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Abstract:    This paper focuses mainly on the stability analysis of two-lane traffic flow with lateral friction, which may be caused 
by irregular driving behavior or poorly visible road markings, and also attempts to reveal the formation mechanism of traffic jams. 
Firstly, a two-lane optimal velocity (OV) model without control signals is proposed and its stability condition is obtained from the 
viewpoint of control theory. Then delayed-feedback control signals composed of distance headway information from both lanes 
are added to each vehicle and a vehicular control system is designed to suppress the traffic jams. Lane change behaviors are also 
incorporated into the two-lane OV model and the corresponding information about distance headway and feedback signals is 
revised. Finally, the results of numerical experiments are shown to verify that when the stability condition is not met, the position 
disturbances and resulting lane change behaviors do indeed deteriorate traffic performance and cause serious traffic jams. However, 
once the proper delayed-feedback control signals are implemented, the traffic jams can be suppressed efficiently. 
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1  Introduction 
 

Traffic problems have attracted much attention 
for decades. To understand the complex phenomena 
of traffic flow, various traffic flow models have been 
proposed in recent decades. Based on the level of 
detail described, these models can be classified into 
three major categories (Hoogendoorn and Bovy, 
2001): macroscopic, mesoscopic, and microscopic 
models. Here, we concentrate mainly on one of the 
most representative microscopic models, the optimal 
velocity (OV) model proposed by Bando et al. (1995), 
in which each vehicle is described by a simple dif-
ferential model and each driver controls the velocity 

based on an OV function. Their paper presented the 
traffic congestion under periodic conditions and de-
rived a simple stability condition for the OV model. 
Since then, researchers have explored the OV model 
from different aspects and have used it to analyze 
various traffic density waves so as to obtain the sta-
bility conditions in different situations. These devel-
opments included deducing a modified Korteweg- 
de Vries (mKdv) equation (Komatsu and Sasa, 1995) 
from the OV model, the introduction of delay time 
(Davis, 2002), incorporation of relative speed (Jiang 
et al., 2001), and the development of intelligent 
transportation systems (ITSs), taking into account the 
stimulus of not only the vehicle ahead but also many 
vehicles ahead of and (or) behind the driver (Lenz et 
al., 1999; Nagatani, 1999; Nakayama et al., 2001; 
Hasebe et al., 2003; Ge et al., 2006; Sun et al., 2011). 
Such OV models are found to be a rich source of 
dynamic behaviors, which are the key to explaining 
wave features in highway traffic (Gasser et al., 2004; 
Schönhof and Helbing, 2007). 
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With regard to the stability analysis of two-lane or 
multi-lane traffic flows, Kurata and Nagatani (2003) 
and Nagai et al. (2005) studied the spatial-temporal 
dynamics of jam transitions induced by a bus or 
blockage on a two-lane highway. Tang et al. (2005; 
2008) recently put forward new two-lane car-following 
models with consideration of the lateral distance and 
potential lane changes, which have improved the sta-
bility of traffic flow. When analysing the stability of 
two-lane traffic flows, it is necessary to consider the 
lateral discomfort (i.e., lateral friction) caused by the 
weak discipline of lane-based driving (Gunay, 2007). 
In this paper, we concentrate on the internal friction 
existing between vehicles moving in the same direction, 
which is one of four types of friction (May, 1959). 
Recently, a non-lane-based full velocity difference 
(FVD) car-following model (Jin et al., 2010) was 
proposed and used to analyze the influence of lateral 
friction on the stability of traffic flow. This model in-
spired our study of the lateral friction in two-lane or 
multi-lane traffic flows. The question of how to control 
traffic jams has attracted much attention in the field of 
transportation. Kerner (2005) proposed a congested 
pattern control approach to alleviate traffic congestion 
at highway bottlenecks and drew some important con-
clusions. With the development of ITS, advanced traf-
fic control systems, such as ramp metering (Papageor-
giou et al., 1997; Smaragdis and Papageorgiou, 2003), 
variable speed limit (Alessandri et al., 1999; Papa-
georgiou et al., 2008) and coordinated traffic control 
strategies (Kotsialos et al., 2002; Hegyi et al., 2005) 
have developed greatly. In particular, adaptive cruise 
control (ACC) systems have been implemented for 
improving road capacity and decreasing traffic con-
gestion (Davis, 2004; Zhou and Peng, 2005; van Arem 
et al., 2006; Kesting et al., 2008). The control of traffic 
congestion has also attracted the attention of research-
ers in nonlinear science during recent decades and 
various control methods have been implemented to 
suppress chaotic behavior in traffic flows. For instance, 
Konishi et al. (1999; 2000) proposed various versions 
of the decentralized delayed-feedback control (DDFC) 
method and applied them to alleviate traffic jams on 
the road.  

