—an array storing the number of feature points 

of the first p grid units, 
ε—local pattern similarity threshold. 
Output: the correlative local pattern pairs. 
1  for (i=1 to p)  
2   for (j=1 to pArray[i]) 
3       Obtain the searching rectangle Recj of current local 

pattern lpj by Theorem 3; 
4            Get all adjacent cells of lpj, adj,

jCell  by Recj; 

5            for (each local pattern lpk∈ adj
jCell )  

6          Skip having compared pairs or the pairs of j=k or 
self-correlative pairs; 

7               if (SDD(lpj, lpk)≤ε) 
8                   Report the local pattern pair (lpj, lpk); 
9               end if  
10          end for  
11     end for  
12  end for  
 

Correlative_Search is quite straightforward and 
its theoretical foundation is in the following theorem: 

Theorem 3    Given the distance threshold ε of SDD 
function and a feature point A=(ka, ta), if the grid 
structure is partitioned by the equal interval of the 
features of k and t, for any point P of the rectangle 
which is the region formed by extending A leftward 
and downward 2ε/(1+ε), rightward and upward 
2ε/(1−ε), respectively, SDD(P, A)≤ε is true. 
Proof    Firstly, consider the case kp≤ka. By the con-
dition, we have ka−kp≤ka⋅2ε/(1+ε)⇒ka−kp≤(ka+kp)ε, 

so we have |ka−kp|/(ka+kp)≤ε. Next considering the 
case: ka≤kp, by the condition, we have 
kp−ka≤ka⋅2ε/(1−ε)⇒kp−ka≤(ka+kp)ε, so we have 

|ka−kp|/(ka+kp)≤ε. Synthesize the case kp≤ka and kp≥ka 

⇒|ka−kp|/(ka+kp)≤ε. Multiplying λ1 at its two sides, 
we have the following inequality: 

 

1 1| | /( ) .a p a pk k k kλ λ ε− + ≤                 (11) 

 
By a similar procedure, we have |ta−tp|/(ta+tp)≤ε. 

Multiplying λ2 at its two sides, we have the following 
inequality: 

 

2 2| | /( ) .a p a pt t t tλ λ ε− + ≤                   (12) 

 
From Eqs.(11) and (12), we can obtain 

λ1|ka−kp|/(ka+kp)+λ2|ta−tp|/(ta+tp)≤λ1ε+λ2ε. Due to 
λ1+λ2=1, we have λ1|ka−kp|/(ka+kp)+λ2|ta−tp|/(ta+tp)≤ε, 
i.e., SDD(P, A)≤ε. 

A visual representation of the searching region 
Rec of Theorem 3 is shown in Fig.4. From Fig.4, we 
can observe that the searching range of the feature 
point A, which is located in grid unit cell (4, 4), is 
[ka−ka⋅2ε/(1+ε), ka+ka⋅2ε/(1−ε)] and [ta−ta⋅2ε/(1+ε), 
ta+ta⋅2ε/(1−ε)]. In Reca, feature points B, C, D, E, F 
and G are the candidate items. 

The following example illustrates the process of 
Algorithm 3 and Algorithm 4: 
Example 4    Consider the three real streams R, S and 
T in Fig.5 with λ1=0.65, λ2=0.35, and ε=0.1, where fxn 
denotes the feature point formed by the first n data 
points of stream X, i.e., fr7. After the time tick t=5, 
three feature points fr5={1.76, 5}, fs5={1.0, 5}, and 
ft5={2.64, 5} will be inserted into grid units cell (1, 3), 
cell (1, 1) and cell (1, 6) respectively, where cell (m, n) 
corresponds to the grid unit of the mth interval at 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

946 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t-axis and the nth interval at k-axis. Then, GSA in-
vokes Correlative_Search to report correlative local 
pattern pairs. According to Theorem 3, the search 
range of fr5 at k-axis should be [ 5

