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Abstract:    In water distribution systems, water leakage from cracked water pipes is a major concern for water providers. Gen-
erally, the relationship between the leakage rate and the water pressure can be modeled by a power function developed from the 
orifice equation. This paper presents an approximate solution for the computation of the steady-state leakage rate through a lon-
gitudinal line crack of a water distribution pipe considering the surrounding soil properties. The derived solution agrees well with 
results of numerical simulations. Compared with the traditional models, the new solution allows assessment of all the parameters 
that related with leakage including the pressure head inside the pipe, hydraulic conductivity, crack size and its position, and pipe 
size and its depth. 
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1  Introduction 
 

Water loss from water distribution systems is a 
worldwide problem. The main sources of water losses 
include pipe leakage, illegitimate and unmetered uses, 
and under-registration of water meters, among which 
the leakage usually makes up a large part (Lambert, 
2002; Greyvenstein and Van Zyl, 2007). It is reported 
that leakage loss can reach as high as 70% of total 
water losses (WHO, 2001), and the annual leaked 
water is roughly 32 billion cubic meters that is on the 
order of 81 billion US dollars worldwide (Thornton, 
2002; Kingdom et al., 2006; Walski et al., 2009). 
Therefore, leakage management will remain an im-
portant task for municipal engineers. 

One of the major factors that influence leakage 
rate is the pressure in the distribution system. A 
conventional physical model that relates the pressure 

and the leakage rate is the well-known orifice equa-
tion, described as 

 

d 2 ,Q C A gH                           (1) 
 

where Q is the leakage flow rate, Cd the discharge 
coefficient, A the orifice area, g acceleration due to 
gravity, and H the pressure head in the pipe.  

Given the important influence of pressure on 
leakage, the pressure reduction procedure was used as 
an important tool for leakage management in the last 
thirty years (Vairavamoorthy and Lumbers, 1998; 
Lambert, 2001; Araujo et al., 2006; Nicolini et al., 
2011). When modeling the pressure-leakage rate 
relationship in individual water distribution systems, 
a more general form expression was proposed instead 
of the orifice equation (Lambert, 2001): 

 
1,NQ cH                                 (2) 

 

where c is the leakage coefficient, and N1 is the leak-
age exponent. The transformed power function 
(Eq. (2)) allows direct assessment of the pressure  
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reduction effectiveness on leakage control, for exam-
ple, if the leakage exponent N1 equals the theoretical 
value of 0.5, when the pressure is halved, the leakage 
flow rate will reduce by 29%. However, a lot of field 
studies from Japan (Lambert, 2001) and UK (Farley 
and Trow, 2003) have shown that N1 can be much 
larger than 0.5 and can vary between 0.5 and 2.79. 

The mechanism for the deviation of the leakage 
exponent from the theoretical value of 0.5 is not well 
understood for its complexity. Van Zyl and Clayton 
(2007) proposed four factors that may be responsible 
for the higher leakage exponents including leak hy-
draulics, pipe material behavior, soil hydraulics and 
water demand. The effect of leak hydraulics has been 
researched extensively, and a recent experimental 
investigation on the influence of different types of 
leak openings including artificial holes, corrosion 
holes, longitudinal and circumferential cracks on the 
leakage-pressure relationship was conducted by 
Greyvenstein and Van Zyl (2007). Their results con-
firmed that the value of the leakage exponent had a 
wide range and can be lower and higher than the 
theoretical value of 0.5. Cassa et al. (2010) studied the 
behavior of different pipe materials under pressure 
using finite element analysis. Their results highlight 
the important influence of existing cracks on the 
leakage, and a linear relationship between the leak 
area and pressure was proposed. A recent work from 
Ferrante (2012) has extended the results of Cassa et 
al. (2010) by taking the plastic deformation or vis-
coelastic effect into consideration. 

However, there have been few studies on the 
influence of the surrounding soil on the leakage (Co-
etzer et al., 2006). The objective of this work is to 
present an analytical result for predicting the 
steady-state leakage through a line crack taking in-
fluence of the surrounding soil into consideration. 
Under some reasonable assumptions, the problem 
was simplified into a 2D one. In order to simplify the 
complex boundary conditions, one conformal map-
ping technique (the Möbius transformation) and a 
new mathematical method (the equivalent circum-
ference method) were introduced. Consequently, an 
approximate solution was obtained. 
 