However, little attention has been paid recently 
to the design of vehicular control systems for 
two-lane traffic flows from the viewpoint of control 
theory. Chen et al. (2007) extended a single-lane 

feedback control model proposed by Zhao and Gao 
(2005) to a two-lane optimal velocity feedback con-
trol (OVFC) model and made some impressive con-
clusions. However, they did not give mathematical 
equations to describe two-lane traffic flows and ne-
glected lateral friction and lane change behaviors. The 
stability analysis of two-lane traffic flows from the 
viewpoint of control theory should be regarded as an 
important issue because: (1) Two-lane traffic flow 
better accords with real traffic. (2) It is crucial to 
reveal the mechanism of interaction between vehicles 
from different lanes, which is an important factor in 
the formation of traffic jams and the design of ve-
hicular control systems. Thus, there is a need for a 
mathematical model for two-lane traffic flow that 
takes account of lateral friction and lane change be-
haviors, and for an analysis of the stability conditions 
based on the well-known DDFC method.  

This paper is organized as follows: Section 2 
explains the OV model for two-lane traffic flow and 
analyzes the stability conditions. In Section 3, the 
DDFC method is extended to the two-lane case and 
utilized to suppress traffic jams, and then a simple 
procedure for the design of control systems is intro-
duced. Section 4 introduces lane change rules and the 
corresponding modifications of the comprehensive 
distance headway and feedback control signals. Nu-
merical simulations are provided in Section 5 to con-
firm the theoretical results. Finally, conclusions are 
presented in Section 6. 

 
 

2  Two-lane optimal velocity model 

2.1  Description of the model 

Usually, because of irregular driver attitudes or 
poor road surfaces or markings, vehicles are not al-
ways positioned in the centre of a lane, and once some 
are off centre and close to the neighboring lane they 
may cause lateral friction (i.e., lateral discomfort) to 
drivers in the neighboring lane and influence their 
driving behavior (Gunay, 2007). In this condition, any 
vehicle causing lateral friction to drivers in the 
neighboring lane should be considered in studies of 
vehicle systems. Such a vehicle and its movement are 
influenced not only by the nearest preceding vehicle 
in its own lane but also by the lateral friction caused 
by the nearest preceding vehicle in the neighboring 
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lane. If the lateral separation between two vehicle 
groups (denoted by LS) is smaller than the width of a 
typical lane, indicated by LSmax, each driver will ex-
perience lateral discomfort from the neighboring lane 
and the smaller is LS the more serious is the lateral 
discomfort perceived. Therefore, the driver of vehicle 
n1 in lane 1 should not only pay attention to the be-
haviors of vehicle n1−1 in front, so as to avoid a 
rear-end accident, but should also notice the potential 
safety threat resulting from the irregular driving or 
lane change behaviors of vehicle n2 in lane 2 (Fig. 1). 
These behaviors should not be neglected when 
two-lane or multi-lane traffic flows are modeled.  