Rk − 5
Rk ⋅2ε/(1+ε), 

5
Rk + 5

Rk ⋅2ε/(1−ε)], that is, [1.76−1.76×2×0.1/(1+0.1), 
1.76+1.76×2×0.1/(1−0.1)]=[1.44, 2.15]. Clearly, fs5 
and ft5 are not included in the range, so no correlative 
local pattern pairs are reported. At t=6, fr6={1.75, 6}, 
fs6={1.27, 6}, and ft6={2.74, 6} are inserted into cell 
(2, 2), cell (2, 3), and cell (2, 6), respectively. But, by 
a similar computation, GSA does not find correlative 
pairs. However, when t=7, fr7={1.71, 7}, fs7={1.6, 7}, 
and ft7={2.49, 7}. Now, the ranges of fr7 at t- and 
k-axis are [1.71−1.71×2×0.1/(1+0.1), 1.71+ 
1.71×2×0.1/(1−0.1)]=[1.39, 2.09], [7−7×2×0.1/(1+ 
0.1), 7+7×2×0.1/(1−0.1)]=[5.72, 8.56], respectively. 

We can see clearly that fr6 and fs7 are contained in the 
above range. However, because fr6 and fr7 are a 
self-correlative pair, we consider only local pattern 
pair, fr7 and fs7. In fact, SDD(fr7, fs7)=0.65×|1.71− 
1.6|/(1.71+1.6)+0.35×|7−7|/(7+7)=0.0216≤ε, so GSA 
outputs {r1, r2, …, r7} and {s1, s2, …, s7} as correla-
tive pairs. 

3. Update of grid structure and index 
The system includes a grid index indexgrid and a 

local pattern index indexlp. The indexgrid is used to 
maintain the grid structure. The indexlp is a B+-tree 
index, which is used for segmenting and pruning, as 
well as updating grid structure. The structure of in-
dexgrid is shown in Fig.6 and consists of a set of lists 
corresponding to grid units. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The indexgrid is a hashed index. Each grid unit c(i, 

j) corresponds to a fixed position of indexgrid, and the 
position has a pointer pointing at the list l(i, j) which 
contains all the information of c(i, j) and each node of 
l(i, j) is a triangular tuple (StreamID, k, t).  

The indexlp indexes two types of data. The first 
type contains all data items (={s1, s2, …, scur}) of the 
current local pattern lp which begins from the last 
identified End Point EPlast and ends right before the 
current data point (scur, tcur) from all data streams, so 
as to find the next new End Point EPnew. Whenever 
identifying EPnew, we clear the space occupied by 
these data items from EPlast to the data item before 
EPnew so that the future data items can use them. The 
second type is hashed address data from the first 
semi-local pattern lpfirst to the current semi-local pat-
tern lpcur from all data streams, for updating the grid 

f2
f1

f3

f4
f5

f6 f7
f8

f9
f10

k

t

1

2

3

4

1 2 3 4

f1

f2 f3 f4

f5

f9 f10

f6

f7

c2,3

c3,3

c4,3

c1,2

c2,2

c3,2
f8

Fig.6  An example to illustrate the grid index structure. 
(a) Index based on grid structure; (b) Grid structure 

(a)                                         (b) 
Fig.5  A visual representation of Algorithms 3 and 4 
with parameters ε=0.1, p=2. (a) Grid structure; (b) 
Three stream sequences R, S and T 

 
8 7 65

1. 25

2. 15

1. 85

1. 55

0. 95

2. 35

2. 75
ft5 

t 

ft6 
ft7 

ft6 
ft7 

ft6 ft7 
ft5 

ft5 
30

975 3 1

65

60

55

50

45

40

35

Stream T

Stream R

Stream S

y=1.71t+43.32 

y=1.6t+30.94

y=2.49t+44.70

St
re

am
 d

at
a 

va
lu

e 

k 

t 
(a)                                             (b) 