 

2  Methodology 
 
Pipes of different materials usually fail in certain 

characteristic ways, depending on their material 

properties; for example, corrosion holes often occur 
on the steel and cast iron pipes (Van Zyl and Clayton, 
2007), while line cracks are common in asbestos 
cement pipes. Since the asbestos cement material 
pipes were widely used in the past in China, pipes 
with longitudinal type of cracks are frequently seen 
after excavation. As shown in Fig. 1, we consider a 
cylindrical water pipe embedded in a semi-infinite 
aquifer. There is a line crack along the pipe wall. In 
practice, the longitudinal type of crack usually ex-
tends a long distance along the pipe wall. In such 
cases, the leak process can be approximated as a 2D 
seepage flow problem. To simplify the problem, the 
following assumptions are made: (1) the aquifer is 
fully saturated; (2) the surrounding soil is homoge-
nous and isotropic with a constant permeability; and, 
(3) leakage is steady-state, i.e., the leaking water is 
drained off. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The above simplifications are common in ana-
lytical studies, despite the deviations from the real 
cases. The groundwater table is taken as the reference 
datum, and a Cartesian coordinate system is obtained. 
The radius of the water pipe is r, the depth of 
groundwater table is h, α represents the location of the 
crack (from the horizontal line to the centerline of the 
crack), and the open angle of the crack is β. Water 
flow in saturated soil obeys Darcy’s law, which in-
dicates a linear relationship between the velocity and 

Groundwater table 

y 

x 

h

Crack 

Water pipe 

α 

β

Aquifer 

r 

Fig. 1  A section of water pipe with a line crack em-
bedded in a semi-infinite aquifer 
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the hydraulic gradient. By combining the continuity 
equation and the Darcy’s equation, the leaking water 
movement in the aquifer will be governed by the 
following 2D Laplace’s equation (Terzaghi et al., 
1996): 

 
2 2

2 2
0,

x y

  
 

 
                           (3) 

 
where φ is the hydraulic head. Above the groundwater 
table is the atmospheric pressure; therefore, the 
boundary condition at the groundwater table can be 
expressed as 

 

0| 0.y                                       (4) 

 
On the other hand, the hydraulic head at the 

boundary between the crack and the aquifer equals the 
sum of the elevation head y, which is from the origin 
to its downward vertical position and the pressure 
head from inside pipe. Therefore, the boundary con-
dition at the crack can be expressed as 

 

i
crack

w

| ,
P

y


                              (5) 

 

where Pi in the pressure inside the pipe, and γw is the 
water specific weight. If Eqs. (3)–(5) were solved 
exactly, then the absolute analytical solution for 2D 
leakage would be obtained. However, the complex 
second boundary condition (Eq. (5)) applying at the 
crack prevents its existence. Therefore, an approxi-
mate solution is more reasonable and practical and 
still has its significance for leakage assessment (Guo 
et al., 2013). To achieve this purpose, we firstly in-
troduce an equivalent circumference method to sim-
plify the second boundary condition, and then use the 
Möbius transformation technique to transfer the semi- 
infinite aquifer into a circular domain. 

The principle of the equivalent circumference 
method is to transfer the line crack into a permeable 
column which is located at the center of the crack 
(Fig. 2a), making sure that the perimeter of the cir-
cumference of the small circle equals the crack arc 
length in the 2D plane, which means: 

 
2 .r r                                  (6) 

Therefore, the called equivalent circumference actu-
ally represents equivalent permeable area. Then, 
translate the origin of the rectangular coordinate sys-
tem to the center of the conceived circle, a new rec-
tangular coordinate system x-y is constructed, and 
we have  

 
sin .h h r                               (7) 

 
Next, we use the Möbius transformation to 

transfer the semi-infinite aquifer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A major simplification of the mathematical 

formulation for problems governed by Laplace’s 
equation can be achieved using conformal mapping 
techniques; one such technique is the Möbius trans-
formation (Verruijt and Booker, 2000). It transfers the 
x-y plane into ξ-η complex plain, using the following 
form: 