Therefore, based on the OV model and under the 
condition of LS<LSmax, the vehicle dynamic in lane l 
is given as 
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where nl=1,2,…,Nl, and Nl is the total number of all 
vehicles in lane l, , ( )

ll nv t
 
and ,( ( ))

ll l nF y t  are the ve-

locity of vehicle nl and the OV function in lane l, 

respectively, and , ( )
ll ny t  and , ( )

ll nq t  are the longitu-

dinal distance (i.e., the distance between two vehicles 
nl−1 and nl in lane l

 
at time t) and the lateral distance 

(i.e., the distance between the vehicle nl in lane l and 
the closest preceding vehicle in the neighboring lane) 

respectively. , , ,( ) ( ) ( )
l l l
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l n l l n l l ny t y t q t     is the 

comprehensive distance headway, where y
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max/LS LS  and max1 /q
l LS LS    denote the weights 

of the information about the distance headway from 

lane l and the neighboring lane, respectively. f
, ( )

ll nv t  

is the velocity of the nearest preceding vehicle in the 
neighboring lane. al>0 is the driver’s sensitivity with 
respect to the difference between the optimal and 
current velocity in lane l.  

From Fig. 1 and vehicular dynamics Eq. (1), it is 
known that the behavior of vehicle nl 

is determined by 
two factors: one is the block effect from the nearest 
vehicle in front in lane l, i.e., if the longitudinal dis-
tance yl,nl

(t) decreases, vehicle nl 
will decelerate to 

avoid a rear-end collision; the other is the potential 
safety threat from the neighboring lane. This occurs 
when the lateral distance ql,nl

(t) decreases and the 

psychological state of the nlth driver becomes nervous 
and the driver slows down to reduce the uncomfort-
able friction. Based on the assumption that the stable 
velocity of all vehicles is v0, the whole vehicular 
system has the following steady state: 
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Once weight coefficients ,y

l  q
l  and the de-

sired longitudinal  distance yl
* are determined, the 

lateral distance ql
* can be designed and the final 

steady state of the whole vehicular system can be 
expressed as follows: 
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2.2  Stability analysis 

To obtain the stability conditions of such a 
two-lane traffic flow model, firstly let the vehicular 
dynamics Eq. (1) be linearized around a steady state 
Eq. (2), and then the linearized vehicular dynamics in 
lane l can be written as 
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Fig. 1  Interaction between two vehicle groups on a 
two-lane road 
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where o
, , 0( ) ( ) ,

l ll n l nv t v t v  o
, 1 , 1 0( ) ( ) ,
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From the viewpoint of control theory, vehicular 

dynamics Eq. (3) can be rewritten as a linear time- 
invariant system, that is 
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After Laplace transformation, we have 
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Therefore, the main relationship of backward 

propagation of velocity fluctuation (i.e., the velocity 
fluctuations of the vehicle nl−1 in lane l and the 
closest preceding vehicle in the neighboring lane 
propagated to the velocity fluctuation of vehicle nl in 
lane l) can be analyzed as follows.  

Based on the assumption that the maximum 
disturbance of vehicle nl−1 in lane l (i.e., denoted by 
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Moreover, only if , , 1/ 1,

l ll n l n     would the 

velocity disturbance not be amplified when propa-
gated backwards. Based on the above analysis, the 
brief Eq. (5) can be rewritten in the following form: 
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is the characteristic polynomial of Gl(s). 

From definition 1 of Konishi et al. (2000), it is 
known that if the characteristic polynomial is stable 
and the H∞-norm of transfer function is equal to or 
less than 1, then traffic jams will not occur. That is, 
the stability of the characteristic polynomials is the 
necessary and sufficient condition for the steady state 
to exist, and the H∞-norm of transfer functions should 
not be larger than 1 to guarantee that the velocity 
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fluctuation will not be amplified when propagated 
backwards. Therefore, after some algebraic opera-
tions, the stability condition in lane l is given as 

 

2( ).y q
l l la                              (7) 

 
Thus, the stability analysis can be summarized as 

follows: 
Lemma a    If the stability condition (i.e., Eq. (7)) is 
met for both lanes, traffic jams never occur. 
Lemma b    If the stability condition (i.e., Eq. (7)) is 
not met for either or both lanes, the velocity distur-
bance in one lane will be propagated backwards with 
growing amplitude to the neighboring lane because of 
the transfer effect of the lateral friction, which results 
finally in traffic jams. 
 
