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Abstract:    Image feature optimization is an important means to deal with high-dimensional image data in image semantic un-
derstanding and its applications. We formulate image feature optimization as the establishment of a mapping between high- and 
low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible 
way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm 
using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has 
strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality 
reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based 
locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations 
between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. 
Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms. 
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INTRODUCTION 

 
Image feature optimization is aimed to mine 

useful features from a set of basic elements or nu-
meric values that are generally used to describe the 
characteristics of image data. In other words, image 
feature optimization is a process for refining a few 
‘small quantity and high quality’ features from the 
raw ones generated by feature extraction, which 
means that feature dimensionalities should be reduced 
as much as possible without losing the critical char-
acteristics of image data. Image semantic under-
standing and its applications, such as image object 
recognition, image clustering and classification, and 
semantic-based image retrieval, usually involve large 

high-dimensional datasets. Nowadays, with the rapid 
development of network technology and fast decline 
of the cost of storage devices, a large number of 
digital multimedia resources are available on the 
Internet. Images in the network environment (i.e., 
Web images) are preferable due to their easy sharing 
and distribution properties. Different from ordinary 
images where little information is provided, there 
exists a lot of additional contextual information on 
Web pages like surrounding text and links (Hua et al., 
2005). To bridge the semantic gap (Smeulders et al., 
2000; Dorai and Venkatesh, 2003) generated by the 
differences between computer representation and 
human perception, both low-level visual features (e.g., 
color, texture, shape, and spatial relationship) and 
high-level text contents (e.g., metadata, keyword, and 
phrase) should be fully exploited and utilized, which 
will result in a very high feature dimensionality (e.g., 
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100, or even 1000) in some applications. However, 
most researchers engaged in image semantic under-
standing have paid more attention to constructing the 
mappings between visual features and semantic con-
cepts or building effective learning machines, 
whereas the contributions of feature optimization for 
high-dimensional data have often been ignored and 
traditional approaches and techniques are often not 
scalable enough for use in Web images to handle the 
vast data amount. Consequently, for minimizing the 
effect of ‘dimensionality curse’ (Bellman, 1961), 
developing an efficient image feature optimization 
approach to improve system performance, reduce 
execution complexity and ease the burden on learners 
(e.g., classifiers) is not a trivial task (Datta et al., 
2008). 

Wang et al.(2003) presented a new method to 
optimize feature extraction for target recognition, 
which is based on wavelet theory in view that wavelet 
transform has perfect local performance and can 
automatically adjust the sampling frequency along 
with the changes of signal frequency components. 
Krishnapuram et al.(2004) developed a Bayesian 
generalization of the support vector machine (SVM), 
which identifies the optimal nonlinear classifier and 
selects the optimal set of image features via the op-
timization of Bayesian likelihood functions. Zhang 
and Izquierdo (2006) proposed a multi-feature opti-
mization method for object-based image classifica-
tion, where the best linear combination of visual de-
scriptors can be found and the metrics of these de-
scriptors are optimized by analyzing the underlying 
patterns of low-level visual primitives. Different from 
the above literature, in this paper we formulate image 
feature optimization by a five-tuple model, i.e., es-
tablishing a mapping from a high-dimensional space 
to a feature space with low dimensions. Hence, it is 
feasible to perform the optimization based on various 
dimensionality reduction approaches.  

Principal component analysis (PCA) (Jolliffe, 
1986; Turk and Pentand, 1991) and linear discrimi-
nant analysis (LDA) (Sweis and Weng, 1996; Bel-
humeur et al., 1997) are two well-known linear di-
mensionality reduction approaches, both of which are 
eigenvector approaches designed to establish the 
linear variability model for a high-dimensional data-
set. These two approaches are simple to implement 

but they cannot deal with the nonlinear dataset in 
real-world applications. Meanwhile, for eliminating 
the nonlinear redundancies within features, the above 
linear approaches can be transformed to nonlinear 
versions by applying a certain kernelization technique, 
i.e., kernel PCA (KPCA) or kernel LDA (KLDA). 
Manifold learning is a recently developed technique 
for nonlinear dimensionality reduction. Seung and 
Lee (2000) pointed out that data in a high-dimen-
sional space can be mapped into a manifold with low 
dimensions. This low-dimensional manifold embod-
ies the relations between image data and has a lower 
intrinsic dimensionality. Theoretically, based on such 
an assumption, if able to find the potential topological 
data structure, we will acquire useful information 
(e.g., data differences) hidden in the manifold without 
analyzing the data in the high-dimensional space; this 
not only reduces the data dimensionality but also 
effectively avoids the possibility of ‘dimensionality 
curse’. Therefore, nonlinear dimensionality reduction 
based on manifold learning provides a new solution to 
image feature optimization. 

So far many nonlinear dimensionality reduction 
approaches have been proposed, such as locally linear 
embedding (LLE) (Roweis and Saul, 2000; Saul and 
Roweis, 2003), Laplacian eigenmap (LE) (Belkin and 
Niyogi, 2001; 2003), isometric mapping (ISOMAP) 

(Tenenbaum et al., 2000), and multi-level mahalano-
bies-based dimensionality reduction (MMDR) (Jin et 
al., 2003). Yin (2007) gave a review of nonlinear 
dimensionality reduction approaches and their vari-
ants in the recent years. Among them, LLE is a rep-
resentative algorithm and is widely used owing to its 
strong abilities of shape preserving mapping (i.e., two 
nearby data in a high-dimensional space maintain 
their relations when they are mapped into a manifold 
with low dimensions) and good computational per-
formance. Based on the assumption of local linearity 
in the nonlinear manifold, LLE first constitutes the 
local coordinates with the least constructed cost and 
then maps them into a global one. As is well known, 
in most cases, local information may be more im-
portant than global information for image semantic  
understanding and its applications (Wang et al., 2001; 
Jeon et al., 2003). Many recent studies have shown 
that LLE is suitable for the dimensionality reduction 
of image data (Wu et al., 2004; Xu et al., 2004; 
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Abusham et al., 2005; Yao and Tao, 2005; Li et al., 
2006; Yang et al., 2007). 

Although LLE is a powerful algorithm in di-
mensionality reduction, some limitations greatly re-
strict its applicability, e.g., high sensibility to noise 
and incapacity to deal with sparse datasets. Among 
many newly proposed nonlinear dimensionality re-
duction approaches based on LLE, four groups can be 
roughly identified: (1) Modify the distance calcula-
tion formula. Wang et al.(2006) proposed a coherence 
measurement by increasing the distances between the 
data in densely distributed regions and decreasing the 
distances in sparsely distributed regions. But it is still 
unsuitable for handling sparse datasets. (2) Transform 
an unsupervised approach to a supervised or 
semi-supervised one. de Ridder et al.(2003) presented 
a supervised locally linear embedding (SLLE) algo-
rithm, where category information is added to modify 
the calculation of distance measure. Although keep-
ing the distances between the data in the same class 
and ensures the feasibility of subsequent supervised 
classification, SLLE enlarges the distances between 
the data from different classes, which may result in a 
distortion of the intrinsic structure of the data. (3) 
Define an embedding function using the kernel tech-
nique. Cao and Ye (2007) proposed a local project 
linear embedding (LPLE) algorithm by designing a 
global embedding function to reconstruct the eigen-
vectors of local neighbors. In LPLE, the low-dimen-
sional manifold can be easily obtained via a cost ma-
trix, but it is hard to choose a reasonable kernel. (4) 
Unify linear and nonlinear dimensionality reduction 
approaches. Chang et al.(2004) put forward a merging 
strategy—firstly, for furthest preserving nonlinear 
structures, the data are mapped into a transitional 
space via LLE, and then another dimensionality re-
duction is performed using LDA. This strategy can 
effectively reduce the loss of useful information 
caused by loss of too much data variance in LLE, but 
may lead to an increase in the computational com-
plexity due to the selection of an appropriate dimen-
sionality for the transitional space. 

