
Foster et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2012 13(10):723-746 
 

723

 

 

 

 

Improving the wind and temperature measurements of an 

airborne meteorological measuring system 

 

Stephen FOSTER1, P. W. CHAN†‡2 
(1Aventech Research Inc., Barrie, ON L4N 2E3, Canada) 

(2Hong Kong Observatory, Kowloon, Hong Kong, China) 
†E-mail: pwchan@hko.gov.hk 

Received Sept. 19, 2011;  Revision accepted Aug. 30, 2012;  Crosschecked Aug. 30, 2012 

 

Abstract:    The Aircraft Integrated Meteorological Measuring System 20 Hz (AIMMS-20) has been used by the Hong Kong 
Observatory (HKO), China in data collection for tropical cyclone situations over the South China Sea and windshear and turbu-
lence measurement at the Hong Kong International Airport (HKIA). This paper discusses possible methods for further enhancing 
the quality of the wind and temperature measurements from the system. For wind measurement, the enhancement methods include: 
error modelling of the accelerometer (e.g., bias offset and cross-axis rate sensitivity), global positioning system (GPS) phase lag 
consideration, better representation of the inertial measurement unit (IMU) velocity based on the GPS velocities and considering 
their location differences, consideration of the slower update of GPS velocity, and wing flexure. For temperature measurement, the 
methods include the consideration of the temperature sensor response and the sensor housing response. The results of typical 
flights using AIMMS-20 show that the accuracy of the wind and temperature data could be improved by 20%–30%. Though the 
discussion in the present paper is related mainly to a specific meteorological measuring system on a particular aircraft, the tech-
niques so employed should be a useful reference for similar systems installed on other aircraft. 
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1  Introduction 
 
A windshear alerting service is provided by the 

Hong Kong Observatory (HKO) at the Hong Kong 
International Airport (HKIA). During verification of 
the service, pilot windshear reports are regularly 
obtained from aircraft through air traffic control. For 
more objective verification, aircraft data are also 
collected to study the windshear data. Such aircraft 
data include the quick access recorder (QAR) data 
collected by the airlines. Moreover, in the mid of 
2009, a meteorological measuring system was first 
installed on an aircraft in Hong Kong to collect 
weather data necessary for windshear verification 
purposes. The system is the Aircraft Integrated Me-

teorological Measuring System 20 Hz (AIMMS-20). 
The aircraft is one of the Jetstream 4100 (J4100) 
fixed-wing aircraft of the Government Flying Service 
(GFS) of the Hong Kong Government, which is 
primarily used for search and rescue (SAR) opera-
tions over the South China Sea. When it is not re-
quired to perform SAR operations, the aircraft also 
helps collect wind and turbulence data routinely. 

The AIMMS-20 system was calibrated in the 
factory as well as in a calibration flight. The technical 
specifications for wind and temperature data are 
shown in Table 1. 

The system has been used for observing a 
tropical cyclone over the South China Sea (Chan et 
al., 2011) and measuring windshear and turbulence at 
the HKIA. 

The use of instrumented aircraft in the collection 
of meteorological data dates back to the 1970s 
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(Telford et al., 1977). A review of the technology can 
be found in (Lenschow, 1986). There have been 
reviews of the various instrumented aircraft used for 
meteorological data collection purpose, such as the 
Falcon of DLR (Bögel and Baumann, 1991) and 
Meteopod (Vörsmann, 1990). The quality of aircraft 
data has been studied by, for instance, Dobosy et al. 
(1997) and Drüe et al. (2008). Improvements to the 
meteorological measurements on the aircraft, 
including wind and temperature measurements, have 
also been described (Inverarity, 2000; Khelif et al., 
1999; Matejka and Lewis, 1997; Rodi and Spyers- 
Duran, 1972). 

 
 
 
 
 
 
 
 
This paper considers the possibility of improv-

ing the accuracy of wind and temperature data 
measured by AIMMS-20 through use of a post- 
processing technique. Though the discussion relates 
mainly to a specific meteorological measuring system, 
namely the AIMMS-20 on the aircraft, the techniques 
considered should be a useful reference for similar 
systems installed on other aircraft. 

 
 

2  A review of the AIMMS-20 system 
 
The airborne wind-measurement problem re-

quires the following pieces of information in order to 
obtain a solution:  

1. A 3D air-flow vector measured in an aircraft- 
fixed reference frame; 

2. Aircraft orientation relative to the inertial 
reference frame; 

3. Aircraft velocity relative to the inertial ref-
erence frame. 

The AIMMS-20 system measures the local flow 
vector, i.e., the aircraft-relative wind vector, using 
aerodynamically generated differential pressures 
about a hemispherical 5-hole probe tip combined 
with a separate static-pressure ring located a few 
inches downstream on the cylindrical probe body. 

Transforming these pressures into flow velocity and 
direction requires additional data, specifically tem-
perature, humidity and barometric (static) pressure. 
The AIMMS air-data probe (ADP) integrates all 
pressure, temperature, and humidity sensors in a sin-
gle probe assembly. Also, three accelerometers are 
embedded inside the probe to aid in tracking 
high-frequency motions in support of turbulence 
calculations. Included within the ADP are digitizing, 
processing and communication electronics so that the 
device appears to the rest of the system as an intelli-
gent node on a digital network. 

The ADP is a 1.5 kg probe mounted about 4″ 
below the lower-wing surface at the wing-tip. The 
probe is a 1.5″ diameter aluminum tube with a tita-
nium nitride coating that projects 18″ forward of the 
main support body. Anti-ice heaters (150 W@28 V) 
are embedded within the probe tip to prevent pressure 
port blockage under icing conditions. Temperature 
and humidity are measured within an aft semi- 
elliptical housing, which generates flow inside a 
ventilation tube via suction holes. The flow is drawn 
backwards through the tube from the rear stagnation 
zone at the end of the probe. A single multi-conductor 
network cable is run inside the wing to deliver both 
power and network communications. The ADP ap-
pears to the rest of the system as a data-generating 
network node that places fully compensated/ 
calibrated air-data parameters on a controller-area- 
network (CAN) serial bus at 500 kbps. 

The second and third parts of the measurement 
problem involve determining the attitude and velocity 
of the aircraft in inertial space. The AIMMS-20 em-
ploys a novel global positioning system (GPS)-inertial 
integration strategy combining data from a GPS 
module with data from an inertial measurement unit 
module (IMU). The IMU supplies rate measurements 
from a triad of accelerometers and gyros. Data from 
each module is placed on the CAN bus and a third 
module, and the central processing module (CPM) 
reads this information and applies digital filter algo-
rithms to solve for attitude and inertial velocity. 
Further, the CPM firmware applies dynamic and 
aerodynamic corrections to air-data and combines 
this with attitude and inertial velocity to complete 
real-time meteorological data reduction.  

Attitude is resolved by two different and com-
plementary means. The first uses an accelerometer 

Table 1  Specifications of the AIMMS-20 system 

Parameter Horizontal wind (m/s) Temperature (°C)

Range 0–±90 −20–50  
Accuracy 0.5 for straight level flight; 

1 otherwise with bank 
angle less than 15° 

0.3 

Resolution 0.1 0.1 
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triad from which body forces, due to the combined 
influence of gravity and inertia, are measured in an 
aircraft-fixed frame. The orientation of the aircraft 
frame is determined by reconciling measured accel-
eration vectors against that observed in the inertial 
frame by the GPS. Satellite signal Doppler shifts, 
which are directly proportional to velocity along the 
line-of-sight, are measured and utilized by the GPS 
processor. Velocity, therefore, is a primary measure-
ment within the GPS system. Attitude can be resolved 
by reconciling GPS velocity output with once- 
integrated accelerometer data, or by reconciling 
time-differenced GPS velocity with direct acceler-
ometer output. The former scheme was chosen as in-
tegration is inherently noise reducing in contrast to 
time-differencing, which acts to increase signal noise.  

Range data derived from satellite signal time-of- 
flight are another primary measurement subset of the 
GPS navigation system. However, reconciling ori-
entation of measured acceleration vectors with GPS 
position would entail double time-integration of ac-
celerometer output. Although feasible, such a scheme 
would increase the mathematical complexity of the 
resulting Kalman filter with increased costs in terms 
of processing time per update cycle. Matching 
once-integrated IMU rates with GPS velocity was, 
therefore, selected as the preferred basis for devel-
oping the first Kalman filter. This filter estimates 
IMU rate-integration errors, which are then applied to 
correct IMU output. The integrated IMU outputs are 
refreshed at 40 Hz, but the Kalman filter that derives 
IMU attitude and velocity errors is run at 5 Hz using 
GPS velocity data provided at the same rate.   

A second Kalman filter is dedicated to deter-
mining separate estimates for roll and heading angles 
from GPS satellite carrier-phase data acquired for all 
satellites in view from each of two wing-tip mounted 
antennas. This filter exploits inertial rates from the 
IMU to solve rapidly the initial phase-ambiguity 
problem (initial unknown constant of integration), 
which must be solved by any carrier-phase based 
attitude algorithm. Rapid solution convergence is 
further aided by having an excellent initial attitude 
guess from the first filter. 

This GPS carrier-phase filter is necessary to 
provide a precise, stable true-heading reference. A 
stable heading reference is necessary during steady 
flight because under such conditions there is very 

little in the way of an acceleration signal in the 
horizontal plane, which is normally used to establish 
the heading orientation of the accelerometer triad. 
The IMU’s angular rate sensors provide good coast-
ing performance between acceleration inputs, but 
they will wander slowly with time without additional 
information to check gyro drift. With carrier-phase 
stability equivalent to a few mm and an antenna 
baseline of 18 m, the angular precision limit for this 
method is at the level of a few 0.01° and it is perfectly 
stable with a consistent set of satellite signals during 
level flight. This method, therefore, is well suited as a 
long-period stable heading reference, which is at least 
a full order of magnitude better than what can be 
obtained using geomagnetic field measurement 
methods.  