 
3  Suppressing traffic jams 

3.1  Description of the model with control signals 

To alleviate traffic jams (e.g., Lemma b), a  
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(t), is added to 

the vehicular dynamics Eq. (1). 
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are the feedback gains, and τl is the 

delay time in lane l. The control signal ul,nl
(t) not only 

involves the difference between the current and past 
longitudinal  distances (i.e., yl,nl

(t) and yl,nl
(t−τl)), 

which can be seen as the feedback information from 
lane l, but also relates to the difference between the 
current and past lateral distances (i.e., ql,nl

(t) and 

ul,nl
(t−τl)), which denote the feedback information 

about lateral friction from the neighboring lane. Note 
that if all vehicles are running with a stable velocity, 

the control signals ul,nl
(t) will vanish. 

Obviously, the vehicular dynamics Eq. (8) in-
volves a continuous-time version of the DDFC 
method (Konishi et al., 2000). Around the steady state 
Eq. (2), the vehicle dynamics Eq. (8) with control 
signals Eq. (9) can be rewritten as a linear time- 
invariant system, that is 
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After the Laplace transformation for such a lin-
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          

   
(11)

 

where  

, ,( ) : ( ( )),
l ll n l nU s L u t

o o
, , ,( ) (1 e ) ( ) (1 e ) ( ) .l l

l l l

s sy q
l n l l n l l nU s k Y s k Q s       

 
In system Eq. (11), it is also assumed that the 

maximum velocity disturbance for each lane is equal, 

i.e., o f o
, 1 ,( ) ( ) .

l ll n l nV s V s   Then, after derivation we 

obtain the following transfer relationship of velocity 
disturbance in lane l: 

 
o o

, , 1( ) ( ) ( ) ,
l ll n l l nV s G s V s


                    

(12) 
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where the transfer function in lane l is 

( ) ( ) ( )(1 e ) / ( )lsy q y q
l l l l l l lG s a Λ Λ k k d s      and the 

characteristic polynomial of Gl(s)* is ( )ld s   

( ) (1 e ) (1 e ).l ls sy q
l l ld s k k        

3.2  Design of the control system
 

After derivation of system Eq. (11), we can de-
sign a delayed-feedback control system for each ve-
hicle so as to suppress or avoid traffic jams on a 
two-lane road, as shown in Fig. 2, where 

11 (1 e ),lsy
lH k  

 12 (1 e ),lsq
lH k  

 
and the expres-

sion of R(s)
 
refers to Appendix A. 

 
 

 
 
 
 
 
 
 
 
 

From Fig. 2, it is clear that this system is a 
typical closed-loop feedback control system. In such a 
control system, velocity disturbances of vehicle nl−1

 
and the closest preceding vehicle in the neighboring 
lane are the input signals, the comprehensive distance 
headway information from both lanes (i.e., , ( )

ll nU s ) 

is the feedback control signal, and the output signals 
include the vehicle nl’s disturbances of velocity, lon-
gitudinal  distance and lateral distance. In the follow-
ing, we attempt to acquire the stability conditions for 
such a control system so as to make the three output 
signals vanish gradually. First of all, to make dl(s)* 
stable, the well-known small gain theorem guarantees 
that dl(s)* is stable if 

 

33 12

23 11

23 11 23 12

1
33 12 33 11

33 12 33 11

1
23 11 23 12

|| ( ) || || ( ) || 1,

|| ( ) || || ( ) || 1,

|| ( ) ( ) || || ( ) ( )

[1 ( ) ( )] ( ) ( ) || 1,

|| ( ) ( ) || || ( ) ( )

[1 ( ) ( )] ( ) ( ) || 1.