(a) 

Groundwater table 

y y 

x (x)

β 

α Equivalent  
circumference circle 

h

h 

r 

η

ξ

Groundwater 
table image
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circumference
circle image

r=λ 

r=1 

(b) 

Fig. 2  Images in the x-y plain (a) and ξ-η complex 
plain (b) 
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 
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
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 
2 2

2
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2
.

x h r

x y h r


  


     
                (9) 

 
This transformation preserves Laplace’s equa-

tion, and maps the conceived circle and the horizontal 
groundwater table onto two concentric circles of ra-
dius λ=(h/r)−[(h2/r2)−1]0.5 and 1, respectively 
(Fig. 2b). Then, in the ξ-η plane, we can rewrite the 
governing equation and boundary conditions by polar 
coordinate into the following forms: 

 
2 2

2 2 2

1 1
0,

r r r r

  


  
  

  
                 (10) 

1| 0,r                                             (11) 
2 2

i
2 2

w

( 1) 1
| .

1 1 2 cosr

P
h


    

 
  

  (12) 

 
The general solution for Laplace’s equation in a 

circular domain is readily obtained (Arfken and We-
ber, 1995). Substituting the boundary conditions 
Eqs. (11) and (12) into Eq. (10), we can obtain the 
approximate solution for leakage through a line crack 
per unit pipe length as per the following equation: 

 
2

i
2

w

1

1
2 ,

ln

P
h

Q K


 







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                   (13) 

 
where K is the hydraulic conductivity, and 

2
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Since the open angle of the crack β is small, 
 

 
 

 
 
 
 
 
 

therefore, λ<<1, 
2

2

1
,
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
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 4
ln / sinh r

 

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 
, then Eq. (13) can be simpli-

fied as  
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P h
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 
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3  Results and discussion 
 
To verify the derived solution, numerical studies 

were conducted using the partial differential equation 
(PDE) tool box in MATLAB. The results of the ana-
lytical solution and numerical simulations are com-
pared in Table 1; QN represents the numerical result, 
and QA the analytical value. Cases No. 2 and No. 3 
show the influences of pipe radius and crack position 
on leakage, respectively; Case No. 4 shows the in-
fluence of defect opening angle, while Case No. 5 
shows the influence of the groundwater table. The 
flow net for Case No. 2 in the physical domain is 
given in Fig. 3, where contours are at an interval of 
0.01 m, and the water velocity is shown in arrows. 

As shown in Table 1, the relative differences of 
analytical and numerical values are less than 40%. 
Considering the inevitable error in the numerical 
simulation, the proposed model indicates an accept-
able degree of accuracy on estimating leakage rate.  

Compared with the highly simplified power 
function model (Eq. (2)), advantages of the derived 
analytical expression for steady-state leakage lie in 
the inclusion of all the parameters responsible for the 
water lost from leakage including the pressure, the 
hydraulic conductivity, the crack size and its posi-
tion, and the pipe size and its depth below the 
groundwater table. 

 
 

 
 
 
 
 
 
 

Table 1  Comparison between analytical results and numerical results 

Case h (m) r (m) α β Pi/γw (m) Number of elements QN/K (m) QA/K (m) (QA–QN)/QN (%)

