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Abstract:    In this paper, an efficient model structure composed of a second-order resistance-capacitance network and a simply 
analytical open circuit voltage versus state of charge (SOC) map is applied to characterize the voltage behavior of a lithium iron 
phosphate battery for electric vehicles (EVs). As a result, the overpotentials of the battery can be depicted using a second-order 
circuit network and the model parameterization can be realized under any battery loading profile, without a special characteriza-
tion experiment. In order to ensure good robustness, extended Kalman filtering is adopted to recursively implement the calibration 
process. The linearization involved in the calibration algorithm is realized through recurrent derivatives in a recursive form. 
Validation results show that the recursively calibrated battery model can accurately delineate the battery voltage behavior under 
two different transient power operating conditions. A comparison with a first-order model indicates that the recursively calibrated 
second-order model has a comparable accuracy in a major part of the battery SOC range and a better performance when the SOC is 
relatively low. 
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1  Introduction 
 

Electric vehicles (EVs) are playing an increas-
ingly important role in reducing fuel consumption and 
lowering poisonous emissions in ground transporta-
tion (Sciarretta et al., 2004; Lin et al., 2008; Xiong et 
al., 2009). Traction battery packs, important compo-
nents of EVs, directly determine the performance of 
EVs in actual daily driving. In order to pursue an 
optimal efficiency of energy utilization, a good bat-
tery management system is required to monitor bat-
tery internal states that cannot be directly measured in 
actual operations of EVs, such as state of charge 
(SOC) and state of health (SOH) (Hu et al., 2010a; 
2010b; Sun et al., 2011). In order to effectively indi-

cate these unmeasured states, a battery model that can 
essentially describe the battery dynamical behavior is 
needed. 

For on-board battery management applications 
for EVs, a good battery model should be sufficiently 
accurate, adaptable and have a moderate structure. An 
electrochemical battery model often can depict the 
battery voltage response very accurately. However, 
this type of model, including a set of partial differen-
tial equations, is too complicated to guarantee a high 
computational efficiency, which is required for actual 
on-board applications. To seek a compromise be-
tween model accuracy and complexity, equivalent 
circuit-based and simplified electrochemistry-based 
model structures have often been investigated. Open 
circuit voltages (OCVs) in many equivalent circuit- 
based models have often been represented by the 
tabulated OCV-SOC data determined beforehand (Lin 
et al., 2005; Kim, 2006; 2008; Li, 2007; Qiang et al., 
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2008; Dai et al., 2009). The accuracy of this type of 
model is thus strongly dependent on the reliability of 
the tabulated data. Nevertheless, the experiments for 
specially collecting the tabulated OCV-SOC data are 
often time-consuming and error-prone, especially for 
lithium iron phosphate batteries, which have quite flat 
OCV-SOC curves. Although many simplified elec-
trochemical battery models featured an analytical 
OCV-SOC map which can make experiments for 
ascertaining OCV values unnecessary (Plett, 2004; 
Wang et al., 2007; Han et al., 2009; Sun et al., 2011), 
their ability to describe the battery polarization volt-
age was often limited. 

On the other hand, most versions of the two 
types of battery models have been parameterized 
using batch methods, sometimes yielding poor ro-
bustness against varying battery operations. Thus, the 
recursive least squares algorithm with forgetting 
factors has been used to online calibrate first-order 
battery models (Verbrugge, 2007; Hu et al., 2011). 
However, in many cases, the standard least squares- 
based identification methods are only applicable for 
linear battery model identification. If a linear identi-
fiable form of the battery model is very difficult or 
impossible to be derived, the classic linear- 
system-identification approaches might be nonfeasi-
ble. Therefore, the advanced extended Kalman filter-
ing has been proposed to recursively identify nonlin-
ear battery models (Plett, 2004). Nevertheless, the 
structure of the “enhanced self-correcting” model was 
so complicated that tuning the extended Kalman filter 
was a very difficult task and a good computational 
efficiency was challenging to be attained. Extended 
Kalman filtering has also been used to calibrate the 
internal resistance of a lithium ion battery (Dai et al., 
2009). However, recursively identifying the internal 
resistance did not completely characterize the bat-
tery behavior online from the viewpoint of system 
identification.  

In this paper, an efficient model structure is ap-
plied to depict the voltage behavior of an EV lithium 
iron phosphate battery. The model structure consists 
of a second-order resistance-capacitance network and 
a simply analytical representation of OCV-SOC map 
so that the advantages of both the second-order circuit 
network and simplified electrochemistry-based mod-
els can be effectively combined. To pursue a good 
adaptability, extended Kalman filtering is used to 

recursively calibrate the second-order model. The 
linearization associated with extended Kalman fil-
tering is realized through recurrent derivatives in a 
recursive fashion. A comparison with a first-order 
model with the same OCV structure is also made. 