G s H s

G s H s

G s H s G s H s

G s H s G s H s

G s H s G s H s

G s H s G s H s

 

 












 
 
   
 


  

    (13) 

Moreover, under the condition of al<2(Λl
y+Λl

q), 
which does not agree with the stability condition 
Eq. (7), we can rewrite Eq. (13) after some algebraic 
operations as follows: 

 

2

2

[4( ) ]
( ) 4 ,

2

[4( ) ]
( ) 4 .

2

y q
l l l l l y y y q

l l l l

y q
l l l l l q q y q

l l l l

a a a
k k k k

a a a
k k k k

 

 

  
   



 
  

 

(14)
 

 
Under the condition that dl(s)* is stable, it should 

be confirmed that ||Gl(s)*||∞ is not larger than 1 if we 
want to guarantee that traffic jams never occur or 
would be suppressed on the road. Therefore, in the 

following, we try to design ,y
lk  q

lk
 
and τl so as to 

make ||Gl(s)*||∞ be 1 or less. Therefore, from the 
viewpoint of frequency domain, we set s=jω, then the 
absolute value of Gl(s)* can be written as 

 

1 2| ( ) | / ,lG j B B                        (15) 

 

where 2
1 { ( ) ( )[1 cos( )]}y q y q

l l l l l lB a k k        

2[( )sin( )]y q
l l lk k    and 2

2 { ( )y q
l l lB a       

2 2( )[1 cos( )]} [ ( )sin( )] .y q y q
l l l l l l lk k a k k       

       Obviously, it is difficult to derive an analytical 
expression for ||Gl(s)*||∞ to be 1 or less, but through 
numerical experiments we can find the proper feed-

back gains y
lk , q

lk
 
and delay time τl so that maximum 

values of |Gl(jω)*|
 
are not larger than 1 for all ω[0, 

+∞) (Section 5.2).  
From the above analysis, a theorem is derived as 

follows: 
Theorem 1    If Eq. (14) is satisfied and |Gl(jω)*| is 
not larger than 1 for all ω[0, +∞) (i.e., ||Gl(s)*||∞≤1), 
traffic jams can be suppressed efficiently once such 
delayed-feedback control signals are added. 
 
 
4  Introduction of lane change rules 
 

In the above sections, the comprehensive dis-
tance headway , ( )

ll ny t  and feedback control signals 

, ( )
ll nu t  are formulated in the context of a relatively 

Fig. 2  Block diagram of the control system for the nlth 
vehicle of lane l 

( )R s

, ( )
ll nV s o

, ( )
ll nY s o

, ( )
ll nQ s o

, 1( )ll nV s o

, ( )
ll nV sf o

, ( )
ll nU s

, , ,( ) ( ) ( ) 
l l ll n l n l nU s H Y s H Q so o

11 12
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homogeneous traffic state, which would be broken by 
the lane change behaviors of any vehicle meeting the 
lane change conditions. Therefore, to demonstrate the 
influence of lane change behaviors on choosing the 
comprehensive distance headway and feedback con-
trol signals, firstly the selected lane change rules 
(Kurata and Nagatani, 2003; Nagai et al., 2005) can 
be described as follows: 

 
f

, ( ) 2 ,
ll n ly t h                                (16) 

, ,( ) ( ),
l ll n l ny t q t                           (17) 

b
, ( ) ,

ll n lb t h                                 (18) 

 
where inequalities Eqs. (16) and (17) are incentive 
criteria for a lane change decision, inequality Eq. (18) 
is the security criterion, , ( )

ll nb t
 
is the distance be-

tween the vehicle nl 
in lane l and the closest following 

vehicle in the neighboring lane at time t, f
lh

 
is the 

front safety distance in lane l, and b
lh

 
is the back 

safety distance in the neighboring lane. 
If the lane change conditions for vehicle n2 are 