In this paper, we propose a novel locally linear 
embedding algorithm, the globular neighborhood 
based locally linear embedding algorithm (GNLLE 
for short), based on neighborhood update and an in-
cremental neighbor search scheme. Since the irregu-
lar neighborhood identified by the neighbor number is 

replaced by the globular neighborhood identified by 
the globular radius, GNLLE not only has the capa-
bility to deal with sparse datasets but also is less sen-
sitive to noise and more topologically stable. As the 
distortion of the overall topological structure within 
the dataset on the manifold is usually caused by 
pairwise similarity calculation and it may be more 
serious when handling a dataset with curved surfaces, 
we present an improved algorithm, the globular 
neighborhood and path clustering based locally linear 
embedding algorithm (GNPCLLE for short). With 
path-based clustering, GNPCLLE can reselect the 
nearest neighbors of the current data and update the 
globular neighborhood obtained by GNLLE. Since 
data correlation is applied in GNPCLLE, data con-
nections can be truly acquired through the mediating 
paths of intermediate data rather than certain high 
mutual similarities between the data, resulting in a 
psychophysically plausible definition of distance 
measure. Experimental results showed that the pro-
posed algorithms outperform some existing ones and 
are both efficient for feature optimization in image 
semantic understanding and its applications. 
 
 
IMAGE FEATURE OPTIMIZATION  
 

Image feature optimization can be formulated by 
a five-tuple model: 
 

FO ( , , , , ),X D d Yδ=                    (1) 
 
where D and d (<<D) denote the dimensionalities of 
the high- and low-dimensional space (i.e., manifold), 
respectively. X is an input image set, composed of N 
D-dimensional real-valued vectors in the high- 
dimensional space úD; i.e., X={x1, x2, …, xN | xi=[xi

1, 
xi

2, …, xi
D]T, i=1, 2, …, N}. Y is an output image set 

consisting of N d-dimensional real-valued vectors in 
the low-dimensional space úd; i.e., Y={y1, y2, …, yN | 
yi=[yi

1, yi
2, …, yi

d]T, i=1, 2, …, N}. : X Yδ 6  de-
notes a mapping and is the core of FO. Since X is a 
nonlinear image set, δ can be defined as a one-to-one 
mapping. Thus, image feature optimization formu-
lated by FO can be viewed as establishing a mapping 
from úD to úd. Obviously, only the optimized image 
features can be taken as the input data for subsequent 
learning machines. 
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LOCALLY LINEAR EMBEDDING ALGORITHM  
 
Outline of LLE 

The LLE algorithm proposed by Roweis and 
Saul (2000) attempts to find the hidden topological 
structure between two data by mapping the data from 
a high-dimensional space into a low-dimensional 
embedding manifold while preserving their local 
similarities. The assumption that the obtained em-
bedding manifold is locally linear guarantees the 
shape preserving mapping of the data. The basic 
principle of LLE is to utilize linear structure to ap-
proximately characterize the parts of nonlinear 
structure. Thus, nonlinear dimensionality reduction 
can be simplified into local linear dimensionality 
reduction; i.e., each data in the high-dimensional 
space can be expressed by a linear representation of 
its nearest neighbors and then it can be reconstructed 
on the low-dimensional embedding manifold by 
minimizing a cost function. A summary of LLE is 
illustrated in Fig.1. 

As shown in Fig.1, LLE consists of three steps: 
(1) Select k nearest neighbors for each current data xi 
(i=1, 2, …, N) and regard these nearest neighbors as 
contributions to the reconstruction of xi in the em-
bedding manifold. (2) Compute the local linear re-
construction weights wij (j=1, 2, …, k) of the linear 
representation that best reconstructs xi using the k 
nearest neighbors of xi. (3) Reconstruct xi (expressed 
by yi on the manifold) via wij to map the high- 
dimensional input X into the low-dimensional output Y. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental analysis 
To observe how the neighbor number k affects 

the performance of LLE, we designed an experiment 
on the Twin Peaks dataset. The dataset is composed of 
samples randomly chosen from 3D Twin Peaks sur-
faces, where the relations between the samples are 
depicted by colors. The performance of LLE can be 
visually seen through the aggregation extent of sam-
ples with the same color. In the experiment, the sam-
ples were mapped from a 3D space into a 2D space.  

According to the experimental results (Fig.2), 
some conclusions can be drawn as follows: 

1. The parameter k determines the performance 
of LLE to some extent. When k is small, many nearest 
neighbors that contribute to the reconstruction of the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Performance of the locally linear embedding algorithm on the Twin Peaks dataset 
(a) Distribution map when N=2000; (b) k=8; (c) k=15; (d) k=30; (e) Distribution map when N=200; (f) k=8; (g) k=15; (h) k=30.
N=2000 for (b)~(d); N=200 for (f)~(h). N denotes the data number; k denotes the neighbor number 

(a)                                            (b)                                           (c)                                           (d) 

(e)                                            (f)                                            (g)                                           (h) 

Fig.1  A summary of the locally linear embedding algo-
rithm (Roweis and Saul, 2000) 
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current data will be lost and LLE may fail to maintain 
the local topological structure of the samples in the 
low-dimensional space (Fig.2b), whereas if k is large, 
some outliers (may be caused by noise) will be treated 
as the neighbors of the current data, which may con-
fuse neighbor relations between the samples (Fig.2d). 
Thus, only at an appropriate k, will LLE succeed in 
revealing the underlying embedding manifold and 
fully reflecting the aggregation ability of similar data 
(Fig.2c). 

2. The dense or sparse degree of data distribution 
affects the performance of LLE. We can infer that the 
samples’ distribution in the high-dimensional space is 
denser; LLE obtains its best result with a smaller k 
and enters into a stable status earlier. In the low- 
dimensional space, the samples’ distribution is sparser; 
LLE obtains its best result with a bigger k and enters 
into its stable status later. In sum, the denser the 
dataset is, the better the LLE performance will be, and 
vice versa. For example, when the sparse degree of 
the dataset is high (e.g., N=200), most samples cross 
or overlap with each other, which may easily damage 
the data intrinsic structure (Figs.2f~2h). 

Compared with other nonlinear dimensionality 
reduction approaches, LLE has only one free pa-
rameter and thus has a simple implementation. 
However, in the network environment, the sparse 
distribution of the data generated by huge image data 
is inevitable. Even if the image set is complete enough, 
its high dimensionality will lead to an unfeasible 
calculation. Additionally, some noise or external 
disturbances may be absorbed wrongly during feature 
extraction. Consequently, the assumption that the data 
distribution on the embedding manifold is relatively 
even cannot be usually satisfied in real-world appli-
cations. It is obvious that LLE is more sensitive to the 
parameter k especially when handling the dataset with 
an uneven distribution. 
 