 
 

2  Battery model structure 
 

The battery model structure is shown in Fig. 1. 
Voc denotes OCV, which is depicted by the Nernst 
equation with respect to the battery SOC S. K0 and K1 
are two unknown parameters (Ota et al., 2008). Two 
resistance-capacitance networks are used to simulate 
the overpotential effects of the battery: the R1C1 

network is used for the fast time-constant behavior of 
the battery and the R2C2 network for the relatively 
slow time-constant behavior. R3 is the ohmic resis-
tance, Vt is the output voltage of the model, and I is 
the current. 

 
 

 
 
 
 

 
 
 
 
 
 
 

According to basic principles of the electrical 
circuits, the discrete-time state equations can be de-
scribed as follows: 
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Fig. 1  Battery model structure 
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where V1 and V2 represent the voltages across C1 and 
C2, respectively; η is the Coulombic efficiency; Cn is 
the nominal capacity; Δt is the sampling time; and the 
subscript k is the time step index. The output equation 
of the model is described by 
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3  Battery calibration algorithm based on 
extended Kalman filtering 
 

In order to apply extended Kalman filtering to 
identify the model parameters, the calibration process 
of the battery should be represented in a state-space 
form:  
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where θ denotes the battery parameter vector and 

θ=[K0 K1 η α1 b1 α2 b2 3R  3R ]T; Vo is the output 

voltage of the battery. Different values of the ohmic 
resistance R3 are employed for the discharging and 

charging processes of the battery, 3R  and 3R  corre-

spond to the discharging and charging resistances, 

respectively; kI   and kI   correspond to the discharg-

ing and charging currents, respectively. When dis-

charging the battery, k kI I   and 0;kI    when 

charging the battery, 0kI    and .k kI I   ω is the 

process noise, which is assumed to be zero-mean and 
Gaussian white noise.  is the measurement noise 
which is assumed to be also zero-mean and Gaussian 
white noise. The extended Kalman filtering equations 
 

for the process depicted by Eqs. (7) and (8) are given 
below. The decoration “circumflex” is used to repre-
sent an estimated quantity. 

1. Time update 
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where P represents the estimation error covariance for 
ˆ  Q is the covariance of the process noise ω, and the 

subscript k|k−1 is used to denote the time instant be-
fore the measurement at time step k is given.  

2. Measurement update 
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where W is the covariance of the measurement noise 
, G is the Kalman gain, and E is an identity matrix. 

Given 1k̂  and 1
ˆ

kx , ˆ
kx  is computed using Eq. (1). 

After initialization, repeat the foregoing time and 
measurement update equations, so as to recursively 

achieve the estimated parameter vector ˆ .k  Although 

ˆ kx  is noisy due to the estimation error of 1k̂ , as the 

recursion times increase, a good calibration result can 

be expected. Additionally, since ˆ
kx  is a function of 

the parameter vector θ, the calculation of Ck involves 
complicatedly recurrent derivatives, which are shown 
as follows: 
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It is clear that the derivative calculations are 

recursive. The calculation of recurrent derivatives can 
be initialized as follows: 
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4  Results and discussion 
 

Two different transient power tests for an EV li-
thium iron phosphate battery were conducted to vali-
date the calibration algorithm. One was the Federal 
Urban Driving Schedule (FUDS) test, the other was a 
variant of the standard Dynamic Stress Test (DST). 
The two transient power-based tests can be used to 
simulate the actual loading conditions of the battery in 
daily driving of EVs. Since the battery SOC is rarely 
allowed to be below 10% in actual EV applications, 
the data sampled in the SOC range from 98% to 10% 
was only applied to evaluate the calibration algorithm. 
The lithium iron phosphate battery had a nominal 
voltage of 3.2 V, a nominal capacity of 12 Ah, and an 
initial SOC of 98% in the two tests. 

The current and voltage of the battery in the 
FUDS test are shown in Fig. 2. According to a priori 
 

knowledge on the battery system, the parameters for 
the extended Kalman filtering calibration algorithm 
are specified as follows: 
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where diag{[…]} denotes a diagonal matrix in which 

[…] is on the main diagonal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Given the current, voltage and parameters shown 
in Eqs. (24)–(28), the extended Kalman filtering- 
based calibration algorithm can be implemented. The 
results of the calibrated parameters are shown in Figs. 

3–5. Trajectories of 0K̂  and 1K̂  are shown in Fig. 3. It 

can be seen that 0K̂  is convergent after quickly 

correcting the initial error and 1K̂  has a slow 

time-varying characteristic. Results of 1̂ , 1̂,b  2̂  

Fig. 2  Current (a) and voltage (b) profiles in the FUDS 
test 
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and 2̂b  in the calibration process are shown in Fig. 4. 

It can be seen that 2̂  is larger than 1̂ . This result 

indicates that the time constant of the R2C2 network is 
larger than that of the R1C1 network. Additionally, a 
rising trend can be seen for both 1̂  and 2ˆ , due to a 

falling trend of the battery SOC in the FUDS test. 