met, it will change its lane to lane 1 just in front of 
vehicle n1 (Fig. 3). After that, vehicle n1’s nearest 
preceding vehicle in the neighboring lane becomes 
vehicle n2−1 and its lateral distance (i.e., the distance 
between vehicles n1 and n2−1) is significantly larger 
than the longitudinal  distance (i.e., the distance be-
tween vehicles n1 and n2). If the inequalities Eqs. (16) 
and (18) are not met for vehicle n1 in the next period 
of time, it will not change its lane to lane 2 and the 
relatively homogeneous traffic state will be broken. In 
this condition, vehicle n1 is influenced only by the 
nearest preceding vehicle in its own lane (i.e., vehicle 
n2). The reason can be explained as follows. 

 
 
 
 
 
 
 
 
 
 
 
 

If the lateral distance between the current vehicle 
and its nearest preceding vehicle in the neighboring 
lane is very large and the lane change conditions are 
not met for the current vehicle, according to the dy-
namic systems Eqs. (1) and (8), the current vehicle 
has to accelerate even though the longitudinal  dis-
tance is not large enough. This violates the reality and 
may cause a rear-end accident. In this situation, the 
lateral friction from the neighboring lane should be 
removed, which means neglecting that part of the 
lateral distance in the comprehensive headway dis-
tance and the feedback control signals from the 
neighboring lane. Therefore, when introducing the 
lane change rules, the comprehensive headway dis-
tance and feedback control signals can be modified as 
follows: 

(1) The comprehensive headway distance: 
 

, , , ,( ) ( ) [ ( ), ( )]
l l l l

y q
l n l l n l l n l ny t y t f q t y t   ,  

 
where  

, , ,

, ,
, , ,

( ), if ( ) ( ),
[ ( ), ( )]

( ), if ( ) ( ).
l l l

l l

l l l

l n l n l n

l n l n
l n l n l n

q t q t y t
f q t y t

y t q t y t

  
 

 
(2) The feedback control signals: 
 

, , , , ,( ) ( ( ) ( )) [ ( ), ( )],
l l l l l

y q
l n l l n l n l l l n l nu t k y t y t k g q t y t   

where 

, ,

, ,

, ,
, ,

, ,

( ) ( ),

if ( ) ( );
[ ( ), ( )]

( ) ( ),

if ( ) ( ).

l l

l l

l l

l l

l l

l n l n l

l n l n

l n l n
l n l n l

l n l n

q t q t

q t y t
g q t y t

y t y t

q t y t





 



   
 

 

 

 

5  Numerical simulations 
 

In the numerical simulations, 100 vehicles were 
distributed on each lane on a road under open 
boundary condition (i.e., N1=N2=100). The OV 
function was , , c c( ( )) tanh[ ( ) ] tanh

l ll l n l nF y t y t y y    

and the steady state was set as follows: v0=0.9354 
and yc=1.7 were desired velocity and distance re-

spectively. yl
*=2, ql

*=1, y
l =0.7, q

l =0.3, f 0.7,lh 
 

b 0.5lh   for l=1 and 2. Therefore, the initial condi-

tion was chosen as follows: as for lane 1, x1,100(0)=2, 

Lane 2

Lane1

, ( )
22 1nv t

, ( )
22 nv t

, ( )
11 1nv t, ( )

11 nv t

, ( )
11 nx t

, ( )
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22 nx t

, ( )
11 nq t

, ( )
11 ny t
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22 ny t
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22 nb t

, ( )
11 1nx t

Fig. 3  Situation of lane change 
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x1,n1−1(0)=x1,n1
(0)+y1

* for n1=100, 99, …, 2, and 

v1,n1
(0)=v0; as for lane 2, x2,100(0)=1, x2,n1−2(0)= 

x2,n2
(0)+y2

* for n2=100, 99, …, 2, and v2,n2
(0)=v0. The 

time step Δt of simulation was 0.05 s.  
To analyze the stability performance of traffic 

flow with and without feedback control signals, the 
following position disturbances could be added to 
some vehicles at some times, causing these vehicles 
to deviate from their steady states and trigger some 
lane change behaviors. 