 
A NOVEL LOCALLY LINEAR EMBEDDING 
BASED ON OPTIMIZED NEIGHBORHOOD 
 
Construction of globular neighborhood 

In this paper, we propose a novel nonlinear di-
mensionality reduction algorithm named globular 
 

neighborhood based locally linear embedding 
(GNLLE). That is, inspired by geometric intuition, we 
present a new locally linear embedding based on LLE 
using neighborhood update and an incremental 
neighbor search scheme. The main idea is to use a 
regular neighborhood constructed by a radius instead 
of the irregular neighborhood constructed by a 
neighbor number in LLE and to search for the can-
didate data within the globular neighborhood based 
on radius increment, and then these selected data are 
regarded as the nearest neighbors of the current data xi 
(located at the core of the globular neighborhood). 
Consistent with the principle of LLE, in GNLLE, the 
closer the data is to xi on the high-dimensional em-
bedding manifold, the more opportunity the data have 
to be chosen as the neighbor of xi. From another point 
of view, the smaller the distance between the neighbor 
and xi is, the bigger contribution the neighbor makes 
to the reconstruction of xi on the embedding manifold. 
Therefore, GNLLE not only meets the demand of 
shape preserving mapping but also has the aggrega-
tion ability of the similar data. Before describing the 
details of GNLLE, we first give the processes of both 
neighborhood construction and neighbor selection in 
LLE from a geometry view. 

Suppose that N points are distributed in a 
D-dimensional Euclidean space ED (for simplification, 
each point denotes one data in X). Take xi as a refer-
ence and calculate the distance 

ij i
dx x  between xij (xij 

denotes the neighbors of xi) and xi (i, j=1, 2, …, N), 
and then a symmetric distance matrix D can be es-
tablished as follows: 

 

11 1 21 2 1

12 1 22 2 2

1 1 2 2

.

N N

N N

N N NN N

N N

d d d

d d d

d d d

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x x

x x x x x x

x x x x x x

D

"

"

# # #
"

         (2) 

 
For selecting k (k<N) nearest neighbors for xi 

conveniently, the matrix D needs sorting in ascending 
order by column, i.e., 

1 2
,

i i i i iN i
d d d′ ′ ′≤ ≤ ≤x x x x x x"  and 

then the 2nd to (k+1)th elements in each column are 
used to establish a new matrix D′ for each point and 
its nearest neighbors: 
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            (3) 

 
Based on the above analysis, inspired by geo-

metric intuition, we present GNLLE via neighbor-
hood optimization. Suppose that N points are distrib-
uted in a D-dimensional Euclidean space ED. Take xi 
as the globular core and construct a globe G based on 
the radius r, and then G is the globular neighborhood 
of the current data xi. If there exist pi (pi<N) points 
within G, such pi points can be regarded as the nearest 
neighbors of xi and then the distance 

ij i
d x x  (≤r) be-

tween xij (j=1, 2, …, pi) and xi should be computed. 
Since the neighbor number of each point within its 
globular neighborhood is different, the distance ma-
trix cannot be directly established as in LLE. We use 
N column vectors to express them: 
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212 1 22 2

1 1 2 221
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N N

N N

p p Np NN

dd d
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⎢ ⎥⎢ ⎥ ⎢ ⎥
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         (4) 

 

In order to obtain a simple and efficient com-
putation, we define the distance 

ij i
d x x  (i, j=1, 2, …, N, 

i≠j) using L2 distance measure (de Juan and Boden-
heimer, 2004) as follows: 

 

2
dist( , ) .

ij i ij i ij i L
d = =x x x x x x-               (5) 

 
For viewing the different ideas of neighborhood 

construction and neighbor selection in GNLLE and 
LLE more intuitively, theses steps in the two algo-
rithms are illustrated in a 2D Euclidean space.  

As shown in Fig.3, the data distribution around 
xi (in the circle on the right) is denser than around xi′ 
(i′=1, 2, …, N, i′≠i) (in the circle on the left); therefore, 
if the neighborhood is constructed using the neighbor 
number (e.g., k=6), the neighborhood range of xi is 
smaller than that of xi′ (Fig.3b). But if the neighbor-
hood is identified by a globular radius (e.g., r=0.8), 

none of the nearest neighborhoods of xi and xi′ are 
effected by the dense or sparse degree of the distri-
bution (Fig.3a). Obviously, due to a fixed neighbor 
number in LLE, some outliers may be regarded as the 
nearest neighbors and added into the neighborhood 
mistakenly. While the neighbor selection in GNLLE 
relies only on the distance between the candidate data 
and the globular core (denotes the current data), the 
neighbor number is therefore variable, which effec-
tively alleviates its sensitivity to noise. 

 
 
 
 
 
 
 
 
 
 
 
 
It is worth noting that since a significant per-

formance degradation may occur in LLE due to small 
changes of the parameter k, we adopt in the imple-
mentation of GNLLE an incremental search scheme 
for optimization; i.e., a radius increment Δr is adopted 
to search for the nearest neighbors rather than directly 
rely on the value of the globular radius r. Specifically, 
each search step starts from an initial radius rmin 
(which is the shortest distance between the current 
data and its neighbors) and then expands outwards 
constantly with Δr until it exceeds the globe identified 
by r. Such a scheme has the following advantages: (1) 
A precise similarity measurement can be obtained via 
the continuous changes of Δr; (2) Since the value of 
Δr is relatively small, the process of neighbor 
searching can also be viewed as an approximate 
sorting process, which can greatly reduce the com-
putational complexity of GNLLE. 

 
GNLLE algorithm 

The GNLLE algorithm can be summarized as 
follows: 

Step 1: For each data xi in X, construct its 
globular neighborhood via a globular radius r and 
compute the distance between the candidate data xij 

Fig.3  The neighborhood construction and neighbor selec-
tion in (a) GNLLE and (b) LLE 
The points in the circles denote the current data 

(a)                                              (b) 



Zhu et al. / J Zhejiang Univ Sci A   2009 10(12):1720-1737 1726 

(within the globular neighborhood) and the current 
data xi (Eq.(5)). If there exist pi data that satisfy the 
condition , ,

ij i
d r<x x  these data are chosen as the 

nearest neighbors of xi. 
Step 2: Calculate the local linear reconstruction 

weight wij using the pi nearest neighbors of xi. The 
reconstruction error function can be defined as 

 
2 2

1 1

1 1

( )

,   1, 2 ,..., ,

i i

i i

p p

i i ij ij ij i ij
j j

p p
i

ij il
j l

w w

w w i N

ε
= =

= =

= − = −

= =

∑ ∑

∑∑

x x x x

Q

        (6) 

 
where wij is the local linear reconstruction weight 
between xi and xij. Qi, a symmetric and semi-positive 
covariance matrix, can be written as 
 

( )( ),i
i ij i il= − −Q x x x x                    (7) 

 
where xij and xil are two different neighbors of xi, i.e., 
xij≠xil (j, l≤pi, j≠l). Thus, the reconstruction error 
function can be minimized as 
 

2

1 1
( ) arg min ,

ipN

i ij ij
i j

wε
= =

= −∑ ∑W x x           (8) 

 

where wij is subject to: 
1

1ip
ijj

w
=

=∑  if xij∈gnei(xi); 

wij=0 if xij∉gnei(xi) (gnei(xi) denotes the globular 
neighborhood of xi). Calculate the value of wij based 
on the Lagrange multiplier and then the local recon-
struction weight matrix W (=[wij]N×N) can be obtained. 
W is invariant to rotation, translation, and scale. 