In spite of the high levels of precision, the dif-
ferential carrier phase solution is not employed ex-
clusively because it can suffer from phase-tracking 
cycle slips. Such cycle slips frequently occur when an 
aircraft rolls into a banked turn, potentially wreaking 
havoc on a given set of satellite signals due to rapid 
changes in antenna orientation. However, IMU in-
formation can be used to manage this potential to-
ward phase-filter instability. As it operates as an in-
dependent filter, the carrier-phase solution can be 
shut down completely and subsequently re-initialized 
with accurate attitude data from the IMU without 
causing any disturbances to the primary attitude so-
lution. The phase solution can be brought in and out 
of the process as conditions merit: it is eliminated 
during episodes of high dynamics and brought in to 
fine-tune and stabilize IMU output in steady flight. 
As a result, these two Kalman filter processes are 
very much complementary.   

The flow of information from primary sensor 
sources to the final wind solution is summarized in 
Fig. 1.  

A final module was added to the AIMMS-20 
system to perform automatic data recording for the 
GFS J4100 installation. This feature was important to 
minimize the amount of interaction between the flight 
crew and the AIMMS-20 to keep the operational 
overhead as low as possible. Following the rest of the 
system design, the digital I/O module (DIO) is a 
modular network node connected to the system CAN 
bus. Included with the DIO module is a USB thumb 
drive receptacle that supports a miniature format 
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FLASH drive, with a storage capacity of up to 8 GB. 
As it is connected to the CAN bus, the DIO module 
has full access to all information from all modules, 
plus it can read meteorological data broadcasts from 
the CPM performed in real time. DIO firmware 
monitors aircraft speed from the GPS data stream. 
The firmware opens log files once the speed exceeds 
20 m/s, and closes log files once this speed decreases 
below 5 m/s. The filenames used are automatically 
generated using the date (month and day number) and 
the time, likewise obtained from GPS data. Two sets 
of files are created on each flight: one set records all 
raw system data, essentially a facsimile of all 
CAN-bus traffic, and the second set is an ASCII file 
in a tabular format, updated at 5 Hz, containing the 
processed data. The ASCII file set is provided for 
convenience and the raw data set is used to support 
PC-based post-processing. With this system, GFS 
staff need only periodically remove the thumb drive 
and transfer files using any standard PC/Windows 
compatible computer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Areas for improvement in meteorological data 

quality can be grouped, therefore, into two general 
categories: (1) GPS-inertial data handling affecting 
attitude and velocity in the inertial frame; and, (2) 
air-data corrections affecting the aircraft-relative 
wind vector.  

2.1  Overview of Kalman filter 1 

The orientation of the IMU with respect to the 
earth-fixed frame is described by a set of three Euler 
angles:  (roll), θ (pitch), and ψ (heading). These 
rotations are applied in the so-called 3-2-1 rotation 

order, i.e., the heading rotation is applied first about 
the vertical (z) axis, followed by a rotation about the 
intermediate pitch (y) axis and a third and final rota-
tion about the final roll (x) axis (Etkin, 1982). Atti-
tude at any given time is given by continuous inte-
gration of Euler angle rates:  

 

0
0 ( )d ,

nt

n t
t t                                     (1) 

0
0 ( )d ,

nt

n t
t t                                     (2) 

0
0 ( )d ,

nt

n t
t t                                   (3) 

 
where the Euler rates are derived from three angular 
rates, P, Q and R, defined in the IMU-fixed reference 
frame, representing rotations about the IMU X, Y, and 
Z axes, respectively. The transformations of these 
“gyro” sensor rates to Euler rates are given by 

 

sin tan cos tan ,P Q R                    (4) 

cos sin ,Q R                                      (5) 

( sin cos )

cos

Q R
.

 



                               (6) 

 
Similarly, inertial velocity vector,   is con-

tinually updated by integration of acceleration a in 
the inertial frame: 

 

0
0 ( )d .

nt

n t
t t    a                              (7) 

 
This acceleration vector is obtained from 

three-component measurements, ab, made in the 
body-fixed IMU reference frame according to the 
following transformation:  

 
a=Ceb(, θ, ψ)ab+ge3,                          (8) 

 
where Ceb is a general 3×3 rotational transformation 
matrix that converts coordinates in the body-fixed 
IMU frame to the earth-fixed frame given the Euler 
angle triplet defining orientation of the body frame 
relative to the earth-fixed frame (Etkin, 1982), g is 
acceleration due to gravity and e3 is the unit vector 
aligned with the vertical coordinate direction of the 
earth frame (positive down).  

Fig. 1  Wind solution schematic 
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A Kalman filter is applied to estimate errors that 
propagate through rate integrations of Eqs. (1)–(3) 
and Eq. (7) by optimal fitting of a system-error model 
that seeks to minimize the uncertainty between the 

predicted velocity ˆ   derived from the IMU inte-

grated velocity i and the estimated IMU error vector 
δ, and the best estimate of the velocity of the IMU in 
inertial space derived from GPS velocity output GPS, 
i.e., to minimize the 2-norm of the following error 
vector: 

 

GPS ( ).i                                 (9) 

 
An error model for the behaviour of δ is de-

veloped by first recognizing that the IMU integration 
process will include acceleration and angular rates 
that are not perfect and hence errors δa(t) will be 
integrated along with the true values resulting in the 
following propagation of velocity error: 

 
1

1 ( )d .
n

n

t

n n t
t t  

     a                  (10) 

 

The acceleration error is, in turn, related to at-
titude error via Eq. (8) for a given set of IMU accel-
erometer sensor readings according to the following:  

 

eb eb eb
b b b .   

  
  

  
  
C C C

a a a a     (11) 

 

Attitude-error is propagated through time ac-
cording to the following first-order model: 

 

1

1

1

,

,

.

n n n

n n n

n n n

t

t

t

  

  
  







  

  

  






                         (12) 

 

Rate errors ( , , )      are, in turn, estimated 

by taking first-order differentials of Eqs. (4), (5) and 
(6) with respect to gyro rates (P, Q, R) and Euler 
angles (, θ, ψ), respectively, resulting in a functional 
dependency of the form,  

 

( , , )= ( , , , , , ).H P Q R                (13) 

 
Gyro rate errors are modelled according to a 

fixed rate zero-offset plus a first-order linear cross- 
axis sensitivity to angular rates about the other two 
perpendicular axes: 

 
δP=P0+Qδψ1−Rδθ1,                              
δQ=Q0+Rδ2−Pδψ2,                      (14) 
δR=R0+Pδθ3−Qδ3,                              

 
where the cross-axis error is represented as an angular 
offset of the rate sensor from the ideal axis, e.g., δψ1 
is the perturbation in the yaw direction of the roll gyro 
such that it will resolve a component of the pitch rate 
Q onto the roll-gyro’s sensing axis; and, similarly,  
δθ1 is the perturbation in the pitch direction of the roll 
gyro such that it will resolve a component of the yaw 
rate onto the roll-gyro’s sensing axis. 

Under normal operation, the Kalman filter takes 
a series of observations for δ using GPS velocity 
data and implicitly estimates the following parame-
ters based on achieving a best-fit with the error-model 
scheme: attitude errors (δ, δθ, δψ); the parameters 
controlling their rates of change (P0, Q0, R0); and, 
smoothed estimates for velocity component errors  
(δu, δv, δw). All of these errors estimates are with 
reference to the continuous IMU rate integration 
output. The terms governing errors proportional to 
rates about perpendicular axes (gyro cross-axis error 
parameters) are presumed to be fixed for any given 
installation and are established under a one-time 
calibration process. Gyro rate bias errors, however, 
will continually drift slowly with time and hence, 
need to be updated on a continuous basis. Error es-
timates from the Kalman filter are used to continually 
correct the IMU velocity and attitude output. 

The detailed mechanics for the optimal estima-
tion algorithm for system state estimation through a 
combination of a state-propagation model, an obser-
vation model and observation data are based on 
standard Kalman filter methods, which are well de-
scribed by Gelb (1999).  

2.2  Overview of Kalman filter 2 

Kalman filter 2 employs differenced carrier- 
phase data from GPS satellites to provide an inde-
pendent attitude reference source. If sj represents the 
unit vector, defined in an earth-fixed reference frame, 
pointing to the jth GPS satellite in space from the 
aircraft and d represents the vector that defines the 
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separation of the two GPS antennas, also expressed in 
an earth-fixed frame, then the component of d pro-
jected onto the unit sight vector represents the dif-
ference in path length for the signal to reach one 
antenna vs. the other, i.e.,  

 
T .j j  s d                                 (15) 

 
The different path lengths result in a shift in 

signal phase, ζj, according to the wavelength of the 
GPS carrier signal, λ,  

 
ζj=Δj/λ.                                   (16) 

 
However, carrier phase data from the GPS 

processor, φj, repeats for each cycle of the carrier 
wavelength, so there is an intrinsic ambiguity Kj 
representing the complete integer number of wave-
lengths that is initially unknown when trying to ob-
tain the total path-length difference:  

 
ζj=φj+Kj.                                 (17) 

 
The geometric solution for attitude Euler angles 

is implied by the transformation matrix Ceb that maps 
the antenna baseline vector in the body frame, rb, to 
the baseline vector in the inertial frame, i.e.,  

 

d=Ceb(, θ, ψ)rb,                         (18) 
 

such that Eq. (15) is satisfied for all satellites j=1, 
2,…, N given the set of GPS phase observations {φj} 
and the set of phase ambiguity offsets {Kj}. Note that 
the set of ambiguity values {Kj} should be constant 
once established unless there is a “cycle slip” in the 
tracking carrier-phase.  

Kalman filter 2 takes the attitude state defined 

by the vector T[ , , , , , ]         at tn and projects it 

forward to  tn+1 using a first-order integration stage,  
 

1 ,n n n t                               (19) 

1 ,n n n t                               (20) 

1 ,n n n t                            (21) 

1 ,n n                                        (22) 

1 ,n n                                        (23) 

1 .n n                                      (24) 

The projected state parameters at tn+1 are then 
used to predict the measurement set at tn+1, which 
includes attitude angles and attitude rates and the set 
of the latest GPS carrier-phase differences. Following 
standard Kalman filter algorithm design, discrepan-
cies between the next set of observation data, from 
the IMU and GPS, and these predictions are used to 
refine the state vector in a manner that minimizes 
error variance. 