 

If t=35 s, 
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2,20 2,20

*
1,21 1,21

( ) ( ) 2 / 3,

( ) ( ) ;

l

l

x t x t y

x t x t q

   


 
 

if t=45 s, 
*

2,30 2,30

*
1,31 1,31

( ) ( ) 2 / 3,

( ) ( ) .

l

l

x t x t y

x t x t q

   


   

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1  Performance of traffic flow without control 
signals 

The initial velocity fluctuation is due to position 
disturbances and the resulting lane change behaviors 
but it gradually dissolves (Figs. 4a and 4b). This re-
sults from the sensitivities of drivers in the two lanes 
being 3 and 2, respectively (i.e., a1=3 and a2=2), which 
definitely meets Lemma a. Moreover, from the spa-
tial-temporal trajectories of all vehicles in both lanes 
(Figs. 4c and 4d) it is further verified that the traffic 
flow finally returns to its original steady state, al-
though there are two vehicles conducting lane change 
behaviors. However, when the two sensitivities a1 and 
a2 decrease to 1.0 and 1.5, respectively, which obvi-
ously satisfies Lemma b, the velocity fluctuation 
would be propagated backwards with growing vibra-
tion amplitude (Figs. 5a and 5b) and eventually 
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Fig. 4  Numerical simulation for two-lane traffic flow, a1=3 and a2=2 
(a) Spatial-temporal evolution of the velocity fluctuation; (b) Profiles of the velocity fluctuation; (c) Spatial-temporal trajectories 
in lane 1; (d) Spatial-temporal trajectories in lane 2  
Note: in (a) and (b) vehicles are numbered consecutively according to their initial positions. Blank areas in (c) denote that lane 
change behaviors occur 
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cause serious traffic jams propagated upstream. This 
is also shown by the spatial-temporal trajectories of 
all vehicles on the road (Figs. 5c and 5d). 

5.2  Suppressing the traffic jams with control  
signals 

5.2.1  Determination of control parameters 

To suppress the traffic jams shown in Fig. 5 effi-
ciently, we have to determine the proper delay time τl 

and feedback gains ,y
lk  q

lk
 
so as to meet Theorem 1. 

As for lane 1 (i.e., l=1), based on the assumption 

of a1=1.0 and 1| |yk = 1| |qk , and substituting these pa-

rameters into condition Eq. (14), we get 1| | 0.2676yk 
 

and 1| | 0.2676.qk   Then, fixing the feedback gains at 

k1
y=k1

q=0.25, Fig. 6a shows the absolute values of the 
transfer function (i.e., |G1(jω)*|) for τ1=0, 1 and 2 s. 
|G1(jω)*| has peaks greater than 1 when τ=0, which 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

accords with the situation without control signals. 
|G1(jω)*| also has peaks greater than 1 when τ1=2 s. 
However, when τ1 is 1 s, the values are not all larger 
than 1 for all ω[0, +∞). Therefore, only when the 
delay time τ1 is 1 s do the conditions satisfy Theorem 
1. 

Under the condition of τ1=1, we obtain the values 

of |G1(jω)*| when k1
y=k1

q=−0.25, 1 1 0y qk k   and 

k1
y=k1

q=0.25 (Fig. 6b). The values when k1
y=k1

q=0.25
 

are equal to or less than 1 for all ω[0, +∞). These 
numerical calculations guarantee that the traffic jams 
never occur or would be suppressed in lane 1 when 
k1

y=k1
q=0.25

 
and τ1=1 s. 