Step 3: Compute the low-dimensional embed-
ding Y for X via the local reconstruction weight matrix 
W and the pi nearest neighbors of each current data. 
For realizing shape preserving mapping, minimize the 
embedding cost function as follows: 
 

2

1 1

( ) arg min ,
ipN

i ij ij
i j

Y wε
= =

= −∑ ∑y y            (9) 

 
where yi denotes the mapping of xi on the low- 
dimensional embedding manifold and yij (j=1, 2, …, pi) 
denote the nearest neighbors of yi. Y is subject to two 

constraints: 
1

N
ii=
=∑ y 0  and T

1
/ .N

i iji
N

=
=∑ y y I  

Then, Eq.(9) can be rewritten in the matrix form: 
 

T

1 1
( ) arg min ,

N N

ij i ij
i j

Y mε
= =

= ∑∑ y y            (10) 

 
where M (=[mij]N×N) is a sparse, symmetric and posi-
tive semi-definite cost matrix, given by M= 
(I−W)T(I−W). At last, based on the Rayleigh-Ritz 
theorem, Eq.(10) is performed by finding the eigen-
vectors with the smallest (nonzero) eigenvalues of the 
cost matrix M. The flow of the GNLLE algorithm is 
as follows:  
 
Algorithm 1    Globular neighborhood-based locally 
linear embedding (GNLLE) 
Input: X is an image set in the high-dimensional space, X={x1, 

x2, …, xN | xi∈ú
D, i=1, 2, ..., N}; r is a globular radius; Δr 

is a radius increment; d (<<D) is the dimensionality of 
the low-dimensional embedding manifold. 

Output: Y={y1, y2, …, yN | yi∈ú
d, i=1, 2, ..., N}. 

1 Call a function to construct globular neighborhood:  
(Nei)=CalculateNeighborhood(X, r, Δr, d); 

2 For each xi∈X do { 
3    Calculate the reconstruction weight wij;  
4    Establish the weight matrix W;        // Eqs.(6)~(8)} 
5 According to M=(I−W)T(I−W), compute the cost matrix M; 
6 Find eigenvectors corresponding to the d (1: d+1) eigen- 

values of M, and then compose Y;    // Eqs.(9) and (10) 
7 Return Y={y1, y2, …, yN}; 
Function    (Nei)=CalculateNeighborhood(X, r, Δr, d) 
Input: omitted. 
Output: Nei={gnei(xi) | i=1, 2, …, N}. 
8 Compute distance matrix D: D=dist(X, X);       // Eq.(5) 
9 Sort D in ascending order by column, and then the results are 

stored in matrix D′ and their corresponding indexes are 
stored in matrix T; i.e., (D′, T)=sort(D);  

10 For each xi∈X do { 
11     rmin=min(xik, xi), k=1, 2, ..., N, k≠i; 
12     r′=rmin;        // r′ is the current radius  
13     pi=1;        // pi is the neighbor number of xi 

14    While r′<r do {  
15       If D′(xij, xi)≤r′ then { 
16         pi=pi+1; 
17         Put xij into the neighborhood of xi:gnei(xi)=T(xij, xi);} 
18       Else { r′=r′+Δr; }} } 
19 Return Nei={gnei(x1), gnei(x2), …, gnei(xN); } 
 

In terms of the computational complexity of the 
GNLLE algorithm, we compute only the additional 
complexity generated by the construction of globular 
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neighborhood. Since the function CalculateNeighbor- 
hood() includes a dual loop, we calculate its time 
consumption as follows: 

 

min

min
min

1

( )lim 1 lim .
N r

N Ni r

N r rN r r
N→∞ →∞

=
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Therefore, the GNLLE algorithm has an addi-

tional computational complexity of O(N). 
 

Performance comparison between GNLLE and 
LLE 

To validate the effectiveness of the proposed 
GNLLE, we designed two experiments to compare the 
performance between GNLLE and LLE. The Swiss 
Roll dataset, which is commonly used and has good 
comparability for different dimensionality reduction 
algorithms, was used in the experiments. 
Experiment 1     The performance comparison be-
tween GNLLE and LLE on a dense dataset (N=2000) 

Fig.4 shows some results of GNLLE and LLE on 
a dense dataset. LLE can distinguish different sam-
ples and preserve their local topological structure, 
although when k=12, its result is slightly inferior to 
those when k=13 and 14 (Figs.4b~4d). Figs.4e~4h 
illustrate the performance of GNLLE when r=rmin+ 
2.8, rmin+3.0, rmin+3.2, and rmin+3.4, respectively, 
indicating that GNLLE not only has the capability of 
distinguishing the samples correctly but also embod-
ies the aggregation ability of the similar samples on 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

the embedding manifold. Therefore, GNLLE can 
obtain better performance on dense datasets, just as 
LLE. 
Experiment 2    The performance comparison be-
tween GNLLE and LLE on a sparse dataset (N=200) 

Fig.5 presents some results of GNLLE and LLE 
on a sparse dataset. Figs.5b~5d show that LLE cannot 
correctly distinguish different samples when k=12, 13 
and 14. But in GNLLE, with the increase of the radius 
r (r=rmin+19, rmin+21, rmin+23, and rmin+25), the 
samples of the same color can be grouped into a ho-
mogeneous region on the embedding manifold to 
some extent (Figs.5e~5h). Thus, GNLLE can be used 
for dimensionality reduction on sparse datasets and 
outperforms LLE in this regard.  

Some conclusions can be drawn as follows: 
1. Different relationships between the number of 

the nearest neighbors and the size of the dataset. In 
LLE, since a fixed number of samples are added into 
the neighborhood of the current data with the increase 
of k (which is proportional to the size of the dataset; 
i.e., if k increases by 1, the total number of the added 
samples is equal to the sample number in the dataset), 
the samples that have no contribution to the recon-
struction of the current data on the embedding mani-
fold may be blindly regarded as the nearest neighbors, 
which will easily lead to a failure. However, in 
GNLLE, with the increase of Δr, only the samples 
within the globular neighborhood can be viewed as 
the nearest neighbors of the current data, so the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                            (b)                                             (c)                                          (d) 

(e)                                            (f)                                             (g)                                          (h) 
Fig.4  The performance comparison between GNLLE and LLE (N=2000) 

(a) Distribution map; (b) k=12; (c) k=13; (d) k=14; (e) r=rmin+2.8; (f) r=rmin+3.0; (g) r=rmin+3.2; (h) r=rmin+3.4. N, the data 
number; k, the neighbor number; r, the globular radius; rmin, the shortest distance. (b)~(d) LLE, (e)~(h) GNLLE 
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samples (especially some outliers) far away from the 
current data will be excluded (i.e., the number of the 
added samples has no direct relationships with the 
size of the dataset). Therefore, compared with LLE, 
GNLLE has a stronger anti-noise ability. 

2. Different stabilities of preserving the local 
topological structure of the dataset. In LLE, since k is 
a fixed parameter, its small changes may cause per-
formance degradation. However, in GNLLE, r is an 
adjustable parameter; i.e., its value can be decreased 
when dealing with dense datasets, and increased when 
handling sparse datasets. Therefore, compared with 
the strong parameter k in LLE, the parameter r in 
GNLLE is a weak one. Moreover, different from the 
neighbor selection in LLE, GNLLE does not blindly 
absorb the candidate data when searching the nearest 
neighbors within the globular neighborhood, so it 
embraces a better stability of preserving the local 
topological structure of the dataset.  