2
1
ε
ε−

2
1
ε
ε+
2

1
ε
ε+

2
1
ε
ε−

A

tmin tmax

kmax

kmin

B

C

D

E
F

1 2 3 4 5 6 7 8

4

3

1

2

5

6

7

t

G

Fig.4  Grid structure used to illustrate the searching 
range of the feature point A 

k 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

947

structure when a whole local pattern is identified. A 
data structure lpDataNode is used to save all the data 
of the current local pattern and is defined as follows: 

 
struct lpDataNode { 
      double dataItem[lpMaxLen]; 
      int hashAddr[lpMaxLen]; 
    } 
 

where lpMaxLen denotes the maximal length of the 
local pattern. In the leaf node of B+-tree, we keep a 
pointer to point at lpDataNode. Considering that all 
lpDataNodes take up only a small volume of main 
memory, we load them into the main memory. 

Next, we will introduce how to update the grid 
structure. We use a dynamic update policy to main-
tain the grid structure. At the end of each whole local 
pattern lp, all corresponding feature points {(kfirst, 
tfirst), (ksecond, tsecond), …, (klast, tlast)} of lp are cleared 
from the corresponding grid unit by searching the 
B+-tree to obtain the hashed address list hashAddr of 
lp. Our system can monitor two types of correlations, 
that is, synchronized correlations which occur be-
tween two current local patterns lpcur1 and lpcur2, and 
lagged correlations in which there is a previous local 
pattern lppre and a current local pattern lpcur. Suppose 
that the local pattern lp is hashed to cell c, then lp will 
be compared to any local patterns that have been 
hashed to the neighborhood of c. 

 
Time and space complexity  

Reporting correlative streams is generally 
computationally expensive, which in the worst case 
needs O(N2) time, where N is the size of dataset. In 
this subsection, we will show that our GSA algorithm 
requires only linear space and time.  

Let us firstly discuss space complexity. Assume 
that there are N financial data streams, and m is the 
average length of all local patterns during their life. 
The total space will be N×(m−SLenmin) double bytes 
and N×(m−SLenmin) int bytes with a little extra index 
main memory because each local pattern is mapped 
into a feature point (k, t), and there are m−SLenmin 
semi-local patterns during the period of m time ticks. 
By a similar analysis, the space of B+-tree is N×m 
double bytes and N×(m−SLenmin) int bytes, in addition 
to the extra index space. Because m<<N, when N is 
larger, the actual space is linear and much less than 

the original size of the dataset. 
The most time-consuming part of our algorithm 

is the Correlative_Search algorithm. Its time com-
plexity is O(p×FPNumgu), which is linear, where 
FPNumgu (=N×(m−SLenmin)/(Numk×Numt)) denotes 
the average number of feature points contained in 
each grid unit, Numk and Numt are the interval num-
bers on the k- and t-axis, respectively, and p repre-
sents the number of search grid units. 

 
Parallel implementation 

As noted by Zhu and Shasha (2002), our model 
can also use a parallel implementation by a straight-
forward decomposition. Consider a network of M 
servers to monitor Ns streams. Assuming that these 
servers have similar computing resources, we com-
plete the work to monitor the streams in two stages. 
The first stage is online segmenting and pruning of 
the data streams, mapping streams into a grid struc-
ture. The Ns streams are equally divided into M 
groups. The server i (i=1, 2, …, M) will read those 
streams in the ith group, segment and prune the ith 
group, index the ith group, and map the ith group into 
a grid structure. The second stage is reporting highly 
correlated stream pairs based on the grid structure. 
The grid structure is also geometrically and evenly 
partitioned into M parts. A server X will read in its 
part, a set of cells SX. Server X will also read a set of 
cells XS  including cells adjacent to the boundary 
cells in SX according to Theorem 3. Each server in-
vokes the procedure of Correlative_Search to report 
the correlated stream pairs. 