As for lane 2, (i.e., l=2), set a1=1.5 and 

2| |yk = 2| |,qk  the process of determining feedback 

gains 2 ,yk  2
qk

 
and delay time τ2 is similar to that for 

lane 1. Therefore, we find that traffic jams in lane 2 
never occur or would vanish if the feedback gains 
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Fig. 5  Numerical simulation for two-lane traffic flow, a1=1.0 and a2=1.5 
(a) Spatial-temporal evolution of the velocity fluctuation; (b) Profiles of the velocity fluctuation; (c) Spatial-temporal trajectories 
in lane 1; (d) Spatial-temporal trajectories in lane 2  
Note: in (a) and (b) vehicles are numbered consecutively according to their initial positions. Blank areas in (c) denote that lane 
change behaviors occur 
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(i.e., 2
yk
 
and 2

qk ) are both chosen as 0.4 and the delay 

time τ2 is fixed at 1 s (Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.2  Performance of traffic flow with control signals 

Some conclusions can be drawn by comparing 
Fig. 5 with Fig. 8: when Lemma b is satisfied on the 
two-lane road (e.g., when a1=1.0 and a2=1.5), serious 
traffic jams appear due to position disturbances and 
the resulting lane change behaviors (Fig. 5). But when 
the proper delayed-feedback control signals are added, 
each vehicle can be treated as a feedback control 
system and adjusts its own acceleration or decelera-
tion according to the difference between the current 
and past traffic conditions, which involves using the 
information about the longitudinal and lateral dis-
tances. Therefore, the traffic jams would dissolve 
gradually and traffic flow would return to the original 
steady state (Figs. 8a and 8b). This can also be veri-
fied by the spatial-temporal trajectories of all vehicles 
on the road (Figs. 8e and 8f). Comparing Figs. 8a and 
8b and Figs. 8c and 8d shows that the stronger feed-
back signals correspond to the larger amplitudes of 
velocity fluctuation. All these results demonstrate that 
the feedback control scheme proposed in this study is 
a useful way to alleviate traffic jams, i.e., a two-lane 
traffic flow with delayed-feedback control signals has 
strong robustness to traffic perturbation.  
 
 

6  Conclusions 

 
This paper proposes a two-lane OV model, 

which involves lateral friction from the neighboring 
lane, to describe the dynamic behaviors of two vehi-
cle groups and their correlations under open boundary 
condition. Firstly, from the viewpoint of control the-
ory we derive the stability conditions of a two-lane 
OV model with the method of H∞-norm. Then, in the 
unstable traffic condition, the delayed feedback con-
trol signals can be added to each vehicle and corre-
sponding stability conditions are obtained, where the 
appropriate control parameters can be solved by a 
numerical procedure. When incorporating lane change 
behaviors, the relatively homogeneous state of 
two-lane traffic flow would be broken and therefore 
the comprehensive headway distance and feedback 
control signals should be revised to neglect the traffic 
information from the neighboring lane. Finally, 
through numerical experiments, we can draw some 
important conclusions as follows: (a) When Lemma a 
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is met, traffic jams do not happen, although there are 
position disturbances and lane change behaviors in 
the beginning. (b) Once Lemma b is satisfied, the 
small velocity fluctuation would be propagated 
backwards with increasing amplitude, finally result-
ing in serious traffic jams on the road. (c) Under the 

 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

prerequisite of Lemma b, the feedback control scheme 
which meets Theorem 1 can successfully suppress 
traffic jams resulting from small position disturbances 
and lane change behaviors. Therefore, it is useful to 
design a proper vehicular control system, which helps 
to maintain the stability of traffic flow.  
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Fig. 8  Numerical simulation for two-lane traffic flow with feedback control signals, a1=1.0 and a2=1.5 
(a) Spatial-temporal evolution of the velocity fluctuation; (b) Profiles of the velocity fluctuation; (c) Spatial-temporal evolution of 
the feedback signals; (d) Profiles of the feedback signals fluctuation; (e) Spatial-temporal trajectories in lane 1; (f) Spatial-
temporal trajectories in lane 2  
Note: in (a)–(d) vehicles are numbered consecutively according to their initial positions. Blank areas in (e) denote that lane change 
behaviors occur 
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