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Abstract:    In this study, ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated 
using a 2.5D finite element model of an underground tunnel and surrounding soil interactions. In our model, wave propagation in 
the infinitely extended ground is dealt with using a simple, yet efficient gradually damped artificial boundary. Based on the as-
sumption of invariant geometry and material distribution in the tunnel’s direction, the Fourier transform of the spatial dimension in 
this direction is applied to represent the waves in terms of the wave-number. Finite element discretization is employed in the 
cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number. The 3D 
ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform. The accuracy of 
the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum. A case 
study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the 
vibration frequency of the moving load is discussed. 
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1  Introduction 
 

In recent decades, ground-borne vibration 
caused by subway traffic has received increasing 
attention in most developed cities in the world. 
Ground-borne vibration arises when successive axles 
of a train pass by a specific observation position. 
Proper vibration assessment is needed not only for the 
control of environmental vibration along the rail line, 
but also to maintain the serviceability of tunnel 
structures embedded in soft soil against long-term 
settlement generated by train traffic loadings.  

Many predictive models are available in the 

literature for simulating and analyzing ground 
vibrations generated by subway traffic. Some 
analytical and semi-analytical solutions have been 
proposed to assess moving load induced ground 
vibrations (Forrest and Hunt, 2006). The wave types 
generated and their propagation patterns in the ground 
can be clearly interpreted theoretically from such 
solutions. However, a common disadvantage of these 
solutions is that assumptions must be made about the 
geometry and material to obtain solutions of the 
ground vibrations caused by moving loads. To take 
account of the effects of tunnel structure and soil 
condition on ground-borne vibration, a lot of work 
has been done in recent years to develop numerical 
predictive models, using mainly a finite element 
approach (Stamos and Beskos, 1995; Sheng et al., 
2003; Andersen and Jones, 2006). However, finite 
element models with local absorbing boundary 
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conditions become prohibitively large for 
applications when a wide frequency range is under 
consideration. Even for a hybrid finite element- 
boundary element (FE-BE) model computation 
would be also very expensive (Degrande et al., 2006). 
By assuming that the geometry and material 
distribution in the tunnel’ s direction are invariant, the 
2.5D finite element approach has been applied to the 
problem of ground vibrations caused by traffic 
(Takemiya, 2003; Yang et al., 2003; Sheng et al., 
2006; Bian et al., 2008).  

In this paper, the 2.5D finite element approach 
(Bian et al., 2008; 2011) is adopted to research the 
dynamic interaction between the tunnel-track 
structure and its surrounding ground under moving 
train loadings. The tunnel structure and ground with 
complicated physical properties in cross-section are 
modeled by quadrilateral elements with three degrees 
of freedom (DOFs) per node. The track resting on the 
tunnel floor is modeled by a Euler beam. The dynamic 
responses in the cross-section perpendicular to the 
tunnel direction are first solved, and then the 3D 
ground responses are calculated from the wave- 
number expansion by employing the inverse Fourier 
transform. A gradually damped artificial boundary is 
adopted to absorb the waves propagated from the 
tunnel to distant fields. Finally, the ground vibration 
features are revealed by illustrative case studies of a 
train’s series of wheel axle loads moving along the 
tunnel. 
 
 

2  Physical model and mathematical 
formulations 

2.1  2.5D tunnel-track structure and ground finite 
element model 

The tunnel-track structure and its surrounding 
ground interaction model are presented in Fig. 1. The 
material and geometric properties of the track and tunnel 
are assumed to be invariant along the tunnel direction. 
The Fourier transform in the tunnel direction is applied 
to represent the nodal motions by the wave-number in 
that direction. The track resting on the tunnel floor is 
modeled by a Euler beam, and its stiffness can be readily 
considered in the adjoining finite elements of the tunnel 
using the track-ground coupling method proposed by 
Takemiya (2003). The tunnel structure and ground in the 
transversal-vertical section are modeled by quadrilateral 

elements. Each node has three DOFs (Fig. 2), therefore 
wave motions in 3D space can be faithfully taken into 
account. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The adopted 2.5D finite element model in this 

study was described in detail by Bian et al. (2008). 
Here, we present some of the main equations. The 
Fourier transform in the x coordinate direction (along 
the tunnel direction) is used to simplify the equations 
governing ground motions: 
 