 
 

EXPERIMENTAL EVALUATION 
 

Experimental setup 
To evaluate the effectiveness and efficiency of 

our proposed approaches, we carried out extensive 
experiments with real stock data. In experiments, we 
used more than 1 820 000 data points from 1700 real 
stocks in China from http://finance.yahoo.com/ 
(2008-04-16). We conducted experiments on a Pen-
tium III PC with 512 MB memory. 

The main parameters were set up as follows. We 
used the close of day prices as financial data streams. 
In a real time environment, we used the average 
quotes as the close price over a fixed time interval. 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

948 

We set up an r-period moving average with parameter 
r=3 or 5. The size of the sliding window was changed 
from m=6 to 99 for the time interval over days, and 
the threshold μ of delay time was 6 in the procedure 
for segmenting and pruning. The shortest length of 
pattern segment, SLenmin, was 5 in the interval over 
days, and the parameter δ denoting the maximal rela-
tive approximation error was 0.03 on identifying a 
pattern segment. In fact, SDD indicates a summation 
of relative percent difference between the k compo-
nent and t component based on weight. Consider that 
k component exerts a larger impact than the t com-
ponent. We then set up the parameters ε, λ1 and λ2 
with 0.1, 0.65 and 0.35, in pattern similarity, respec-
tively. 

 
Effectiveness of MCALP 

In this subsection, firstly, we will show that SDD 
distance is an appropriate measurement of local pat-
terns in a financial domain. Then, we evaluate the 
effectiveness of the GSA algorithm. 

Let us first compare SDD distance and Euclidean 
distance for three real segments Lr, Ls and Lt formed 
by the first seven points from streams R, S and T in 
Fig.5, respectively. Table 1 shows the values of their 
data points, where ti denotes the time tick. We define 
dist(L1, L2) as the Euclidean distance of two segments 
L1 and L2. By computation, dist(Lr, Ls), dist(Lr, Lt) and 
dist(Ls, Lt) are 34.03, 12.76, and 46.29, respectively. 
This indicates that Lr and Lt are more similar than the 
other two segments, Lr and Ls, Ls and Lt. We can draw 
the same conclusion even if we normalize the values 
in Table 1. However, Lr and Ls are more similar than 
the other two segments when using our SDD meas-
urement. This is shown clearly in Fig.5. So, SDD is 
more effective than Euclidean distance, considering 
that the users pay more attention to the trends of local 
patterns. 

 
 
 
                         
 
 
 
 
Next, we carried out an experiment using the 

parameters of the previous subsection, with 1600 

stream time series randomly chosen from 1700 in-
stances. Because there were so many streams, we only 
show partial results in Fig.7, which includes eight 
representative stocks. It can be seen clearly from 
Fig.7 that A and B were correlative during many 
periods, for example, t(111)~t(129) of A (ka=1.73) 
and t(111)~t(128) of B (kb=1.62), t(129)~t(149) of A 
(ka=0.80) and t(128)~t(149) of B (kb=0.76), etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Efficiency of MCACP 
In this section, we first report the efficiency of 

the Calculating_Err algorithm, and then evaluate the 
time spent in monitoring the correlative stream pairs 
when changing the number of streams or the threshold 
value of p. Here, we assume that ε is 0.1 in all ex-
periments. Note that, methods like StatStream (Zhu 
and Shasha, 2002) are designed for the same length 
local patterns and cannot handle generic cases with 
local patterns of different lengths. Thus, we did make 
comparisons with StatStream in our experiments. 