No. 1 1 0.10 π/2 π/6 11.1 38 592 0.148 0.117 21 

No. 2 1 0.15 π/2 π/6 11.1 36 352 0.202 0.128 36 

No. 3 1 0.10 π/4 π/6 11.1 45 632 0.119 0.116 3 

No. 4 1 0.10 π/2 π/12 11.1 47 872 0.118 0.104 12 

No. 5 2 0.10 π/2 π/6 13.0 43 008 0.741 1.026 38 
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Lambert (2001) indicated that the crack area can 
vary with pressure, especially for plastic pipes. This 
has been numerically and experimentally demon-
strated by Cassa et al. (2010), Greyvenstein and Van 
Zyl (2007) and Ferrante (2012). In their work, dif-
ferent models of leak area and pressure relationship 
were proposed. These models aim to offer an expla-
nation to the fact that the leakage exponent can be 
significantly larger than 0.5 according to field studies. 
However, all these models did not consider the stress 
effect of the surrounding soil on the pipe wall. If the 
water pipe keeps in connection with the surrounding 
soil at the crack, and the boundary between the crack 
and the soil keeps intact, i.e., soil erosion or piping 
not happening, the surrounding soil would offer con-
siderable radial and longitudinal stresses against the 
internal water pressure. Therefore, it can be expected 
that under steady state leak condition as considered in 
this study, the pressure and leakage relationship will 
not be far from a linear relationship, as described by 
the derived expression (Eq. (14)). This prediction 
agrees with the test results for the actual water dis-
tribution systems, for example, in Japan (averaged 
N1=1.15) and in UK (averaged N1=1.13) (Lambert, 
2001). In fact, Walski et al. (2006) theoretically 
demonstrated that for a steady-state leakage as con-
sidered in this study, the head loss through the soil is 
much larger than it is through the crack. Burnell and 
Race (2000) also showed that leakage from supply 
pipes has a linear correlation to the internal pressure; 
therefore, the presented linear relationship between 
pressure and leakage by the new model is reasonable 
and shows agreement with the test results for actual 
water distribution systems. 

On the other hand, it can be inferred from the 
derived equation that besides the pressure, hydraulic 

conductivity is another most important factor on 
leakage. However, its effect on the leakage rate has 
not received much attention or any discussion in most 
of the previous studies. Fig. 4 shows the linear rela-
tionship between the hydraulic conductivity and the 
leakage rate. Parameters are taken as follows in 
Fig. 4: the radius r=0.1 m, the groundwater depth 
h=1 m, the line crack locates at the top of the pipe, 
i.e., α=π/2 and the open angle of the crack β=π/30. 
The water head inside the pipe Pi/γw has ten different 
values from 11.1 m to 12 m, and the hydraulic con-
ductivity K has three different values from 10−5 to 
10−7 m/s. The leakage rate Q is assessed by unit pipe 
length per day, i.e., L/(m·d). As shown in Fig. 4, when 
the cracked pipe is buried under soil with bad per-
meability, for example, clay soil, which usually has a 
hydraulic conductivity smaller than 10−7 m/s, the 
leaked water will be less than several liters one day 
per unit pipe length. However, if it is buried under soil 
with good permeability, for example, sandy soil, it 
will leak approximately 1 ton water one day per unit 
pipe length. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In actual water distribution networks, the water 

pressure head inside the pipe can differ significantly 
over the system. In some pipe segments near the water 
treatment plant, it can reach as large as 100 m; while 
in some segments far away from the water treatment 
plant or under an area with relatively high elevation, it 
reduces to that only meet the minimum standard, for 
example 12 m. For the pipe carrying high pressure, 
once it has any crack, the surrounding soil particles 
will be fluidized and be quickly washed away by the 
high pressure water. The hydraulic gradient beyond 
which the soil will be boiling is known as the critical 
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Fig. 4  Effect of hydraulic conductivity on leakage 
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hydraulic gradient (Terzaghi et al., 1996). The 
mechanism of this problem is very complex and it is 
beyond the scope of this paper. 

A larger crack will allow larger leakage as shown 
in Table 1. For a water pipe of radius 0.1 m, and 1 m 
below the groundwater table, if the area of crack 
doubles, the leakage rate will increase by about 10%. 

The model reveals for the first time that the lo-
cation of the crack also has an influence on the leak-
age rate, which has not been noticed by previous 
researchers. The crack locating on the top of the pipe 
wall will leak more water as can be seen in Table 1. 

 
 

4  Conclusions 
 
This paper deals with an approximate solution 

for calculating the steady-state leakage from water 
supply pipes with a line crack. Compared with the 
widely-used power function model, advantages of the 
new model lie in a much better understanding of pa-
rameters that control the leakage rate and a more 
physical meaning.  

In summary, the proposed model is suitable for 
leakage rate assessment through a long line crack. 
However, this study is limited to 2D, and some ide-
alized assumptions were introduced, for example, a 
homogeneous and isotropic aquifer. In addition, the 
interaction at the boundary between the crack and the 
surrounding soil needs further investigation, espe-
cially under high pressure conditions. 
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