( )exp(i )d ,x
x xu u x k x k




                   (1) 

 
and this equation’s corresponding inverse transform is 

 
1

( )exp( i )d ,
2π

x
x x xu u k k x k




             (2) 

 
where the superscript ‘x’ means in wave-number 
domain and kx is the wave-number along the 
x-directional. Navier’s equation is used to describe 
the motions of the ground in the frequency domain: 

 
* * * 2

, ,( ) 0,t t t t
i jj j ji i iu u u f               (3) 

Fig. 1  Tunnel-track and surrounding soil interaction 
model with moving load 

Fig. 2  Plain strain quadrilateral element with three DOFs 
per node 
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in which λ*=(1+2iβ)λ, μ*=(1+2iβ)μ, where β is the 
damping ratio of the ground soil. The superscript ‘t’ 
means in the frequency domain. In the light of the 
small strain assumption, the strain-displacement re-
lationship in the wave-number and frequency domain 
can be given by 

 
xt xt Bu ,                              (4) 

 
where the strain-displacement relationship matrix B is 
expressed in wave-number domain as 
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The four-node quadrilateral element is used in 

our method. The discretized form of the governing 
equation in the frequency domain is given by 

 
2( )xt xt xt K M U F ,                 (6) 

 
where M is the mass matrix, Kxt is the stiffness matrix 
and Fxt is the equivalent nodal force vector. 

2.2  Gradually damped artificial boundary 

For static loading, a fictitious boundary may 
have little influence on ground responses as it is 
located at a proper distance from the vibration 
source. However, for dynamic loading, because of 
the wave reflection at this boundary, the responses 
obtained are not correct. We know that the finite 
element has a limited size and cannot deal with an 
infinite ground medium, so a kind of boundary at 
which little wave reflection occurs needs to be con-
structed. In this study, a gradually damped artificial 
boundary (Fig. 3) proposed by Liu and Quek Jerry 
(2003) is adopted which has already been imple-
mented in the Abaqus program. This kind of bound-
ary consists of N equal-width sets of damping layers. 
The kth (k=1, 2, …, N) damping layer’s damping 
ratio can be calculated by 

0= .k
k                                     (7) 

 

where β0 is the damping ratio of the ground, and ζ is a 
constant increasing factor. 
 
 
 
 
 

 

 

2.3  Verification of the present model 

To verify the accuracy of our model, in this 
study we compared the responses due to a rectangular 
load moving inside a soil stratum computed by our 
proposed method with a semi-analytical solution. 
The computation model has a layer of soil 20 m deep 
with a rigid base (Fig. 4). The soil has a density of 
1750 kg/m3, a shear wave velocity of 100 m/s, a 
Poisson’s ratio of 0.3, and a damping ratio of 0.05. A 
rectangular load (1 m×1 m) with a magnitude of 1 N 
is moving along the x coordinate at a speed of c inside 
the soil stratum at a depth of 10 m. In our model, the 
calculated width is 40 m, and there is a damping 
boundary with a width of 15 m on both sides. The 
damping boundary consists of five equal-width 
damping layers, with a constant increasing factor of 
ζ=2. The other parameters of the damping boundary 
are the same as those of the soil. 

 
 
 
 
 
 
 
 
 
 
 
 
Figs. 5 and 6 show the vertical displacements at 

four different velocities at a point A (0, 0, 0) and a 
point B (0, 15, 0). From the figures we know that the 
responses obtained by our method are very close to 
the semi-analytical solutions. So the present 2.5D 
method is reliable for simulating the ground vibration. 