GNLLE optimizes the processes of both 
neighborhood construction and neighbor selection 
based on a geometric principle, which is intuitive and 
easy to understand, and overcomes the shortcomings 
of being sensitive to noise and incapable of handling 
sparse datasets in LLE to some extent. GNLLE can 
better maintain certain neighbor relationships be-
tween adjacent data, but cannot alleviate the distor-
tion of the overall topological structure of the dataset 
(i.e., two faraway data in the high-dimensional space 
are close to each other on the corresponding low- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dimensional embedding manifold) in the nonlinear 
dimensionality reduction approaches based on locally 
linear embedding (the distortion may be more serious 
on sparse datasets). The reasons can be summarized 
as follows: 

1. To preserve the local topological structure of 
the dataset, the size of the neighborhood for a sparse 
dataset is larger than that for a dense dataset. Those 
data that have no contribution to the reconstruction of 
the current data are not treated as the nearest 
neighbors in GNLLE; nevertheless, when dealing 
with a sparse dataset, for avoiding the loss of too 
much useful information, the radius of the globular 
neighborhood should be enlarged. This may distort 
the overall topological structure of the dataset. 

2. In many cases, the intrinsic structure of the 
dataset with curved surfaces bears folding or bending 
in the high-dimensional space. The spacing between 
two different curved surfaces is very small, but the 
distance between two data from different curved 
surfaces is the smallest and these two data may be 
added into the same neighborhood during neighbor 
selection; this will lead to the distortion of the overall 
topological structure when reconstructing the current 
data on the embedding manifold (the distortion may 
be more serious on sparse datasets). 

The distortion attributed to the first reason can be 
reduced through choosing a suitable globular radius 
based on experience and continuous practice. How-
ever, the distortion attributed to the second reason is 

Fig.5  The performance comparison between GNLLE and LLE (N=200) 
(a) Distribution map; (b) k=12; (c) k=13; (d) k=14; (e) r=rmin+19; (f) r=rmin+21; (g) r=rmin+23; (h) r=rmin+25. N, the data 
number; k, the neighbor number; r, the globular radius; rmin, the shortest distance. (b)~(d) LLE, (e)~(h) GNLLE 

 (a)                                            (b)                                              (c)                                            (d) 

 (e)                                            (f)                                               (g)                                            (h) 
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related to the pairwise similarity calculation adopted 
by GNLLE; it also exists in most nonlinear dimen-
sionality reduction approaches, such as LLE and 
ISOMAP. Since such similarity calculation is not 
completely consistent with human perception, it 
cannot shorten the semantic gap existing in image 
semantic understanding and its applications. As a 
result, for eliminating the distortion of the whole data 
manifold, the nearest neighbors identified by GNLLE 
should be reselected and the obtained neighborhood 
should be updated as well. 
 
 
AN IMPROVED GNLLE ALGORITHM USING 
PATH CLUSTERING 
 
Reselection of the nearest neighbor 

Based on the assumption of local linearity on a 
nonlinear embedding manifold, being the same as 
LLE, GNLLE obtains a dimensionality reduction 
mapping of maintaining the local configuration be-
tween two adjacent data but not the overall topo-
logical structure of the dataset. In order to obtain a 
more accurate semantic similarity required for image 
semantic understanding and its applications, GNLLE 
should be developed to keep the whole data manifold 
completely. Path-based clustering, a psychophysi-
cally plausible similarity measure proposed by 
Fischer et al.(2001), had been applied in texture im-
age clustering (Fischer et al., 2001; Fischer and 
Buchmann, 2003). This method is based on empirical 
observation. The correlations between data can be 
described by local homogeneity or connectivity 
(some mediating ‘small edge elements’). Enlightened 
by path-based clustering, we propose an improved 
GNLLE algorithm, the globular neighborhood and 
path clustering based locally linear embedding algo-
rithm (GNPCLLE). GNPCLLE can reselect the near-
est neighbors (which are identified by GNLLE) and 
further update the globular neighborhood by estab-
lishing the correlation matrix and redefining the dis-
tance measure. 

Suppose that N points are distributed in a 
D-dimensional Euclidean space ED, and P is a set of 
all paths between xi and xij, P(xij, xi)={p1(xij, xi), p2(xij, 
xi), …, pl(xij, xi)}. Assume that there exist qk small 
edge elements on each path pk(xij, xi) (k=1, 2, …, l) 

which are regarded as the nearest neighbors of the 
current data on the low-dimensional embedding 
manifold. We formulate the data correlation between 
xi and xij as follows: 
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and its abbreviated form is 
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where e denotes each edge on one path (which is 
composed of qk small edge elements) between xi and 
xij, and de represents the weight corresponding to e 
(equal to the distance between its two endpoints). 
That is, first judge the weights of all edges on each 
path between xi and xij and take the maximum weight 
as the data correlation of this path, and then according 
to the principle that the data correlation between two 
points is inversely proportional to the distance be-
tween them, the minimum data correlation in all paths 
is chosen as the data correlation between xi and xij 
(i.e., the smaller the s(xij,xi) is, the larger the data 
correlation between xi and xij will be). Thus, the cor-
relation matrix of the dataset can be defined as follows: 
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As s(xij,xi)=s(xi,xij) and s(xii,xi)=0, the correlation 
matrix S is symmetric. 

It will take much time to calculate the data cor-
relations on all possible paths between two data. One 
optional scheme to reduce the computational com-
plexity is that, first using GNLLE to obtain the can-
didate neighbors identified by the globular neighbor- 
hood, then computing the data correlations on the 
paths (which are a subset of all possible paths) con-
nected by these candidate neighbors that are regarded 
as small edge elements, and finally updating the 
nearest neighbors of the current data based on their 
data correlations. 
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GNPCLLE algorithm 
To implement GNPCLLE, we insert one critical 

step between steps 1 and 2 in GNLLE. In this added 
step, the correlations between the current data and the 
other data on the paths (which are composed of the 
candidate neighbors) are calculated (Eq.(13)), and the 
nearest neighbors of the current data are reselected 
according to their correlations between each other. 
The flow of the GNPCLLE algorithm is listed below: 

 

Algorithm 2   Globular neighborhood and path clus-
tering based locally linear embedding (GNPCLLE) 
Input: X is an image set in the high-dimensional space, X={x1, 

x2, …, xN | xi∈ú
D, i=1, 2, ..., N}; r is a globular radius; Δr 

is a radius increment; d (<<D) is the dimensionality of the 
low-dimensional embedding manifold. 

Output: Y={y1, y2, …, yN | yi∈ú
d, i=1, 2, ..., N}. 