 
 

3  Kalman filter 1 extensions 

3.1  Accelerometer error modeling 

In Section 2, factors affecting attitude error were 
considered alone in forming a mathematical model 
for IMU-velocity error propagation. In this model, 
attitude errors are mapped to velocity error behaviour 
through the effect these errors have on the IMU ac-
celeration vector resolved into the earth-fixed refer-
ence frame. The Kalman filter seeks to find attitude 
error corrections necessary for observed accelerations 
in the body-fixed frame to remain consistent with 
observed GPS velocities. The IMU accelerometer 
triad is, therefore, the fundamental attitude reference.   

It is difficult to determine accelerometer errors 
(e.g., bias offset, cross-axis rate sensitivity) when 
these accelerometers are themselves the primary 
source of attitude and velocity information. Without 
sufficiently redundant observation data for attitude, 
velocity or acceleration, it is possible for the filter 
solution to become unstable given the potential for 
positive feedback, e.g., an accelerometer error esti-
mate affecting velocity error may cause a change in 
attitude error which then affects the accelerometer 
error estimate.  

Acceleration measured in the IMU body-fixed 
frame was previously assumed to be error free and 
that any small biases would be manifest as small 
attitude offsets that would be handled by system 
flight-calibrations. Now we consider the implications 
of modelling accelerometer error following the model 
implemented for gyro errors wherein the sensor 
output is a combination of the true rate plus an ini-
tially unknown bias offset and cross-axis sensitivity, 
where components of acceleration perpendicular to 
the sensing axis affect sensor output, i.e., 

 

b b b ,ˆ    a a a                        (25) 
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where bâ  is the sensor output based on the ideal 

perfect body acceleration ab, a set of acceleration 
offsets η and cross-axis sensitivity expressed as a 3×3 
matrix μ. The cross-axis sensitivity matrix is defined 
as 

 

1 1

2 2

3 3

0
0

0

a a

a a

a a

.
 

 
 

 
  
  

              (26) 

 
Each matrix element represents a perturbation 

angle for the sensing axis off the ideal perpendicular, 
expressed in radians, of accelerometer a1, a2 or a3. 
The original equation for acceleration error in the 
inertial (earth-fixed) frame, Eq. (11), is extended 
accordingly:  

 

eb eb eb
b eb b+ ( + ).   

  
   

      

C C C
a a C a    

(27) 
 
The model for propagation of velocity error 

based on Eq. (10) is now dependent on the initially 
unknown parameters (δ, δθ, δψ), (P0, Q0, R0), and 
the new quantities (η, μ).  

3.2  Estimation of GPS phase lag  

At its core, the Kalman attitude filter extracts 
attitude information by comparing velocities from 
IMU accelerometer integration with velocity data in 
the earth-fixed frame from an independent source, 
namely, the GPS. The model presumes that any dif-
ferences between these two velocities are due to er-
rors attributable to the IMU rate integration process 
alone. However, GPS information is not error free.  

GPS velocity is very accurate, with uncertainties 
of the AIMMS-20 processor boards with the  
standard-positioning service being less than a few 
cm/s. However, the existence of a finite time delay 
between each IMU velocity update and the latest GPS 
solution causes an effective velocity error, depending 
on the body acceleration. The propagation time from 
inertial excitation, to the sensor, through the analog 
electronics, digitization and final transmission across 
the CAN bus is much shorter than the IMU refresh 
cycle of time of 25 ms. The GPS solution, however, 
involves complex mathematical data reduction that 

will take an unknown amount of time that will likely 
vary depending of the number of satellites being 
incorporated into the solution. Properties of this filter 
are unknown as they are proprietary properties of the 
GPS board manufacturer.  

Once the GPS navigation solution is available it 
is transmitted via a RS232 connection at 38.4 kbps to 
the AIMMS interface, then it is transmitted across the 
CAN bus at 500 kbps. The estimated time to transmit 
the data across the serial link is 20 ms and the time to 
forward it across the CAN bus is about 2 ms.  

The solution refresh period on the GPS proces-
sors is 200 ms. If the internal GPS processing delay is 
some reasonable fraction of this, say 30%–40%, it is 
then possible for the combined time uncertainty be-
tween receipt of a GPS update at the main AIMMS 
processor and the latest IMU output cycle to be 
125 ms or more. If the aircraft is executing a ma-
noeuver, such as a moderately banked turn, it is pos-
sible for acceleration to be as much as 1g. The con-
sequences of a 125 ms time lag in this instance would 
be in excess of 1 m/s in terms of velocity, which is 
close to two orders of magnitude worse than the ac-
curacy of the GPS velocity itself. Clearly phase lag 
between the IMU and the GPS velocity reference  
has potentially important implications for attitude 
accuracy. 

Earlier implementations of this algorithm han-
dled GPS phase lag relative to the inertial data by 
deliberately lagging all inertial data using a circular 
buffer in order to match the GPS data. The size of the 
circular buffer, and hence the number of IMU inte-
gration cycles that the data is deliberately lagged, was 
established by means of a covariance analysis of IMU 
accelerations and time-differenced GPS velocities. 
However, this resulted in a one-time estimate with 
little knowledge of how the phase relationship might 
change under different circumstances.   

Here we take a different approach to the problem 
wherein the time lag of the GPS velocity is regarded 
as an initially unknown state parameter for which the 
Kalman filter continuously refines estimated values. 
Here we apply a model to predict the GPS velocity 
measurement based on the velocity output from the 
IMU and the state parameters of the filter model, e.g., 
the IMU error vector and the GPS time lag. If the time 
lag is represented by δtg then the predicted GPS ve-
locity vector at time t=tn is given by IMU output at tn 
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minus the predicted Kalman filter the IMU error 
vector, δn, and a correction based on integration of 
the latest estimates for acceleration and jerk, i.e., 

 

2
GPS

1
( ) = ( ) .

2n i n n n g n gt t t        a a            (28) 

 
The time-step Δt=tn−tn−1 is set by the GPS 

navigation solution refresh rate, which is 200 ms for 
the AIMMS-20 system installed on the Hong Kong 
J4100 aircraft. The IMU update cycle is 25 ms, so 
eight IMU updates span one GPS cycle. Conse-
quently, the acceleration an used here for each 
GPS/Kalman update is based on the set of three mean 
accelerometer readings over the latest eight IMU data 
cycles. The jerk vector, ,n

a  is given by the slope of 

the line-of-best-fit (in a least-squares sense) over the 
same eight IMU accelerometer data cycles. 

3.3  Improved application of GPS velocity 

As discussed extensively in Section 2.1, Kalman 
filter 1 operates by analyzing the differences between 
the velocities derived from integrated IMU rates and 
GPS velocity. The GPS velocity output from a par-
ticular GPS processor refers to the velocity of the 
antenna, not the velocity of the processor. Moreover, 
the velocity required for filter 1 operation refers spe-
cifically to the velocity of the IMU in inertial space.  

Earlier implementations of the Kalman filter 
handled the problem of deriving the GPS velocity at 
the IMU from data representing velocities at each 
antenna by simply averaging the two sets of velocity 
data. Simple averaging provides the effective GPS 
velocity that would be obtained by an antenna located 
at the intersection of the antenna baseline and the 
aircraft centreline, assuming that the antennas are 
located on the wings equally distant from the fuselage. 
This assumption is typically good since the IMU is 
located inside the fuselage. However, IMU velocity 
could be in error by varying amounts during times of 
non-zero yaw and pitch rates depending on the 
fore/aft distance from the antenna baseline.  

A generalized scheme was implemented to re-
fine how GPS velocities are combined to infer the 
effective GPS velocity at the IMU. 3D coordinates 
are now used to define the exact position of each 
antenna relative to the IMU. Basic kinematic rela-
tionships are then applied to deduce the velocity of 

the IMU from the velocities at each of two antennas at 
a generalized location on the airframe. This is ex-
pected to be a modest improvement during times 
when significant non-zero yaw rates occur, i.e., dur-
ing moderate to steeply banked turns. For example, if 
the IMU is longitudinally displaced from the baseline 
midpoint by 5 m, and the aircraft is executing a turn 
with a 45 bank at 100 m/s true airspeed (TAS) re-
sulting in a turn rate of 5–6 /s, then the velocity error 
at the IMU would be about 0.5 m/s. Although small, it 
can still bias the corrections generated by the error- 
tracking filter as this would appear to be pure velocity 
error without this correction. 

The position vector of any point on the aircraft 
relative to a reference point fixed in the earth frame 
can be described by a vector summation of the posi-
tion of the origin of the aircraft body-fixed frame 
relative to this point and the position vector relative to 
the aircraft-fixed origin, i.e.,  

 

e 0 b , r r r                           (29) 

 
where br  is the position relative to the aircraft-fixed 

origin, taken to be at the centre of the IMU, and 0r  is 

the position of the origin relative to an arbitrary ref-
erence point fixed in the earth-frame of reference. By 
expressing the vector br  in the body-frame and 0r  

and er  in the earth-fixed frame and taking the 

time-derivative, we can obtain the following expres-
sion for velocity in the earth frame in terms of the 
motion of the IMU, the angular velocity (expressed in 
the aircraft frame), and the position of the point br  

and the coordinate frame transformation (body-frame 
>earth-fixed frame),  

 

e 0 eb b b( + ),    r r C r r                (30) 
 

where   defines the cross-product with the angular 
velocity defined in the body-frame, 

 

 
3 2

3 1

2 1

0
0

0
.

 
 
 


 

  
  

                   (31) 

 
If we assume rigid body motion, then the time 

rate of change of the position coordinates in the 
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body-fixed frame is zero. Eq. (30) can thus be sim-
plified for antenna 1 (port) position rb1 and antenna 2 
(starboard) position rb2 to yield, 

 

e1 0 eb b1,  r r C r                        (32) 

e2 0 eb b2.  r r C r                        (33)  

 
GPS velocities at antennas 1 and 2 can thus be 

combined knowing aircraft attitude, hence Ceb, and 
pitch rate from the IMU alone (ω2). By subtracting 
Eq. (32) from Eq. (33), it is possible to solve for ω1 
and ω3 and then back-substitute to obtain 0 ,r  the best 

combined estimate of the GPS velocity at the IMU 
given GPS velocities at two antennas at different 
locations on the airframe.  