In the first test, we compared the performance of 
the algorithm Calculating_Err relative to the corre-
sponding naive algorithm (Naive) which uses three 
circles to compute coefficients a and b, RErrPLA, 
respectively. We defined the relative CPU cost as the 
proportion of Naive spending time relative to the 
average computing time of Calculating_Err for each 
invoking. It is clear from Fig.8 that Calculating_Err 
was faster than Naive. In fact, the CPU running time 
of the Calculating_Err method is almost constant and 
its time complexity is O(1). However, the CPU run-
ning time of Naive gradually increases with the in-
crease of the length of local patterns, and the time 

0 50 100 150 2005

10

15

20

25

30

35

40

45

50
Stock A

B

Fig.7  An example to illustrate two correlative stream 
time series 

D
ai

ly
 c

lo
se

 p
ric

e 

Time (d) 

Table 1  Values of three local patterns with seven data
points 

Values of data point 
Segment 

t1 t2 t3 t4 t5 t6 t7 
Lr 44.44 47.57 49.04 48.40 52.80 53.71 55.01
Ls 33.56 34.97 35.07 35.13 38.49 40.37 43.75
Lt 46.12 50.82 52.81 52.91 58.29 60.78 60.90



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

949

complexity of the Naive method is O(n). Calculat-
ing_Err was 32.3 times faster than Naive in CPU time 
when the local pattern length was 75. Even with the 
shortest length 5, Calculating_Err was 3.51 times 
faster than Naive in CPU time. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The next test compared the wall clock time for 
different numbers of streams when monitoring all 
correlative streams pairs. In the experiment, we used 
two methods, that is, the Naive method which does 
not use grid structure and needs a sequence scan to 
select the most correlative local patterns, and the 
MCALP method. Using the Naive method, the time 
taken to compute the correlations among Ns streams 
T0 is proportional to 2

s .N  With the MCALP method, 
the work to monitor correlations has two parts: (1) 
updating the index takes time T1 which is proportional 
to Ns; (2) detecting correlations based on the grid 
takes time T2 that is proportional to 2

RecN  which de-
notes the average number of feature points contained 
in the rectangular searching region Rec. Because T2 is 
the main time of the MCALP method and NRec<<Ns, 
using the MCALP method is much faster than using 
the Naive method (Fig.9). At the same time, we also 
found that the time spent became longer with the 
increase in the number of streams. Note that the unit 
of measure of spending time is different between 
Figs.9a and 9b. 

The last test studied the impact of different p. In 
the experiment, we specially observed two situations, 
namely the number of streams Ns=800 (the corre-
sponding curve is denoted as C800) and the number of 
streams Ns=1600 (the corresponding curve is denoted 
as C1600). From Fig.10, the time spent of C800 and  
 

C1600 both gradually increased with the increase of p. 
At the same time, we also observed that C1600 in-
creased more quickly than C800. It is obvious that the 
responding time was sufficient to adapt to real-time 
situations. Although the granularity of time was day 
in the above experiments, in fact, our model MCALP 
can handle smaller granularity of time, i.e., intervals 
of 2, 5, 10 min, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Impact of parameters 

In this subsection, we report mainly the impact 
of parameters ε and δ. These two parameters are very 
important and affect the precision of local pattern 
approximation. In general, the smaller the two pa-
rameters are, the better the precision should be. We 
define the summation of ErrPLA of all segments as 

TErrPLA, where PLA PLA1
( ),N

ii
TErr Err Seg

=
=∑  and N 

represents the number of segments. To eliminate the 
impact of amplitude offset, all streams in the ex-
periments were normalized with zero mean and unit 
standard deviation. 

Fig.8  Efficiency of the Calculating_Err algorithm 
 

5 15 25 35 45 55 65 750 

5 

10 

15 

20 

25 

30 

35 

Length of local pattern

R
el

at
iv

e 
C

PU
 c

os
t 

Fig.10  Comparison of spending time for different p 
with ε=0.1 

Ns=800 
Ns=1600 

80 

Threshold

 

3 6 9 12 15 18 21 24 27 300 

20 

40 

60 

Sp
en

di
ng

 ti
m

e 
(m

s)
 

 

Fig.9  Comparison of spending time for different numbers 
of streams with ε=0.1. (a) Naive method; (b) MCALP 
method 

0 

5 

10 

15 

 

 