1  Call a function to construct globular neighborhood: 
(Nei)=CalculateNeighborhood(X, r, Δr, d);  
// the same as in GNLLE  

2  Call a function to reselect nearest neighbors:  
(Nei′)=UpdateNeighbor(Nei); 

...    // lines 3~7 are the same as lines 2~6 in GNLLE 
8  Return Y={y1, y2, …, yN}; 
Function    (Nei′)=UpdateNeighbor(Nei) 
Input: Nei is a set includes the candidate neighbors, i.e., 

Nei={gnei(x1), gnei(x2), …, gnei(xN)}. 
Output: Nei′={gnei′(xi) | i=1, 2, …, N}. 
9   For each xi∈X do {  
10     For each xij∈gnei(xi) do { 
11         For each xijk∈gnei(xij) do { 
12            d1=dist(xi, xil);    // xil is the farthest neighbor of xi  
13            d2=dist(xijk, xij); 
14            If d2<d1 then flag=1; else flag=0; 
15            If xijk∉gnei(xi) then flag1=1; else flag1=0; 
16            If xijk≠xi then flag2=1; else flag2=0;  
17            If flag==1&&flag1==1&&flag2==1 then { 
18                Delete xil from gnei(xi); 
19                Insert xijk into gnei(xi); } 
20            Else {take the next neighbor from gnei(xi); }}}  
21         gnei′(xi)=gnei(xi); } 
22 Return Nei′={gnei′(x1), gnei′(x2), …, gnei′(xN); }  
 

In terms of the computational complexity of the 
GNPCLLE algorithm, we compute only the addi-
tional complexity generated by the calculation of data 
correlation and the reselection of nearest neighbors. 
Since UpdateNeighbor() includes a triple loop, we 
calculate the time consumption as follows: 
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where pi and pij denote the neighbor numbers of xi and 
xij, respectively (pi, pij<<N). Therefore, the GNPCLLE 
algorithm has an additional computational complex-
ity of O(N). 
 
Performance comparison among GNPCLLE, 
GNLLE, PCLLE and LLE 

To validate the effectiveness of GNPCLLE, we 
designed one experiment to compare the performance 
among GNPCLLE, GNLLE, PCLLE (an improved 
LLE algorithm based on path-based clustering) and 
LLE. The Swiss Roll dataset was used in the ex-
periment. 

Since the topological structure of the Swiss Roll 
dataset bears some folding or bending (like spirals), 
the curved surfaces may be close to each other on the 
embedding manifold. If we apply the distance meas-
ure based on pairwise similarity calculation, some 
data from different curved surfaces will be assigned 
into the same neighborhood mistakenly. Fig.6a shows 
the result of GNLLE before using data correlation to 
reselect the nearest neighbors. We can see that a dis-
tortion of the whole data manifold occurred. Fig.6b 
gives the result of GNPCLLE after using data corre-
lation. It is obvious that GNPCLLE not only correctly 
distinguished the data but also well preserved the 
overall topological structure of the dataset. Figs.6c 
and 6d present the results of PCLLE and LLE after 
and before applying data correlation to reselect the 
nearest neighbors, and similar results to GNPCLLE  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6  The performance comparison among (a) GNLLE, 
(b) GNPCLLE, (c) LLE, and (d) PCLLE (N=200) 

(a) (b) 
 
 
 
 
 
 

 
(c)                                               (d) 
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and GNLLE were obtained. In addition, from the 
performance comparison between GNPCLLE and 
PCLLE (Figs.6b and 6d), a stronger aggregation 
ability can be achieved by improving GNLLE than 
directly improving LLE. 

Some conclusions can be drawn as follows: 
1. Using data correlation to reselect the nearest 

neighbors can preserve the overall topological struc-
ture of the dataset completely. Since in the calculation 
of data correction the coordinates of the data on 
curved surfaces are considered, the overall topologi-
cal structure of the dataset can be effectively main-
tained. By using path-based clustering similarity 
calculation, the reselection of the candidate neighbors 
recognized by GNLLE avoids topological structure 
distortion in GNLLE, and results in good expansi-
bility. Data correlation can be utilized to improve the 
other nonlinear dimensionality reduction algorithms 
based on pairwise similarity calculation (e.g., PCLLE 
is an improved algorithm based on LLE). 

2. Using data correlation to reselect the nearest 
neighbors can improve the performance of LLE on 
sparse datasets to some extent. Applying path-based 
clustering to GNPCLLE enables gathering the ho-
mogenous data on the embedding manifold, and thus 
optimizes the irregular neighborhood constructed by 
the nearest neighbors in LLE and improve LLE’s 
performance on sparse datasets as well. 

As discussed above, in GNLLE, maintaining the 
overall topological structure of the dataset is not fully 
considered when the high-dimensional dataset is 
mapped into a manifold with a lower dimension, thus 
inevitably causing distortion of the whole data 
manifold. We introduce path-based clustering into 
GNLLE and present GNPCLLE to reselect the can-
didate neighbors within the globular neighborhood, 
via calculating the correlations between the data and 
further revealing the true relationships of the data on 
the embedding manifold, even for those datasets with 
mapping distortions. Note that GNPCLLE has simi-
larities with LSML (locally smooth manifold learning) 
proposed by Dollár et al.(2006; 2007). For example, 
both of them aim to recover the manifold structure, 
find the manifold through the selection of nearest 
neighbor and the definition of graph-based distance 
measure, and are robust algorithms, able to obtain 
satisfying results on the dataset with mapping distor-

tions to some degree. However, there still exist great 
differences between GNPCLLE and LSML, mainly in 
the following aspects: 

1. GNPCLLE and LSML differ in motivation 
and potential applicability. GNPCLLE can be 
grouped as a spectral embedding method (Weinberger 
and Saul, 2004), where manifold learning is viewed as 
finding a structure preserving embedding. But in 
LSML, manifold learning is regarded as traversing 
the low-dimensional manifold. Furthermore, these 
two algorithms focus mainly on different application 
areas: GNPCLLE emphasizes image understanding 
and its applications, such as image object recognition, 
image clustering and classification, and semantic- 
based image retrieval; LSML concentrates on image 
and video processing, such as tangent distance esti-
mation, video compression, and motion transfer.  

2. GNPCLLE and LSML exploit similar ideas in 
neighbor selection (in GNPCLLE, the nearest neigh- 
bors of the current data are recognized by a globular 
radius; in LSML, besides the k-nearest-neighbor, a 
threshold (e.g., a maxDist value) is preset to restrict 
the searching region of the nearest neighbors), but are 
based on different mathematical principles. The for-
mer identifies the nearest neighbors via constructing a 
globular neighborhood from geometric intuition and 
the variation of the data can be revealed by data cor-
relation, while the latter uses a wrapping function to 
generate the nearest neighbors and to capture the 
change modes of data.  

3. GNPCLLE and LSML share different 
schemes for distance measure calculation. Specifi-
cally, considering that a high-dimensional dataset 
may have special shapes, for maintaining the whole 
data manifold, these two algorithms do not compute 
the distance between two adjacent data simply on an 
Euclidean distance. Path-based clustering is intro-
duced into GNPCLLE and the geodesic distance is 
used in LSML. Different from GNPCLLE, LSML is 
still an approach based on pariwise similarity calcu-
lation (which prefers dense datasets) (Hofmann and 
Buhmann, 1997); although the overall topological 
structure of the dataset can be maintained, LSML may 
fail to find the correct data patterns on the low- 
dimensional manifold for a sparse dataset, especially 
when dealing with the dataset with spirals, circles or a 
tube like data distribution. In contrast, GNPCLLE can 
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extract the hidden topological structure from the 
dataset on the manifold in a robust way, even for the 
dataset with a sparse distribution or noise. Conse-
quently, in real-world applications (especially in the 
network environment), despite the complexity and 
diversification of Web images, GNPCLLE can 
achieve satisfying results.  

We designed an experiment for comparing 
GNPCLLE with LSML and ISOMAP that apply the 
geodesic distance. As shown in Fig.7, GNPCLLE 
outperformed LSML and ISOMAP when handling a 
sparse dataset with noise (the performance compari-
son between LSML and ISOMAP was analyzed by 
Dollár et al.(2006; 2007)). 