 
 

4  Kalman filter 2 extension 
 
One important limitation of filter 2 is that it op-

erates at the update frequency of the carrier-phase 
data from the GPS boards, which is only 5 Hz. Im-
portant discrepancies between the projected attitude 
and the IMU attitude over the 200 ms update period 
can occur simply because the prediction includes 
only the first-order term, i.e., it assumes that angular 
velocity is a constant over the integration period. Any 
contributions to attitude angles due to angular accel-
eration over 200 ms are not included in the state 
prediction. Under flight conditions with manoeuvres 
no more dramatic than those that occurs during 
shallow turns this approximation is very good. 
However, 200 ms is a long time to assume that an-
gular rates are constant when executing more dy-
namic manoeuvres, such as those experienced when 
entering a steep turn. The “correction phase” of the 
filter, which reconciles differences between predicted 
and observed measurement data, can then misinter-
pret these prediction errors and adjust various aspects 
of the attitude solution. One possible approach to this 
problem is to assign a larger uncertainty to the pre-
diction state model so that less “weight” is assigned 
to the predicted state. It was deemed better to improve 
the quality of the low-frequency attitude prediction 
stage by increasing the order of time integration by 
one, i.e., to explicitly track and include angular ac-
celeration estimates.  

Higher order integration is implemented by ex-

tending the attitude state vector: [ , , , , ,       
T, , , ]       and the state-prediction integration stage 

of the filter is extended according to the followings: 
 

2
1

1
,

2n n n nt t                                    (34) 

2
1

1
,

2n n n nt t                                    (35) 

2
1

1
,

2n n n nt t                                 (36) 

1 ,n n n t                                                 (37) 

1 ,n n n t                                                 (38) 

1 ,n n n t                                              (39) 

1 ,n n                                                       (40) 

1 ,n n                                                       (41) 

1 .n n                                                     (42) 

 
 

5  Wing flexure Kalman filter model 
 
The 3D wind vector is derived from the wind 

measured in the aircraft-fixed frame, which is at-
tached to the IMU located in the cabin. Orientation 
and velocity about the IMU, relative to earth-fixed 
reference frame, is used to transform this aircraft- 
relative wind (ARW) vector into the wind vector with 
respect to the earth frame. However, the ARW is 
resolved by the ADP mounted on the wing-tip of the 
Hong Kong GFS BAE J4100 aircraft. In the previous 
wind-data processing code, adjustments for the mo-
ment arm, i.e., separation of the probe from the IMU, 
were made assuming that the aircraft is a rigid body. 
The wing, however, is a flexible body and its struc-
tural response to dynamic loads will cause the veloc-
ity at the wing tip to differ from expectation accord-
ing to the rigid-body model. Frequencies for which 
this effect will be important will be centred about the 
natural vibration frequency of the wing. The issue, 
therefore, is one of potential importance for resolving 
the 3D wind vector in the turbulence regime de-
pending on wing stiffness.  

The design of the Aventech ADP anticipated the 
potential needs to address the issue of flexible struc-
tures by incorporating an accelerometer triad with 
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other air-data sensors inside the ADP. The objective 
here is to examine and implement a possible proc-
essing algorithm and evaluate if wing motion relative 
to the IMU has any significant bearing on turbulence 
calculations for the J4100 aircraft.  

A cantilevered wing is very stiff in the 
chord-wise direction and least stiff in the direction 
normal to the wing plane. Torsional stiffness lies 
between these extremes and can potentially play a 
role by changing the pitch orientation of the probe 
relative to the IMU. However, the twisting response 
of a wing to varying wing loads is a matter of sig-
nificant concern to airworthiness as torsional bending 
can increase the local angle of attack, thereby in-
creasing aerodynamic loads that increase torsional 
bending further. This can lead to the unstable 
aero-elastic response of flutter and, in the worst-case, 
to complete structural failure. Torsional bending, 
therefore, is guaranteed by the flight certification 
process to be very small relative to normal angle-of- 
attack variations of the wing. As a result, a decision 
was made to first examine possible effects of the 
dominant source of structural bending alone: 
up/down wing-tip deflections due to bending in re-
sponse to lift acting normal to the wing surface. 

The model formulation assumes that the IMU is 
located at a point P1 in the fuselage and the ADP is 
located at point P2 near the wing tip (Fig. 2). 

  
 
 
 
 
 
 
 
 

 

 
Point Oe is an arbitrary reference point in the 

earth-fixed reference frame. The position in inertial 
space of the ADP (P2) is then represented by the sum 
of vectors defining the position of the probe relative 

to the IMU, 12 ,r  and the position of the IMU relative 

to the earth-fixed frame, 0.r  Wing flexure is mod-

elled by introducing the variable d that defines the 
distance that the probe has moved from its rest posi-
tion in the aircraft/IMU-fixed reference frame.  It is 

assumed that displacement due to flex will be effec-
tively perpendicular to vector 12.r  The vector defin-

ing this displacement is then given by the product ,n  

where n  is defined as the unit normal vector to the 
wing plane (Fig. 3). 

 
 
 
 
 
 
 
 

 
 

The position of the wing tip in the inertial frame 
is then described by  

 

0 12 ,   r r r r                           (43) 

where 
d . r n                                  (44) 

 
Eq. (43) is differentiated once to obtain the ve-

locity of the wing tip in the earth-fixed frame. Vector 
quantities in Eq. (43) can be expressed as coordinate 
column-matrices with respect to two different refer-
ence frames: r and r0 are defined relative to the 
earth-fixed frame, and r12 and Δr are defined relative 
to the IMU-fixed reference frame attached to the 
aircraft. The time derivative of Eq. (43) can then be 
expressed in terms of these components according to 

 

0 e1 12 12[( ) ( )],          r r C r r r r         (45) 

 
where Ce1 is defined as the rotational transformation 
matrix to convert coordinates in the IMU frame to the 
earth-fixed reference frame and the cross-product 
matrix of angular velocity components in the body 
frame. By taking the time-derivative once more of 
Eq. (45) and noting that time derivatives of r12 are 
identically zero as prescribed by the model, we can 
obtain the following expression for acceleration of 
the P2 in the inertial frame: 

 

0 e1 12

12

[( 2 + ( )

+ ( )],

 

 

      

 

    r r C r r r r

r r

 

 
       (46) 

Fig. 3  Definition of wing flex parameters
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Fig. 2  Wing flex geometry 
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where 0r  is the acceleration of the IMU in the 

earth-frame, r  is the acceleration of ADP in a di-

rection normal to the wing plane, 2   r  is the 

coriolis acceleration, 12( )   r r  is the angular 

acceleration, and 12( )     r r
 
is the centripetal 

acceleration.  
Now that as probe acceleration has been defined 

in terms of its position relative to the IMU and its 
displacement normal to the reference wing plane, it is 
possible to express acceleration data that should be 
output from the ADP accelerometer triad. This re-

quires us to define the additional reference frame 2, 

which is attached to the ADP. 2 is assumed to be 

aligned parallel to the IMU frame attached to the 

aircraft, 1, but with a roll offset, i.e.,  

 

probe IMU 0 ,v v                         (47) 

 
where v0 is the equilibrium roll-offset angle and δν is 
the change in roll angle associated with wing bending 
from the rest position. Note that the wing is assumed 
to be perfectly rigid in torsion and fore/aft directions, 
but can bend only in the up/down direction defined by 
the unit normal vector n. The associated small 
roll-deflection angle δν will not affect the angle of 
incidence of the probe and, therefore, will not affect 
flow angles resolved by the probe. The parameter is 
included purely to model accelerometer response to 
this motion. 

The ideal accelerometer signal, a2, defined in 2 

without internal bias offsets or cross-axis error sen-
sitivity is then derived from the probe acceleration 
defined in the earth frame by applying a rotational 
transformation from the earth frame to the probe 
frame, C2e: 

 

2 2e e 3( ).ˆg a C a e                            (48) 

 
Accelerometers sense acceleration by measuring 

the body force acting upon a test mass, with gravity 
being indistinguishable from the inertial force due to 
acceleration. Gravity appears to the sensor to be an 
inertial reaction force caused by acceleration in the 
opposite direction. Consequently, gravity is ac-
counted in modelling sensor output by reversing the 

sign of its contribution before adding it to the true 
acceleration, as shown in Eq. (48), where 3ê  is de-

fined as the z unit coordinate vector of the earth frame 
that points towards the centre of the earth.  

Accelerometer output including sensor bias and 
cross-axis terms is modelled according to 

 

2 2( ) ,ˆ    a I a                       (49) 

 
where I is defined as the 3×3 identity matrix. Upon 
substitution of Eq. (46) into Eq. (48), noting that 

e , a r  we can obtain the following equation for the 

modeled ADP accelerometer output, 
 

2 21 1e 0

12 12 1e 3

( ) [ 2

( ) ( ) ],

ˆ

ˆg



  

      

      

  


a I C C r r r

r r r r C e

  

  
 (50) 

 
after making use of the following relationship for 
rotational transformation matrices: 

 
C21=C2eCe1.                                (51) 

 
The general rotational transformation between 

the aircraft-fixed IMU frame 1 and the ADP-fixed 
frame 2 is given by the following matrix, where frame 
2 is rolled about the x axis by (ν0+δν) relative to frame 
1: 

 

21 0 0

0 0

1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

v v v v .
v v v v

 
 

 
   
    

C          (52) 

5.1  Kalman filter state model  

The state vector characterizing the wing flexure 
problem is defined by the wingtip displacement d and 
its derivatives, and the tip roll offset δν plus terms 
related to the accelerometer error model. The filter 
state vector χ is defined by  

 
T

1 2 3 1 1 2 3 3[ , , , , , , , , , , , , ] ,a a a a ad d d v           
(53) 

 

where γ is a constant of proportionality between ADP 
rotation and the tip deflection due to wing bending, 
the three η terms represent the set of three acceler-
ometer biases, and the six δ terms represent cross-axis 
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error sensitivity for accelerometers a1(x), a2(y) and 
a3(z). 

The state transition model, which predicts the 
state χ at tn+1 from the state χ(tn) as part of the filter 
update process, is given as 

 

2
1

1
,

2n n n nd d d t d t                       (54) 

1 ,n n nd d d t                                      (55) 

1 ,n nd d                                               (56) 

2
1

1
,

2n n n n nv v d t d t  
      
 
       (57) 

χ5−14, n+1=χ5−14, n.                                 (58) 

 
Eq. (57) can be interpreted as requiring that the 

change in the tip deflection angle should be propor-
tional to the change in wingtip deflection, with the 
constant of proportionality, γ, to be estimated as part 
of the filter state vector.  