200 400 600 800 1000 1200 1400 16000 

100 

200 

Number of streams
 

 

Naive method

MCALP method

(a) 

(b) 
Sp

en
di

ng
 

tim
e 

(s
) 

Sp
en

di
ng

 
tim

e 
(m

s)
 



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

950 

Fig.11 shows the change of average TErrPLA 
with δ from 0.01 to 0.10 on 800 streams with 512 data 
points. In the beginning, the error quickly increased 
with the increment of δ from 0.01 to 0.03, and then it 
slowly increased in δ=[0.04, 0.10]. By the analysis of 
previous discussion, we know that δ controls the 
degree of oscillation for all data points of L near y. So, 
a bigger δ brings a bigger error. But, μ is invariable 
and it maintains the number of segments with little 
change, which results in a slow increase of ErrPLA. At 
the same time, we can see that δ=0.03 was a reason-
able threshold with μ=5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12 depicts the change of average TErrPLA 

with respect to δ on 1600 streams with 512 data points. 
From Fig.12, we can observe that the cumulative 
TErrPLA increased with the increase of μ when δ was 
kept invariable. This phenomenon has a similar ex-
planation to that mentioned above in Fig.11. In the 
experiment, a better μ was 6 and μ=10 should be 
excluded because it caused a bigger increment in 
TErrPLA. 

 
 
 
 
 
 
 
 
 
 
 
 
 

As for parameter ε, obviously, 0≤ε<1, and re-
flects the degree of relative deviation of two local 
patterns. So, a bigger ε corresponds to a larger μ and a 
larger δ; otherwise, the smaller μ and δ. By experi-
ment, we found that ε=[0.05, 0.15] gave better preci-
sion. 
 
 
CONCLUSION 

 
Monitoring multi-streams and reporting any 

correlative stream pairs is a significant challenge. Our 
study solves the problem with a guaranteed response 
time and high accuracy. We make use of PLA and 
SDD to metric the similarity of two local patterns 
measured with their two local features, that is, their 
slope and duration. At the same time, we map all local 
patterns to a grid structure so as to find the correlative 
local pattern pairs. Experiments conducted using real 
stock data showed that our model MCALP is effective 
and efficient. This work focused on correlations based 
on single local similar patterns. One interesting future 
direction would be to explore the correlations be-
tween financial data streams with multiple continuous 
local similar patterns. 

 
References 
Agrawal, R., Faloutsos, C., Swami, A., 1993. Efficient Simi-

larity Search in Sequence Databases. Proc. Int. Conf. on 
Foundations of Data Organization and Algorithms, Chi-
cago, Illinois. Springer-Verlag, Germany, p.69-74. 

Bentley, J.L., Weide, B.W., Yao, A.C., 1980. Optimal ex-
pected-time algorithms for closest point problems. ACM 
Trans. Mathem. Software (TOMS), 6(4):563-580.  
[doi:10.1145/355921.355927] 

Berndt, D.J., Clifford, J., 1996. Finding Patterns in Time Series: 
A Dynamic Programming Approach. Proc. Advances in 
Knowledge Discovery and Data Mining, AAAI/MIT 
Press, Menlo Park, CA, USA, p.229-248. 

Chen, Q., Chen, L., Lian, X., Liu, Y., Jeffrey, X.Y., 2007. 
Indexable PLA for Efficient Similarity Search. Proc. 
VLDB Conf., Vienna, Austria. VLDB Endowment, USA, 
p.435-446. 