Note that GNPCLLE is not robust enough to be 
well suited for optimizing image features under all 
conditions. That is, we use path-based clustering to do 
image feature optimization for the high-dimensional 
dataset with curved surfaces, so the performance of 
GNPCLLE is probably inferior to that of GNLLE or 
LLE when dealing with the dataset with an even dis-
tribution or without a heavy mapping distortion. 
Meanwhile, due to a longer computation time for data 
correlation calculation, GNPCLLE may not outper-
form GNLLE or LLE in terms of both efficiency and 
precision. Additionally, for a very noisy dataset, two 
data may be connected by unsuitable small edges, 
causing the results of GNPCLLE to be unreliable. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

APPLICATION EXAMPLES 
 

To further verify the feasibility and effectiveness 
of the proposed GNLLE and GNPCLLE, we designed 
some experiments to compare our algorithms with 
PCA and LLE. Hardware platform: T2350 1.86 GHz 
CPU and 2 GB main memory; software tools: mixed 
programming of VC++6.0 and MATLAB 7.0. 
Experiment 3 (Natural image clustering)    Natural 
image clustering is unsupervised learning. It is aimed 
at grouping the image data in an image set into dif-
ferent semantic categories according to the clustering 
principle that the extra-class difference is as large as 
possible while the intra-class difference is as small as 
possible. The image set used here includes 539 im-
ages downloaded from the Internet, which belong to 
three semantic categories (Fig.8 gives some image 
samples). The numbers of images in the categories 
Beach (C1), Lawn (C2) and Sunrise/Sunset (C3) are 
133, 186 and 220, respectively. Since the sizes of the 
original images are different, we performed a nor-
malization preprocessing before feature extraction 
(the size of the normalized image is 126×189 or 
189×126). After analyzing the characteristics of these 
natural images, we extracted a 40-dimensional raw 
feature vector for each image data, which includes 
color histogram (24), wavelet texture (3), shape in-
variant moment (7), and edge histogram (6) (note that 
for speeding up the execution, we did not extract text 
features from the related Web pages). Since the con-
cept of ‘semantic categories’ has some fuzziness, we 
adopted the fuzzy c-means clustering (FCM) algo-
rithm (Dunn, 1973; Bezdek, 1981) to realize a fuzzy 
clustering; i.e., the images are grouped into the cor-
responding categories according to their membership 
degrees. To quantitatively evaluate the implementa-
tion results of the algorithms, the accuracy (AC) is 
used to evaluate the clustering performance and de-
fined as follows: 

 

AC ( ) / ( ),P i T i=                       (16) 
 
where T(i) denotes the total number of the images 
belonging to the ith category, and P(i) denotes the 
number of the images correctly grouped into the ith 
category. Table 1 and Fig.9 show the experimental 
results. 

Fig.7  The performance comparison among (a) ISOMAP,
(b) LSML, and (c) GNPCLLE (N=200, random Gaussian
noise with μ=0 and σ=0.5) 

 (a)  (b) 

(c) 
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As can be seen from Table 1, for clustering three 
semantic categories, using GNPCLLE to optimize the 
image feature resulted in the highest average AC 
(0.8740) while PCA had the lowest one (0.8230), and 
the average AC of GNLLE and LLE was 0.8595 and 
0.8494, respectively. It can be observed that the four 
algorithms had different performance on different 
categories. For example, for Beach (C1), GNPCLLE 
obtained a high accuracy (0.9875) but failed to out-
perform GNLLE and LLE on the clustering of Lawn 
(C2) and Sunrise/Sunset (C3). GNLLE obtained the 

Table 1  Comparison of clustering performance among four algorithms when mapping into 2D~7D space 

Accuracy Algorithm Category 
2D 3D 4D 5D 6D 7D Average 

C1 0.7368 0.9700 0.9625 0.9549 0.9624 0.9549 0.9236 
C2 0.5591 0.6398 0.6935 0.7312 0.7796 0.7688 0.6953 
C3 0.7955 0.8773 0.9000 0.8864 0.8545 0.7864 0.8500 

PCA 

Average 0.6971 0.8290 0.8520 0.8575 0.8655 0.8367 0.8230 
C1 0.6917 0.8045 0.7744 0.8045 0.8421 0.7594 0.7794 
C2 0.8763 0.8118 0.8333 0.8387 0.8011 0.8763 0.8396 
C3 0.9318 0.9420 0.9369 0.9227 0.9318 0.9107 0.9293 

LLE 

Average 0.8333 0.8528 0.8482 0.8553 0.8583 0.8488 0.8494 
C1 0.7444 0.8421 0.8271 0.8120 0.8571 0.9173 0.8333 
C2 0.8548 0.8011 0.8441 0.8387 0.7957 0.7419 0.8127 
C3 0.9409 0.9455 0.9318 0.9227 0.9273 0.9273 0.9326 

GNLLE 

Average 0.8467 0.8629 0.8677 0.8578 0.8600 0.8622 0.8595 
C1 0.9774 0.9774 0.9850 0.9950 0.9950 0.9950 0.9875 
C2 0.8871 0.7849 0.7849 0.7957 0.7957 0.7957 0.8073 
C3 0.7727 0.8955 0.8955 0.8000 0.8000 0.8000 0.8273 

GNPCLLE 
 

Average 0.8791 0.8859 0.8885 0.8636 0.8636 0.8636 0.8740 
C1: Beach; C2: Lawn; C3: Sunrise/Sunset. The bold numbers are the best results 

Fig.8  Some image samples (each row corresponds to one semantic category and they are Beach, Lawn, and Sun-
rise/Sunset from top to bottom) 
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Fig.9  Comparison of the average accuracy among four 
algorithms when mapping into 2D~7D space 
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best result when clustering Sunrise/Sunset (0.9326) 
whereas it was slightly inferior to LLE when clus-
tering Lawn (0.8127 vs. 0.8396). GNPCLLE and 
PCA had good results for Beach (0.9875 and 0.9236, 
respectively), but GNLLE and LLE had good results 
for Sunrise/Sunset (0.9326 and 0.9293, respectively). 
None of the four algorithms achieved a high AC on 
the clustering of Lawn. 

The reasons for such results may be as follows: 
among the three semantic categories, Breach 
achieved a relatively satisfying result due to the fact 
that the images belonging to this category have dis-
tinct visual characteristics, such as white cloud, blue 
sky and sea water. However, the Lawn images have 
the diversity of color and texture features, so the av-
erage clustering accuracy of this category was lower 
than those of the other two categories. In addition, 
many images in the image set have parts that are 
visually similar, such as the regions corresponding to 
sky, water, tree, and sand, so these images are easily 
grouped into the wrong category. 

Fig.9 shows the comparison of clustering per-
formance among four algorithms when mapping into 
a low-dimensional space with different dimensional-
ities. Obviously, GNPCLLE is superior to GNLLE 
and LLE for every dimensionality (from 2D to 7D), 
and the lower the dimensionality is, the wider the 
disparity range will be. During the changes of feature 
dimensionality, PCA shows a significant decrease 
(especially when the features are mapped into the 2D 
space) whereas GNPCLLE, GNLLE and LLE have 
no critical fluctuations. Therefore, compared with the 
linear ones, nonlinear dimensionality reduction ap-
proaches can better optimize the feature vectors that 
need to be reduced sharply; this is suitable for dealing 
with image data in the network environment (e.g., 
Web images).  
Experiment 4 (Erotic image recognition)    Erotic 
image recognition is essentially a binary classification 
problem. The image set used here includes 1284 
erotic images (including Caucasians, Asians, and 
Blacks) and 1800 normal images (involving figures, 
landscapes, buildings, animals, and other topics) 
downloaded from the Internet. After preprocessing, 
an 86-dimensional raw feature vector was extracted 
from each image data (Jiang, 2007), including the 
number and the ratio of the skin color regions based 

on a skin mask image (6), chromaticity moment (6), 
color moment (9), color correlogram (4), wavelet 
texture (26), shape invariant moment (7), and edge 
invariant moment (28). To remove data redundancies 
in the raw features, we performed an optimization 
process before using a learning machine to classify 
these images. Herein, we used the approach proposed 
in Xu et al.(2004) to determine the dimensionality of 

the low-dimensional space; i.e., 
1 1

l k
j jj j

λ λ
= =∑ ∑  

0.95,≥  where λi is the eigenvalue of the covariance 
matrix Qi in Eq.(7). The dimensionality of the opti-
mized feature vectors was set to 12 (the frontal 12 
main components have already contained about 
99.7% of the raw feature vector information). 