5.2  Kalman measurement vector 

Three accelerometer channel outputs from the 
ADP comprise the only sensor inputs to the wing-flex 
filter. One additional virtual measurement was in-
cluded with the measurement vector: the wing dis-
placement d. This is assigned a measurement value of 
zero at all times to act as a constraint on wing-tip 
motions. Without such a constraint, there would be 
nothing from preventing a small accelerometer bias 
from causing the wing tip to continually accelerate up 
or down relative to the IMU without limit.  

The wing structure will always oppose any  
dynamically-applied force causing structural bending. 
Over time, the mean deflection will approach the 
value it achieves in static equilibrium, specifically 
d=0. The Kalman formulation, however, allows the 
state estimate for d to assume a range of values cen-
tred about this input value, or “virtual measurement”, 
consistent with prescribed statistical properties.  

Each term in the measurement vector is assumed 
to be the sum of the “true” measurement plus Gaus-
sian noise with zero mean and a known variance. By 
specifying a small variance, each value is assigned a 
higher weight and state parameters dependent upon 
such measurements will be quickly “pulled” toward 
the observation. However, any measurement with a 
large variance assigned for noise will have a much 

smaller impact on closely related state variables on 
each filter update cycle.  

The filter can ensure the mean tip displacement 
approaches zero with this virtual measurement input. 
By prescribing a sufficiently large variance for the 
virtual measurement d=0, however, it is possible to 
do this without adversely attenuating real motions 
demanded by the accelerometer measurements. Nu-
merical experiments were performed to verify a 
variance setting that ensures the mean displacement 
seeks zero but without excessively damping the re-
sponse function d(t).  

 
 

6  Temperature sensor lag correction  
 

Air temperature measurement poses a few 
challenges when the speed of the flow becomes large 
as is the case for the BAE J4100 for which airspeed 
can be in excess of 100 m/s. The energy implicit to 
high velocities can cause damage to the small and 
delicate (0.040″ diameter) thermistor sensing element 
if it is not properly protected. Moreover, flow energy 
in the form of pressure or kinetic energy can modify 
the temperature of the flow itself.  

The AIMMS-20 ADP employs a reverse-flow 
housing design that utilizes the principle of inertial 
separation to prevent particulate matter (insects, rain, 
ice crystals, dust, etc.) from entering the ventilation 
tube and damaging the thermistor or causing sensor 
wetting in the case of water droplets. The flow is 
slowed down considerably as it separates and stag-
nates about the rear-facing ventilation tube inlet. 
Pressure recovery resulting from this manipulation of 
the flow is 70% of the total dynamic head according 
to wind tunnel investigations. Corrections are applied 
to the temperature output based on the known TAS 
and this recovery factor. TAS reduction is performed 
using the corrected temperature value from the pre-
vious data cycle. On the first cycle, uncorrected 
temperature data is used in place of the true air tem-
perature for the purpose of TAS calculation. This 
iteration rapidly converges as air temperature has 
only a small effect on TAS, introducing less than 
0.2% error per degree at 0 °C.  

Flow manipulation by slowing and drawing it 
through a rear-facing ventilation tube has one unde-
sirable side-effect: it introduces thermal mass into the 
flow circuit that affects the temperature response of 
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the system as a whole. The 0.040″ thermistor element 
has a response time in moving air that is much less 
than 1 s. However, the observed response of the ADP 
temperature output indicates a much longer response 
time. Clearly the thermal behaviours of the ADP 
structure and thermistor housing are having an effect 
on temperature data. 

A sensor model was constructed to estimate the 
combined response of the sensor and housing, and a 
correction algorithm based on this model was im-
plemented and tested.  

6.1  Sensor response model 

A diagrammatic representation of how the flow 
is managed by the temperature/humidity sensor 
housing is shown in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Heat will be transferred from the external shell 

to the thermal boundary layer of the external flow. 
Similarly, heat will be transferred from the walls of 
the internal vent tube into the ventilating flow. Since 
the flow is turbulent, beginning with flow separation 
near the aft of the probe, it is expected that heat 
transferred from the walls will be well mixed into the 
ventilating flow.  

The following assumptions were made in for-
mulating the temperature response model: 

1. The rate of change of temperature of the 
thermistor, T, with time is proportional to the differ-
ence between the thermistor temperature and the 
ventilating flow temperature Tv. 

2. The ventilating tube/enclosure effect can be 
represented by a single characteristic temperature TE. 

3. Heat flux into the ventilating flow from the 
housing material is proportional to the difference 
between TE and the air temperature TA. 

4. The rate of change of the enclosure tempera-
ture is proportional to the difference between it and 
the external air temperature. 

Expressed mathematically, assumption 1  
becomes: 

 

s v

d
( ).

d

T
T T

t
                              (59) 

 
The temperature rise of the ventilating flow over 

the ambient air temperature is obtained by combining 
assumptions 2 and 3: 

 

Tv−TA=−α(TA−TE).                         (60) 
 
Following Eq. (59) and applying assumption 4, 

the characteristic enclosure temperature is related to 
the air temperature by  

 

E
e E A

d
( ).

d

T
T T

t
                           (61) 

 
In essence, Eq. (60) shows that the temperature 

elevation of the ventilation flow is a constant fraction 
of the elevation temperature of the enclosure with 
respect to the air. This equation can be substituted 
into Eq. (59) to give the thermistor temperature in 
terms of the temperature of the air and enclosure: 

 

s A E

d
( (1 ) ).

d

T
T T T

t
               (62) 

 
Upon taking the Fourier transform (denoted by 

the operator  ) of Eq. (62), using iω to denote 
complex frequency, we obtain 

 

s s A s E(iω ) ( ) (1 ) ( ) ( ).T T T                (63) 

 
Similarly, by taking the Fourier transform of 

Eq. (61): 
 

e E e A(iω ) ( ) ( )T T .                     (64) 

 
Between Eqs. (64) and (63) it is possible to 

eliminate the enclosure temperature leaving the 
thermistor temperature in terms of the air temperature, 
specifically 

Fig. 4  Temperature/relative humidity (RH) sensor housing
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s s e
A A

s s e

(1 )
( ) ( ) ( ).

( iω) ( iω)( iω)
T T T

   
  


    

  
 (65) 

 
The transfer function H(ω) is defined as the ratio 

of system response output to the system input in the 
frequency domain by means of Fourier transforms, 
i.e., ( ) (output) / (input).H      Taking the ther-

mistor temperature as the system output and the air 
temperature as the system input, this definition results 
in the following: 

 

A( ) ( ) ( ).T H T                              (66) 

 
Eq. (66) can be inverted to obtain the 

air-temperature input as a function of the thermistor 
temperature output, 

 
1

A( ) ( ) ( ).T H T                            (67) 

 
Taking the inverse Fourier transform then re-

covers what we set out to obtain from the beginning 
of the section through a process called a de- 
convolution. The air temperature signal free of lag 
error is then given by the following de-convolution: 

 
1 1

A ( ( ) ( )),T H T                          (68) 

 
where the inverse system transfer function is as 

 
1

1 s s e

s s e

(1 )
( ) .

( iω) ( iω)( iω)
H

   


  



  
     

  (69) 

 
When α=0, Eq. (65) becomes a function of the 

thermistor response only, i.e., the effect of the en-
closure temperature response becomes irrelevant. 
When α=1, Eq. (65) becomes a function of both  the 
enclosure and thermistor response functions with the 
individual response transfer functions multiplied 
together, as if acting in a cascade, i.e., the output from 
one process (enclosure modification of inlet air 
temperature setting the ventilation flow temperature) 
becomes the input for the next (thermistor response to 
ducted ventilation flow temperature). Hence, the 
transfer functions multiply together.  

Lag-corrected temperature TA requires appro-
priate values for the set of three parameters: λs, λe and 

α, i.e., thermistor time-response, enclosure time- 
response and the proportionality constant, respec-
tively, defining the influence of the enclosure on 
thermally biasing the ventilating airflow in contact 
with the thermistor. Unfortunately, of these three 
parameters only the time-response for the thermistor 
is remotely known. An optimal parameter estimation 
scheme was devised to estimate reasonable values for 
λe and α from calibration flight data. The estimation 
algorithm is discussed below. 

6.2  Estimation algorithm: enclosure temperature- 
response parameters 

The epoxy micro-bead thermistor time-constant 
is a few 0.1 s, which improves with ventilation ve-
locity. For time constant values <<1 s, absolute 
temperature lag magnitude is very small. For exam-
ple, an aircraft climbing at a rate of 1000 fpm 
(5.08 m/s) through an adiabatic layer will experience 
a temperature change rate of −0.05 °C/s, which 
means that the steady-state lag will be −0.005 °C for 
0.1 s time constant. Thus, small uncertainties for this 
term (e.g., 0.2 s vs. 0.1 s) will have very little abso-
lute impact.  

In contrast, the significant thermal mass of the 
enclosure ensures significant potential for much lar-
ger effects. It is for this reason that the time constant 
for the ventilated thermistor was held fixed, at an 
assumed constant value of 0.1 s (λs=10), and only λe 
and α were subject to parameter estimation analysis 
from flight data. 

If we represent the true temperature signal by the 
set of data points {Ti} and the de-convolved estimate 
by the set {Ti'}, then it is possible to construct a cost 
function S to be minimized by proper selection of λe 
and α. Following standard least-squares minimum 
variance schemes, the cost function S is defined as  

 
2( ) .i ii

S T' T                         (70) 

 
Since {Ti'} are derived by a de-convolution 

based on values λe and α, the cost function may be 
considered a function of these two parameters, i.e., 
S=S(λe, α). At the point at which the function S 
achieves a minimum value we must also have the two 
partial derivatives simultaneously equal to zero. From 
Eq. (70), this results in the following system of 
equations: 
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e

( ) 0,i ii

T'
T' T




 
                          (71) 

( ) 0.i ii

T'
T' T




 
                          (72) 

 

Terms 
e

T'





 and 
T'





 can be evaluated by taking 

partial derivatives of the inverse transfer function 
with respect to λe and α before computing the inverse 
Fourier transform (Eq. (68)).  