Chen, Y.G., Nascimento, M.A., Ooi, B.C., Tung, A.K.H., 2007. 
Spade: On Shape-based Pattern Detection in Streaming 
Time Series. Proc. IEEE ICDE, Istanbul, Turkey. IEEE, 
USA, p.786-795.  [doi:10.1109/ICDE.2007.367924] 

Guha, S., Gunopulos, D., Koudas, N., 2003. Correlating Syn-
chronous and Asynchronous Data Streams. Proc. ACM 
SIGKDD, Washington, D.C., USA. ACM, USA, 
p.529-534.  [doi:10.1145/956750.956814] 

 

5 6 7 8 9 1010 

12 

14 

16 

18 

20 

22 

To
ta

l P
LA

 a
pp

ro
xi

m
at

io
n 

er
ro

r 

      Threshold of μ 
Fig.12  Total PLA approximation error with respect to μ 
with δ=0.03 

Fig.11  Total PLA approximation error with respect 
to δ with μ=5 
 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
8 

10 

12 

14 

16 

18 

20 

22 

Relative approximation error 

To
ta

l P
LA

 a
pp

ro
xi

m
at

io
n 

er
ro

r



Jiang et al. / J Zhejiang Univ Sci A   2009 10(7):937-951 
 

951

Keogh, E., 2002. Exact Indexing of Dynamic Time Warping. 
Proc. VLDB Conf., Hong Kong, China. Morgan Kauf-
mann, USA, p.406-417. 

Korn, F., Jagadish, H.V., Faloutsos, C., 1997. Efficiently 
Supporting Ad Hoc Queries in Large Datasets of Time 
Sequences. Proc. SIGMOD Conf., Birmingham, UK, 
p.289-300.  [doi:10.1145/253260.253332] 

Lian, X., Chen, L., Yu, J.X., Wang, G.R., Yu, G., 2007. Simi-
larity Match over High Speed Time Series Streams. Proc. 
IEEE ICDE Conf., Istanbul, Turkey. IEEE, USA, 
p.1086-1095.  [doi:10.1109/ICDE.2007.368967] 

Papadimitriou, S., Yu, P.S., 2006. Optimal Multi-scale Pat-
terns in Time Series Streams. Proc. ACM SIGMOD, 
Chicago, Illinois. ACM, USA, p.647-658.  [doi:10.1145/ 
1142473.1142545] 

Papadimitriou, S., Sun, J., Faloutsos, C., 2005. Streaming 
Pattern Discovery in Multiple Time-series. Proc. VLDB 
Conf., Trondheim, Norway. ACM, USA, p.697-708. 

Papadimitriou, S., Sun, J., Yu, P.S., 2006. Local Correlation 
Tracking in Time Series. Proc. IEEE ICDM, Hong Kong, 
China. IEEE, USA, p.456-465.  [doi:10.1109/ICDM.2006. 
99] 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sakurai, Y., Papadimitriou, S., Faloutsos, C., 2005. Braid: 
Stream Mining through Group Lag Correlations. Proc. 
ACM SIGMOD, Baltimore, Maryland. ACM, USA, 
p.599-610.  [doi:10.1145/1066157.1066226] 

Sakurai, Y., Faloutsos, C., Yamamuro, M., 2007. Stream 
Monitoring under the Time Warping Distance. Proc. 
IEEE ICDE, Istanbul, Turkey. IEEE, USA, p.1046-1055.  
[doi:10.1109/ICDE.2007.368963] 

Wu, H., Salzberg, B., Zhang, D., 2004. Online Event-driven 
Subsequence Matching over Financial Data Streams. Proc. 
ACM SIGMOD, Paris, France. ACM, USA, p.23-34.  
[doi:10.1145/1007568.1007574] 

Zhang, T.C., Yue, D.J., Gu, Y., Yu, G., 2007. Boolean Rep-
resentation Based Data-adaptive Correlation Analysis 
over Time Series Streams. Proc. ACM CIKM Conf., 
Lisboa, Portugal. ACM, USA, p.203-212.  [doi:10.1145/ 
1321440.1321471] 

Zhu, Y., Shasha, D., 2002. Statstream: Statistical Monitoring 
of Thousands of Data Streams in Real Time. Proc. VLDB 
Conf., Hong Kong, China. Morgan Kaufmann, USA, 
p.358-369. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