Support vector machine (SVM) is a type of 
machine learning method based on statistical learning 
theory and Vapnik-Chervonenkis (VC) dimension 
theory (Vapnik, 1995). SVM pursues structural risk 
minimization instead of empirical risk minimization, 
which can guarantee the generalization ability of 
learning machines. Designed by finding an optimal 
hyperplane to solve the two-class classification 
problems, it has been used for various applications 
under the limited samples in recent years. Our work is 
to distinguish the erotic images from the normal ones, 
and hence SVM is an ideal classifier. After a com-
parison among several SVMs, we chose the sequen-
tial minimal optimization algorithm (SMO) (Platt, 
1999) for training the SVM due to its fast imple-
mentation. The radial basis function was used here as 
the SVM kernel function. We designed three tests and 
each time the images were randomly divided into a 
training set (including 1164 erotic and 1600 normal 
images) and a test set (including 120 erotic and 200 
normal images). The accurate rate (ACR) and recall 
rate (RER) are used as performance evaluations and 
are defined as follows (Jiang, 2007): 

 

nu no nu noACR ( ) / ( ),P P T T= + +            (17) 

nu nuRER / ,P T=                        (18) 
 
where Pnu and Pno denote the numbers of the correctly 
recognized erotic images and normal ones, respec-
tively, and Tnu and Tno denote the total numbers of the 
erotic images and the normal ones in the test set, 
respectively. Table 2 shows the experimental results. 
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As shown in Table 2, except PCA, the other three 

algorithms (GNPCLLE, GNLLE, and LLE) all ob-
tained high RERs. The reason may be that an obvious 
difference between erotic images and normal ones is 
mostly based on the bare degree of human skin. 
During feature extraction, the features of skin color 
and texture are extracted, which are related to the 
distinct characteristics of erotic images, so satisfying 
RERs can be obtained. Among the four algorithms, 
the optimization of image feature based on GNLLE 
obtained the highest RER (0.9361), the following 
were GNPCLLE (0.9083) and LLE (0.8639), and 
PCA was the poorest (0.6250), which further con-
firms the assumption that the data distribution of Web 
images is nonlinear. On the other hand, due to the fact 
that the contents of normal images in the image set are 
diversified (e.g., for the close-up face images, some 
areas’ color is easily confused with skin color, and 
some objects’ texture is also similar to skin texture), 
the recognition of normal images is more challenging 
than that of erotic images. Therefore, compared with 
the average RERs, the average ACRs that GNPCLLE, 
GNLLE and LLE obtained were relatively low. 

 

As for PCA, the execution was fast, but both 
RER and ACR were small. Since GNLLE needs to 
construct globular neighborhood, the average execu-
tion time was 11.863 s (including the feature optimi-
zation based on GNLLE, training and testing the 
images via SVM). GNPCLLE needs an additional 
time of 3.717 s to optimize the globular neighborhood 
and reselect the nearest neighbors. Although the av-
erage execution time of GNLLE (11.863 s) was 
longer than that of LLE (6.745 s) (but shorter than that 
of GNPCLLE (16.590 s)), from the view of composite 
consideration, GNLLE was more effective than the 
other algorithms in terms of both recognition accu-
racy and execution speed. GNPCLLE achieved the 
highest ACR (0.8948), but its average RER was lower 
than that of GNLLE on the recognition of the erotic 
images (0.9083 vs. 0.9361); this may be caused by the 
intrinsic topological structure of the image set. 
 
 
CONCLUSION 
 

In this paper, we propose two novel locally linear 
embedding algorithms, GNLLE and GNPCLLE, to 
do image feature optimization for image semantic 
understanding and its applications. Experimental 
results showed that our algorithms not only inherit the 
characteristics of LLE in preserving the local 
neighbor relationships between adjacent data during 
dimensionality reduction, but also well reveal the 
overall topological structure within image data on the 
low-dimensional embedding manifold. Moreover, 
these two algorithms both have good aggregation 
abilities on sparse datasets and strong anti-noise ca-
pabilities, which can effectively enhance the per-
formance of image clustering and recognition, espe-
cially for Web images whose feature dimensionality 
should be reduced sharply. Therefore, nonlinear di-
mensionality reduction approaches based on manifold 
learning provides a feasible way for image feature 
optimization. 

However, there still exist some limitations in 
GNLLE and GNPCLLE. For example, in GNLLE, 
although the globular radius is a flexible parameter, 
its value may affect the results of dimensionality 
reduction. An optimum value relies on much  
 

Table 2  Comparison of the recognition performance of 
SVM after image feature optimization using four algo-
rithms 

Test Algorithm ACR RER Time (s)
PCA 0.6656  0.5833  3.186 
LLE 0.8313  0.8500  6.188 
GNLLE 0.8718  0.9250  11.323 

1 

GNPCLLE 0.8875  0.8750  16.580 
PCA 0.7063  0.6167  4.216 
LLE 0.8250  0.8500  7.879 
GNLLE 0.8844  0.9417  12.957 

2 

GNPCLLE 0.8938  0.9250  16.953 
PCA 0.6906  0.6750  3.063 
LLE 0.8594  0.8917  6.167 
GNLLE 0.8875  0.9417  11.309 

3 

GNPCLLE 0.9031  0.9250  16.237 
PCA 0.6875  0.6250  3.488 
LLE 0.8386  0.8639  6.745 
GNLLE 0.8894  0.9361  11.863 

Average 

GNPCLLE 0.8948  0.9083  16.590 
ACR: accurate rate; RER: recall rate. The bold numbers are the best
results 
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experience and practice in most cases. GNPCLLE 
may suffer from unstable performance due to the 
distortion extent of the topological data structure 
when mapping the image data from a high-  
dimensional space into a low-dimensional manifold. 
For promoting the efficiency of GNPCLLE, we need 
to further mining the hidden topological structure 
within the dataset, explore the extension degree of 
two adjacent data, and seek the change tendency of 
the manifold. As a result, fully exploiting and utiliz-
ing the prior knowledge of the image data in practical 
applications can significantly improve the perform-
ance of the proposed algorithms. In addition, both 
algorithms need an extra cost for the construction of 
globular neighborhood and the selection of nearest 
neighbors, which results in a longer execution time 
compared with LLE, and thus how to speed up the 
implementations of the two algorithms should also 
receive enough attention. Meanwhile, since both 
GNLLE and GNPCLLE are unsupervised learning 
algorithms, to extend them to semi-supervised or 
supervised learning ones and to improve their gener-
alization abilities are promising work in future. 
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