To obtain a solution to Eqs. (71) and (72), it is 
convenient to define the following vector function: 

 

e
e

( )
( ) 0, .

( )

i ii

i ii

T'
T' T

T'
T' T






            
  




G X X     (73) 

 
So the optimal solution of the following equa-

tion is zero: 
 

G(X)=0.                                 (74) 
 
A Newton-iteration was implemented to solve 

for the root according to  

 
1

d
( ),

di i


      

G
X G X

X
                    (75) 

Xi+1=Xi+ΔXi.                                 (76) 
 

Note: the 2×2 matrix 
d

d

G

X
 consists of partial 

derivatives of quantities involving inverse Fourier 
transforms without any analytic closed form for 
evaluation. Consequently, the partial derivatives of 
Eq. (75) are evaluated numerically by finite- 
differencing. 

 

 
7  Validation of Kalman filter extensions 

 
Improvements to the Kalman filter attitude 

solver constitute fine-tuning adjustments to the 
process by which acceleration and angular rate in-
formation from the IMU are fused together and rec-
onciled against the GPS velocities measured for the 

two wing-tip mounted antennas. In summary, the 
following algorithm improvements were made: (1) 
Accelerometer error modeling; (2) Incorporation of 
an explicit GPS phase-lag that is continually tracked 
and updated; (3) More precise handling of GPS ve-
locity data from the wing tips to estimate GPS ve-
locity at the IMU in the fuselage; and (4) Increasing 
the order of integration to improve precision of the 
differential carrier-phase algorithm to compensate for 
the fact that it runs at only 5 Hz. 

The Kalman filter algorithm advances in two 
stages, functioning as a “predictor-corrector” scheme: 
the first stage takes the current state estimate and all 
that is known about system behaviour to predict the 
state at the next time step. The second stage applies 
observations of the system at the next time step to 
refine the predicted state. This is accomplished by 
predicting the measurements that should result from 
the predicted state and comparing these against a set 
of real observations. In this manner, the filter not only 
combines knowledge of the system based on a set of 
measurements, but also makes full use of everything 
that is known about how the system should behave. 
The “corrector” stage of the process first evaluates 
what is called a residual vector, which is the differ-
ence between the latest set of measurements and the 
predicted values based on the system model.  

If the state behaviour model, sensor behaviour 
model and the measurements themselves were perfect, 
then all elements of the residual vector would be zero. 
Non-zero residual values indicate imperfections in 
state estimates necessitating refinement by the filter 
“corrector” stage. The behaviour of the residual is, 
therefore, indicative of the quality of the state and 
measurement models.  

Behaviour of velocity measurement residuals 
was used as the basis to gauge the success of the 
above improvements. A system calibration flight was 
flown by the Hong Kong GFS on Nov. 26, 2009 that 
consisted of a pair of reciprocal flight tracks followed 
by a series of three 360° orbits at progressively 
steeper bank angles (15°, 30° and 45°), followed by a 
series of similar orbits but in the opposite direction. 
Rolling into turn, banking the aircraft and accelerat-
ing about a circular arc introduce important accel-
erations. It is during periods such as these that we 
expect any small discrepancies in how acceleration 
and velocity data are handled to reveal themselves. 
Fig. 5 illustrates the behaviour of the north-velocity 
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component residual (the GPS velocity estimated at 
the IMU–the velocity prediction from IMU rate  
integration+Kalman filter) based on the old filter 
formulation (red line) and the filter formulation with 
all above revisions (black line). True heading is su-
perimposed, and referenced against the right y axis, to 
provide context with regard to aircraft manoeuvres.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A few observations are immediately apparent. 

Firstly, the two residual curves were almost identical 
during steady flight. Secondly, during periods of 
acceleration in turns, the previous algorithm imple-
mentation exhibited oscillatory residual errors that 
were typically larger in amplitude by a factor of about 
2. Similar behaviour was exhibited for the east vector 
component as shown in Fig. 6. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Here the improvement is somewhat more strik-
ing during the north-south calibration flight-legs.  
The east component is perpendicular to the flight 
direction and is more sensitive to small side-to-side 
velocity changes such as those occurring during the 
two sideslip manoeuvres executed on each leg. The 
two pairs of sideslips are clearly indicated by the 
small oscillation in heading, with one pair along the 
north flight leg occurring at about 8.70–8.75 h UTC 
followed by another pair of sideslips on the south leg 
ending just after 8.80 h UTC. There is a burst of re-
sidual error evident with the old algorithm that is 
almost totally absent with the new implementation 
during these manoeuvers.  

These residual values represent the magnitude of 
unaccounted velocity error that has accumulated 
between GPS velocity updates, i.e., velocity error 
evolution over a 200 ms period. The values are small, 
but some with the old model peak at values in excess 
of 30 cm/s. This is not a great deal in terms of mean 
wind calculations, but velocity error of this magni-
tude and at high frequencies, will affect turbulence 
output as inertial velocity error translates directly into 
wind vector component error. 

The residual for the vertical velocity is given by 
Fig. 7. Here we see very little in terms of oscillations 
that move significantly outside of the noise band. The 
most significant feature of this plot is the clear bias on 
the vertical velocity. This is a result of the previous 
model formulation not including a term for accel-
erometer bias. Thus, a continuous vertical accelera-
tion error is manifested as a small velocity error offset 
when accumulated over 200 ms before the next 
Kalman filter cycle. The recent modifications, in-
cluding accelerometer bias, have clearly removed this 
error. Again, the magnitude is small compared to the 
over-all mean wind accuracy specification of 50 cm/s, 
but an anomaly of a few cm/s at high frequencies will 
contribute to turbulence error. 

Fig. 8 shows the GPS phase lag estimation for 
the same flight (Nov. 26, 2009). The lag estimate 
averages about 70 ms, with values ranging from 40– 
45 ms to as high as 120 ms.  Without an independent 
source to confirm this behaviour, it is difficult to 
know how much of this is real and how much might 
be a function of the Kalman filter reconciling other 
errors and falsely biasing the lag estimate. In the 
approach used in the old filter formulation, the GPS 

Fig. 5  North-velocity component residual before and 
after algorithm upgrades on the Nov. 26, 2009 Flight by 
GFS J4100 
The blue line represents the true heading, the red line and 
black line represent the before and after algorithm upgrades, 
respectively (Note: for interpretation of the references to 
color in this figure legend, the reader is referred to the web 
version of this article) 
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Fig. 6  East-velocity component residual before and after 
algorithm upgrades on the Nov. 26, 2009 Flight by GFS 
J4100 
This figure used the same representations as in Fig. 5 
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lag was set to a constant of 100 ms and indications 
were that this estimate was a little large. Conse-
quently, it is not surprising to see a mean lag value of 
70 ms in this context. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part of the mean wander exhibited by the lag 

estimate, from 60 ms up to 85 ms then back down to 
60 ms, could be due to slowly shifting phase between 
IMU updates and the arrival of GPS solutions, which 
trigger each Kalman filter cycle. The granularity of 
each IMU refresh is 25 ms, so it is possible for the 
GPS-triggered analysis cycle to fall anywhere within 
each 25 ms time-slice and the IMU velocity would 
not be able to reflect this fact. Therefore, given the 
design of the system and previous expectation, the 
results here are acceptable. 

Finally, the impact of increasing the integration 
order for Kalman filter 2 is best demonstrated by the 
pitch-angle residual, i.e., the difference between the 
projected pitch angle and the value supplied as input 

by IMU integration. This is more significant than roll 
and true heading because carrier-phase data provide 
information to solve for these two modes as the an-
tennas are mounted laterally on the GFS J4100. In-
deed, this is the purpose of this filter, i.e., to fine-tune 
roll and true heading estimation using the high- 
precision GPS phase data. However, rate integration 
using IMU information is all that is available to 
generate pitch estimates by filter 2. Moreover, pitch 
error that might result from this coarse time-step size 
can potentially introduce error elsewhere due to the 
complex inter-relationships implicit to the rotational 
transformation between reference frames, specifi-
cally the transformation of the antenna baseline vec-
tor into inertial space. The 5 Hz integration rate was a 
concern that was addressed. Fig. 9 illustrates the pitch 
residual during filter 2 operation. The residual asso-
ciated with the old algorithm is a measure of the in-
consistencies between the 5 Hz integration update 
and the 40 Hz IMU process output used as an input.  

The difference in performance as indicated by 
residual error is quite dramatic. It is clear that a sig-
nificant improvement has been made with this update 
on how pitch it handled with the 5 Hz phase Kalman 
filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8  Validation of wing-flex Kalman filter model 
 
The wing-flexure model reconciles acceler-

ometer output from the wing-tip mounted ADP with 
acceleration data from the IMU as discussed in Sec-
tion 5. Data during the calibration flight of Nov. 26, 

Fig. 9 Kalman filter 2 pitch residual before and after algo-
rithm upgrades on the Nov. 26, 2009 Flight by GFS J4100
The red and black lines represent before and after algorithm 
upgrades, respectively (Note: for interpretation of the ref-
erences to color in this figure legend, the reader is referred to 
the web version of this article) 
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Fig. 8  Estimated GPS lag on the Nov. 26, 2009 Flight by 
GFS J4100 
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Fig. 7  Vertical-velocity component residual before and 
after algorithm upgrades on the Nov. 26, 2009 Flight by 
GFS J4100 
This figure used the same representations as in Fig. 5 
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2009 was used to establish the general characteristics 
of the new algorithm. Fig. 10 shows the filter output 
for wing-tip displacement as a function of time.  

 
 

 
 
 
 
 
 
 
 
  
 
 
Statistics for displacement from the neutral po-

sition for the complete flight, from take-off to landing, 
were computed with the mean being −0.008 m and a 
root-mean-square (RMS) value of 23 cm. A small 
mean confirms the model formulation that specifies 
that the mean tip deflection is zero. A very small 
offset is most likely due to noise not integrating out 
completely to zero. With a semi-span of about 9 m, an 
RMS displacement of 23 cm normal to the chord 
plane is equivalent to an effective rotation about the 
wing root of 1.5, which is an amount that is quite 
reasonable as this is a small fraction of the wing di-
hedral of 6.5.   