Trajectories of ˆ,  3R̂  and 3R̂  are shown in Fig. 5. It 

can be observed that the estimated Coulombic 
efficiency ̂  has a relatively small change. It also can 

be observed that the estimated discharging resistance 

3R̂  has smaller values at middle (70%–50%) SOC 

values in comparison with those at high (98%–90%) 
and low (20%–10%) SOC values. The estimated 

charging resistance 3R̂  has relatively stable values, 

since the discharging process is dominant in a 
standard FUDS cycle. 

The simulated and measured battery voltages 
are shown in Fig. 6. A magnified part is also shown 
to give more details. It is obvious that the calibrated 
battery model can accurately describe the voltage 
behavior of the lithium iron phosphate battery after 
correcting the initial error of the model parameter 
vector. In order to better evaluate the battery model, 
the relative voltage error is shown in Fig. 7. The 
maximum error can quickly converge to be less than 
1%, indicating an effectiveness of the recursive 
calibration algorithm. The mean relative error is 
0.204%. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the modified DST test, the current and 

voltage of the battery are shown in Fig. 8. The 
parameters for the calibration algorithm were the 
same as those used in the FUDS test. For simplicity, 
the estimated trajectories of the model parameters 
are not illustrated here. The simulated and measured 
battery voltage responses are shown in Fig. 9, in 
which a magnified view is also provided. It is clear 
that the recursively calibrated model can precisely 
capture the actual voltage response after compensating 

Fig. 3  Trajectories of ˆ
0Κ  (a) and ˆ

1Κ  (b) in the calibra-

tion process 

Fig. 4  Trajectories of ˆ1α  (a), 1̂b  (b), ˆ2α  (c) and ˆ
2b  (d) 

in the calibration process 

Fig. 5  Trajectories of η̂  (a), +
3R  (b) and -

3R  (c) in the 

calibration process
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for the initial model error. The relative voltage error 
in the modified DST test is shown in Fig. 10 to more 
straightforwardly demonstrate the performance of the 
model. The mean relative error is 0.369%. 

A comparison with a first-order model was also 
made. The first-order model (Hu et al., 2011) was 
obtained by removing one parallel resistance- 
capacitance network from the proposed model. In 
order to ensure a fair comparison, extended Kalman 
filtering was also used to identify the first-order 
model. The comparison results are shown in Fig. 11 
and Fig. 12. Herein, the relative voltage errors for the 
two models are presented instead of the estimated 
voltage responses. Therefore, the performance dif-
ference between the two models can be more 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

conveniently observed. After correcting the initial 
errors, the two battery models had comparable accu-
racies in a considerable part of the battery SOC range. 
After around 9000 s in the two tests, the first-order 
model presented larger estimation errors than did the 
second-order model. The accuracy deviation may be 
caused by a serious polarization effect of the battery 

Fig. 7  Relative error of the model in the FUDS test 
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Fig. 9  Simulated and measured battery voltages in the 
modified DST test 
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Fig. 6  Simulated and measured battery voltages in the 
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Fig. 8  Current (a) and voltage (b) profiles in the modi-
fied DST test 
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with a relatively low capacity. The two resistance- 
capacitance networks could be more effective to de-
pict large overpotentials generated by the serious 
polarization. Despite a better accuracy at low SOC 
values, the second-order model has a more compli-
cated structure, which results in a heavier computa-
tional load. Thus, it is reasonable to depend on actu-
ally predominant requirements for on-board battery 
management applications to determine which model 
is more suitable. For example, if operating the battery 
at relatively low SOC values (e.g., 20%–10%) in 
actual electric vehicle operations is allowed and the 
computational cost is not a main concern, the  
second-order battery model recursively identified by 
extended Kalman filtering will be better. 

 
 

5  Conclusions 
 

1. A model structure that consists of a second- 
order resistance-capacitance network and a simply 
analytical OCV-SOC map is proposed to characterize 
the voltage behavior of an EV lithium iron phosphate 
battery. As a result, the model parameterization can be 
readily realized. 

2. Extended Kalman filtering is applied to re-
cursively calibrate the battery model. The lineariza-
tion involved in extended Kalman filtering was im-
plemented through recurrent derivatives in a recursive 
form. 

3. Validation results show that the recursively 
calibrated battery model can accurately depict the 
battery voltage behavior under two different battery 
operating situations. The recursive calibration algo-
rithm can guarantee that the battery model has good 
robustness against varying battery loading profiles.  

4. A comparison with a first-order model indi-
cates that the recursively identified second-order 
model has a comparable accuracy in a large portion of 
the battery SOC range and a better performance when 
the SOC is relatively low (<20%). 

5. Future work could focus on simultaneous 
SOC and SOH estimation based on the recursively 
calibrated model. Model update and SOC estimation 
could be coupled to investigate battery monitoring 
and control in the long-time aging process of the 
battery. 

 

Fig. 10  Relative error of the model in the modified DST 
test 
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Fig. 11  Comparison result in the FUDS test 

Fig. 12  Comparison result in the modified DST test
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