Spectral properties of wing motion output from 
the Kalman filter were examined by taking the fast 
Fourier transform (FFT) of tip acceleration data, i.e., 
the second derivative with respect to time of the tip 
deflection defined in the aircraft-fixed reference 
frame. Acceleration was selected as the basis for this 
analysis as acceleration is directly proportional to 
structural forces and should, therefore, be the most 
direct indicator of structural response. This spectrum 
was computed using 8192 points spanning 3.4 min of 
flight data during straight-level flight 500 s after 
take-off (Fig. 11).   

This spectrum shows very clear evidence of a 
well-defined peak at about 4 Hz. Such behaviour is to 
be expected as the wing structure will possess a 
natural frequency at the first (fundamental) bending 
mode that will produce a defined spectral peak due to 
resonance. Although published data for the natural 
frequencies of wing vibration modes are not readily 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

available we can use, for example, data correspond-
ing to an aircraft with a thin wing section and similar 
size: the Embraer (EMB) 145. The natural frequency 
of the first symmetric bending mode of the EMB 145 
is 6.18 Hz (Rodrigues and Kamiyama, 1997). Thus, a 
fundamental frequency of 4 Hz is very much in the 
ball-park of what may be considered reasonable. The 
reason for modelling motion due to wing flexure is to 
improve the quality of probe inertial motion data to 
better resolve atmospheric turbulence. 

It is well-known that the magnitude of the power 
spectrum of atmospheric turbulence decreases with 
the characteristic length scale of a turbulent eddy in 
proportion to k−5/3, where k is the wave number. The 
wave number can be related directly to the frequency 
at which the turbulent eddies are encountered by the 
aircraft, so the power spectrum as a function of fre-
quency f observed at the aircraft will similarly de-
crease in direct proportion to f−5/3. Behaviour of air-
craft turbulence observations relative to this well- 
established rule can be best extracted by plotting 
turbulence power E vs. frequency on a log-log basis. 
Taking the logarithm of both sides we can obtain: 

 
logE=Const.(−5/3)logf.                        (77)  

 
Consequently, the slope of a line-of-best-fit 

through the spectral data converted to a log-log basis 
should be ideally −5/3.  

The power spectrum was computed from 20 Hz 
wind data evaluated both with and without wing- 
flexure velocity calculations in effect. The spectrum 
was computed using a 4096-point FFT, with data 
spanning a period of 3.4 min during the calibration 

Fig. 11  Spectrum of wing-tip acceleration in aircraft-
fixed frame on the Nov. 26, 2009 Flight by GFS J4100
8192-point FFT of 40 Hz data, 550 s from start of flight 
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Fig. 10  Flex-induced wring-up vertical displacement in 
aircraft frame on the Nov. 26, 2009 Flight by GFS J4100
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flight of Nov. 26, 2009. This interval was chosen to 
coincide with circuit altitude near the end of the flight, 
as greater turbulence intensity is typically experi-
enced at lower altitudes. Fig. 12 shows the results of 
the power spectrum and the line-of-best-fit for this 
case. Fig. 13 presents the identical case, but with 
20 Hz wind data computed with the effects of wing 
flexure turned on. The slope of the line-of-best-fit, 
obtained via a least-squares analysis, for the case 
without wing flex considerations was −1.576, and the 
slope for the case with wing flex included was −1.614. 
It is clear that the refinements to the probe inertial 
velocity resulted in the slope of the power spectrum 
moving closer to the ideal value of −1.667. It is dif-
ficult to see obvious differences by simple inspection 
of these two cases. Wing flexure makes a relatively 
small, but positive contribution to the quality of tur-
bulence calculations.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

It is perhaps not too surprising that aero-elastic 
wing motion appears to have little effect on measured 
turbulence power spectra. Whatever the wing motion 
induced by unsteady aerodynamic forces, part of an 
oscillatory cycle could reduce the apparent vertical 
flow velocity only to cause the opposite to occur at a 

different part of the cycle. Upon reflection of these 
results, the most likely result of this process is to 
modify the phase of observed turbulent flow, not its 
energy content. This mechanism would have greater 
implications for airborne measurements that are very 
sensitive to flow signal phase, such as eddy correla-
tion methods applied to turbulent flux calculations. 

 
 

9  Impact of GPS-inertial improvements on 
wind data precision 

 

As discussed in Section 2, the wind solution is a 
vector summation of the wind flow-velocity vector 
relative to the aircraft, transformed to a frame of 
reference parallel to the earth-fixed frame, plus the 
velocity of this aircraft frame relative to the earth. 
Precision of the wind solution will therefore depend 
directly on the repeatability of inertial velocity, ori-
entation (Euler) angles, and air-data.  

The extent to which inertial velocity precision 
has been improved was deduced by examining in-
ternal consistency between the complex IMU  
integration-Kalman filter process and the observed 
GPS velocity. If the system were perfect and error 
free, discrepancies between the IMU-filter system 
velocity output and the corresponding GPS observa-
tions would be zero. The amount of scatter in this 
measurement residual is a representation of the cu-
mulative errors and uncertainties of the IMU-filter 
system. The behaviour of the inertial velocity residual 
relative to GPS is shown for the Nov. 26, 2009 cali-
bration flight, indicating comparative results for the 
new algorithm formulation vs. the previous algorithm 
(Figs. 5–7). This exercise was repeated for the King’s 
Park inter-comparison flight on Feb. 25, 2010, with 
the results illustrated by Figs. 14 and 15. RMS sta-
tistics were computed for the Feb. 25 case and the 
RMS residual for the north velocity from the previous 
algorithm was 0.051 m/s, and for the new algorithm 
was 0.021 m/s. For the east component, the corre-
sponding values were 0.046 m/s and 0.022 m/s. This 
implies that precision of the horizontal inertial ve-
locity components has been improved by about a few 
cm/s over the time period between filter updates 
(200 ms), due to improved IMU data handling 
between GPS refresh updates and better handling of 
the phase of GPS velocity updates.  

The contribution to inertial velocity at the ADP 
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Fig. 12  Turbulence power spectrum without wing flex-
ure velocity terms on Nov. 26, 2009 
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Fig. 13  Turbulence power spectrum including wing 
flexure velocity terms on Nov. 26, 2009 
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due to wing flexure was completely unaccounted for 
in the earlier processing-model formulation. The 
additional vertical velocity due to wing motion 
represents an instantaneous high-frequency vertical 
velocity error that has been removed (Fig. 16). The 
RMS magnitude of this velocity error from the flight 
of Feb. 25, 2010 was 0.25 m/s. 

A similar argument can be made for attitude, 
using internal consistency improvements as an indi-
cator of the degree of reduction in system noise and 
consequent improvement in measurement precision. 
As discussed in Section 2, the AIMMS-20 system 
utilizes two different Kalman filter designs to track 
attitude, one dependent on velocity matching (IMU 
vs. GPS), and the other dependent upon differencing 
the GPS carrier phase. Both algorithms resolve and 
track the same thing, namely, aircraft orientation. If 
both operated with zero error, then output from these 
two different approaches would be identical. Differ-
ences, therefore, reflect the degree of various uncer-
tainties in the data, the system model and measure-
ment model, and how they impact the different solu-
tion methods. Disagreement in the output sets a 
baseline for what we can expect in terms of precision. 
For example, if the two solutions can not agree to 
within 2°, then it is unlikely that we can be confident 
of either solution being significantly better than 2° in 
precision. Changes in consistency between the two 
different solution methods provide an indication of 
the extent of improvement to attitude precision. 

True heading was chosen for this examination as 
heading most directly effects how the horizontal  
aircraft-relative flow vector is translated into 
wind-vector components in the earth-fixed reference 
frame. For example, at 100 m/s TAS, each degree in 
true heading error will result in a wind-component 
error of 1.75 m/s in the direction perpendicular to the 
flight track (by simple geometry). Reduction in 
heading noise is, therefore, very important to im-
proving precision of the horizontal wind vector. 

Fig. 17 illustrates the reduction in heading noise, 
for filter 2 (carrier-phase) output relative to filter 1 
(IMU-GPS velocity matching). The original filter 
exhibits a RMS heading discrepancy over the com-
plete flight of Feb. 25, 2010 of 0.13 and the new 
filter 0.08. Although the improvement averaged over 
the entire flight is 0.05°, the previous algorithm suf-
fered from periodic bursts where this discrepancy 
widened at times by a few tenths of a degree. Note 

that each 0.1° introduces a horizontal wind uncer-
tainty of about 0.2 m/s at 100 m/s TAS. 

Refined horizontal inertial velocity estimation 
and better stability for true heading have improved 
horizontal wind precision by 0.1 m/s on average and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 16  Vertical wing-tip speed due to wring flexure on 

the Feb. 25, 2010 Flight by GFS J4100 
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Fig. 15  East velocity residual before and after upgrades 
on the Feb. 25, 2010 Flight by GFS J4100 
This figure used the same representations as in Fig. 14 
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Fig. 14  North velocity residual before and after upgrades 
on the Feb. 25, 2010 Flight by GFS J4100 
The red and black lines represent before and after algorithm 
upgrades, respectively (Note: for interpretation of the refer-
ences to color in this figure legend, the reader is referred to 
the web version of this article) 
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up to 0.2m/s or better during manoeuvres. Similarly, 
modelling wing flexure removed error in the instan-
taneous probe vertical velocity of about 0.25 m/s 
(RMS) under normal turbulence conditions typical of 
the mission of Feb. 25, 2010. 

 
 

10  Validation of temperature lag correction 
 

A simplified model for the influence of the en-
closure on temperature response was developed in 
Section 6.1, and a method to evaluate the unknown 
parameters defining the response was discussed in 
Section 6.2. Parameter estimation according to the 
method discussed requires two things: (a) tempera-
ture output corresponding to a time-varying tem-
perature environment; and (b) true atmospheric 
temperature as a function of time. Temperature output 
is obviously known, but the true-temperature input to 
the system is not easy to obtain with certainty. Even 
flying an ascent in parallel with a radiosonde launch 
introduces the question of spatial variability as the 
aircraft necessarily flies a slant-vertical profile 
whereas the balloon moves vertically. 

The solution to this problem was to exploit the 
fact that the dynamic heating characteristic of the 
reverse flow housing geometry is known from inde-
pendent wind-tunnel tests. Since airspeed is known 
very accurately, it is possible to predict changes in air 
temperature within the ventilation circuit that must 
result from airspeed changes with a high degree of 
confidence. 

The altitude profile of the calibration flight of 

Nov. 26, 2009 is shown in Fig. 18 together with TAS. 
From about 8.6 h UTC to 9.15 h UTC flight altitude 
was maintained with excellent tolerance, mostly 
within ±25 m, during calibration manoeuvres.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first calibration manoeuvre, which began by 

changing airspeed dramatically, started more than  
3 min after the desired operating altitude was reached. 
This means that the thermal forcing due to altitude 
and airspeed changes was very small prior to the start 
of manoeuvres, sufficient to obtain a reading of tem-
perature with most, if not all, lag effects extinguished. 
Knowing the lag-free temperature output at this alti-
tude, and subtracting the dynamic heating contribu-
tion, we can obtain an excellent estimate for the 
“true” temperature T0 at the calibration flight altitude. 
A narrow altitude band of ±25m meant that the at-
mospheric temperature should be stable to better than 
0.25 °C, which is a limit based on the dry adiabatic 
lapse rate of 0.0098 °C/m. Therefore, after ignoring 
temperature variation due to altitude as being a small 
random error, we can obtain the following ideal tem-
perature signal driven by TAS only (Nacass, 1992): 

 
2

0
p

( )
( ) ,

2

V t
T t T

C
                          (78) 

 
where η is the dynamic heating efficiency equal to 
0.70 obtained by previous wind tunnel experiments, 
Cp is the mass-specific heat constant for dry air at a 
constant pressure (1004 J/(kg·K)), and V(t) is the TAS 
as a function of time.   

Eq. (78) becomes the basis for creating the set of 
ideal temperature values {Ti} used to solve for un-
known model parameters λe and α. Fig. 19 illustrates 

Fig. 17  True heading consistency of old algorithm vs. 
new algorithm on the Feb. 25, 2010 Flight by GFS J4100
The red and black lines represent before and after algorithm 
upgrades, respectively (Note: for interpretation of the ref-
erences to color in this figure legend, the reader is referred to 
the web version of this article) 
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Fig. 18  Flight profile, airspeed and altitude on Nov. 26, 
2009 by GFS J4100 
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the ideal temperature signal that was so constructed, 
driven purely by changes in TAS (black line), to-
gether with the actual measured temperature from the 
air-data probe (red line).  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The least-squares algorithm of Section 6.2 was 

applied using the ideal system temperature input and 
actual measured response output from the ADP 
thermistor. The least-square estimation resulted in the 
following optimum coefficient values: λe=0.0155 and 
α=0.369. The de-convolution described by Eq. (68) 
was then applied and the results are illustrated in 
Fig. 19 by the blue curve.  

The value for λe may be interpreted as the recip-
rocal of the time constant for the housing material 
directly influencing ventilating flow temperature (1/λe 

=65 s), and the value for α may be interpreted as rep-
resenting about 1 output temperature bias for every 3 
bias of housing temperature relative to the true tem-
perature of the flow entering the ventilation tube.  

Qualitatively, we can see behaviour of the lag 
correction scheme is reasonable. The lag-corrected 
and raw temperature curves come together during 
periods of slow temperature variation, and move 
furthest apart during periods of rapid change, with the 
measured data lagging behind.  

The quality of the temperature lag-correction 
algorithm was verified using an independent dataset 
taken from a flight performed on Feb. 25, 2010 that 
included a slant-vertical profile flown at a time co-
ordinated with the ascent of a radiosonde released 
from the King’s Park Station in Hong Kong. The 
flight profile for the Feb. 25 flight is given in Fig. 20. 

 
 
 
 
 
 
 
 
 
 
 

 
 
The slant-vertical profile was extracted from the 

processed dataset on the descent to the airport as this 
time matched most closely the time of release of the 
radiosonde (12 h UTC). The resulting temperature 
profile, both with the temperature as originally 
computed and the lag-corrected equivalent is shown 
together with the data from King’s Park in Fig. 21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The data was further analyzed to quantify bias as 
a function of altitude. Figs. 22 and 23 show the air-
craft temperature profile data (red) and the 12 h UTC 
King’s Park sounding (black) and the bias of the air-
craft data (blue) with reference to the right-hand axis. 
Mean bias values were computed for both cases, in 
addition to the RMS scatter of the bias about the mean. 
Fig. 22 illustrates the case without lag correction, and 
Fig. 23 with lag correction turned on. 

The values for mean bias and RMS deviation 
from the mean for the case without lag correction 

Fig. 21  Aircraft-radiosonde observation (RAOB) tem-
perature inter-comparison on Feb. 25, 2010 
The blue, black and red lines represent King’s Park sounding 
temperature, lag-corrected and uncorrected temperatures, 
respectively (Note: for interpretation of the references to 
color in this figure legend, the reader is referred to the web 
version of this article) 
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Fig. 19  Measured and ideal temperature with lag-
corrected curve during speed variation at constant 
altitude on the Nov. 26, 2009 Flight by GFS J4100 
The blue, black and red lines represent corrected, idea and 
measured temperatures, respectively (Note: for interpreta-
tion of the references to color in this figure legend, the 
reader is referred to the web version of this article) 
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Fig. 20  Flight profile for King’s Park radiosonde ob-
servation (RAOB) inter-comparison flight on Feb. 25, 
2010 by GFS J4100 
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were −0.34 and 0.53 C, respectively. It is reasonable 
for the aircraft temperature to be lagging low as the 
aircraft profile at 12 h UTC was acquired on descent, 
i.e., the probe temperature was increasing as a func-
tion of time.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

For the case with lag correction applied, the mean 
bias and RMS values were −0.02 and 0.43 C, respec-
tivley. Lag correction resulted in the aircraft tempera-
ture profile moving back and forth across the King’s 
Park sounding resulting in a negligible mean offset. 
However, there was only a small improvement in the 
RMS bias deviation. The amount of scatter is likely 
due to factors other than aircraft-temperature fre-
quency response, such as effects owing to real spatial 
and temporal variability of the atmosphere.  

Additional inter-comparison cases were later 
acquired to further validate the qualities of the lag 
correction algorithm. Data were taken from flights 

performed on Apr. 30, 2012 and May 2, 2012 that 
included data from a slant-vertical profile data ac-
quired at about the same time as an RAOB sounding 
from the nearby King’s Park Station. Fig. 24 shows the 
temperature profile obtained in real time on descent to 
HKIA, with a touch-down time of 23.92 h UTC. The 
real-time data does not include any corrections for 
temperature lag induced by the sensor housing; but, the 
temperature profile obtained by the de-convolution 
algorithm implemented by the enhanced post- 
processing routine is included for comparison together 
with the King’s Park 24Z RAOB sounding. The data 
clearly shows the cold bias of the descent profile, 
which is expected as the trajectory is taking the probe 
from cold conditions to progressively warmer condi-
tions. The profile obtained from the de-convolved data, 
however, is moved significantly closer to the RAOB 
profile with a cold bias of from 1.0–1.5 °C reduced to 
less than 0.5 °C. The exercise was repeated on May 2 
and the results showed similar behavior (Fig. 25). The 
profile after temperature de-convolution exhibited a 
cold bias on descent that is about 1/3 of the value ob-
tained without correction. 

 
 

11  Conclusions 
 

In this paper, improvement of the accuracy of 
wind and temperature measurements of the AIMMS- 
20 system was achieved by applying a post- 
processing technique of the raw measurements. Wind 
measurements were improved by considering: (1) 
Error modelling of the accelerometer (e.g., bias offset 
and cross-axis rate sensitivity); (2) GPS phase lag (the 
finite time delay between the velocity update of the 
IMU and the GPS solution); (3) Better representation 
of the IMU velocity based on the GPS velocities con-
sidering their location difference; (4) Consideration of 
the slower (5 Hz) update of GPS velocity, i.e., taking 
angular acceleration into consideration during the 
200 ms GPS data update; and (5) Wing flexure. 

From the above considerations, the improve-
ment in measurement of the horizontal wind would be 
in the order of 0.1 m/s on average and up to 0.2 m/s 
during manoeuvers. These figures represent an ac-
curacy improvement of 20% over those originally 
specified in Section 1 (0.1/0.5 or 0.2/1). 

Temperature measurements were improved by 
considering the temperature sensor response and the 
sensor housing response. From the above discussion, 
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Fig. 23  Bias detail with lag correction on Feb. 25, 2010 by 
GFS J4100 
This figure used the same representations as in Fig. 22 

Fig. 22  Bias detail without lag correction on Feb. 25, 2010 
by GFS J4100 
The red, black and blue lines represent the aircraft tempera-
ture profile, the 12 h UTC King’s Park sounding temperature 
and the bias of the aircraft data, respectively (Note: for in-
terpretation of the references to color in this figure legend, the
reader is referred to the web version of this article) 
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the bias of the temperature measurement was much 
reduced and the RMS error was reduced by about 
0.1 °C by comparison with radiosonde data. This 
RMS error reduction is about 30% over the accuracy 
originally specified (0.1/0.3). For the remaining two 
meteorological measurements of AIMMS-20, namely, 
humidity and pressure, it is considered that post- 
processing of raw data is not expected to bring about 
significant improvement in their measurement. 

The present paper discusses mainly the meth-
odology for improving the accuracy of wind and 
temperature data from the AIMMS-20 with some 
examples for illustration purpose. The robustness of 
the methods so developed will be studied more sys-

tematically with a larger dataset, and the results will 
be presented in future papers. 
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Fig. 24  Temperature descent profile to HKIA, 23.75–
23.92 h UTC with lag-corrected profile and King’s Park 
24Z Sounding, Apr. 30, 2012 
The blue, red and black lines represent the King’s Park 
sounding temperature, temperature without and with de-
convolution, respectively (Note: for interpretation of the 
references to color in this figure legend, the reader is referred 
to the web version of this article) 
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Fig. 25  Temperature descent profile to HKIA, 23.75–
23.92 h UTC with lag-corrected profile and King’s Park 
24Z Sounding, May 2, 2012 
This figure used the same representations as in Fig. 24 
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