A (0 m) B (15 m)
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c
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2
0

 m 1 m
1 m1

0
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Fig. 4  Verification model

Damping sets
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Finite boundary 
of FE model

1 2 N-1 N

Fig. 3  Gradually damped artificial boundary
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Fig. 5  Vertical displacements at point A at different 
velocities 
(a) 50 m/s; (b) 95 m/s; (c) 150 m/s; (d) 200 m/s 
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Fig. 6  Vertical displacements at point B at different 
velocities 
(a) 50 m/s; (b) 95 m/s; (c) 150 m/s; (d) 200 m/s 
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3  Ground vibrations caused by moving train 
loadings 

3.1  Parameters of the computation model 

As an illustrative example, the actual geometry 
and physical properties of the tunnel-track structure 
and ground of a metro line in the Shanghai downtown 
area were used in the numerical computations. In the 
current analyses, to focus on the generation and 
propagation of wave motions generated by moving 
train loadings, the ground is assumed to have a depth 
of 50 m and a rigid base. The track has a unit length 
mass of 2370 kg/m and a bending stiffness of  
200 MN·m2. The thickness of the tunnel wall is 0.6 m, 
taking into account the two layers of tunnel lining. 
The outer radius of the tunnel is 3 m. The other 
properties of tunnel structure and surrounding soil are 
given in Table 1. Many observation points were se-
lected on the ground surface along the transversal 
distance and within 60 m from the tunnel centerline 
(Fig. 7) to inspect the ground motions generated by  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

the excitations of moving train loadings in the tunnel 
structure. The moving train loadings travel in the 
positive x direction (Fig. 2). 

Currently, the running speed of most subway 
trains is relatively low, therefore, in this study, a 
normal operation speed of 20 m/s was considered. 
The vibration frequency of the moving load also 
needs special attention in studies of the dynamic ef-
fects of moving train loadings. In our computation, 
the train is considered to have M numbers of cars and 
runs with a constant velocity c, and its loading ex-
pression has been given by Takemiya and Bian 
(2005). Fig. 8 shows the geometry of the wheel axle 
weight distribution of the subway train used in this 
study. 

3.2  Vibration attenuation at the ground surface 

The wave propagation from the tunnel centerline 
to a far field is an important aspect of the ground 
vibrations caused by moving train loadings. In this 
section, the displacement response level (unit: dB) 
along the transversal distance from the tunnel center-
line is interpreted, which can be computed by  
 

0

20log
U

L
U

 
  

 
,                              (8) 

 
where U is the computed displacement amplitude, and 
the reference value U0=10−11 m. Attenuation of the 
displacement response level along the transversal 
distance from the tunnel centerline is depicted in 
Fig. 9. Obviously, the ground vibrations induced by 
moving train loadings in a subway tunnel can have a 
significant effect at the ground surface. That is why 
environmental vibration induced by subway trains 
causes quite a lot of complaints from residents living 
alongside the subway lines in metropolises. Ground 
vibrations generated by pseudo-static moving train 
loadings (f0=0 Hz) have their strongest intensity at 
ground surface directly over the tunnel centerline, 
while the ground response generated by low 
 
 
 
 
 
 
 

Table 1  Parameters of the ground soil and tunnel structure 

Material 
Density 
(kg/m3) 

Vs (m/s) 
Poisson’s 

ratio 
Damping 

ratio 
Ground soil 1800 110 0.250 0.05 

Tunnel structure 3500 2500 0.150 0.02 

Fig. 8  Geometry of the wheel axle load distribution of a subway train 
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11.46 m18.0 m18.0 m18.0 m11. 46 m
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18.0 m
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60 m
Ground surface

0 y

z
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Inner radius: 2.4 m
Outer radius: 3.0 m
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Track

Fig. 7  Computation model of an underground tunnel and 
the extent of observation points on the ground surface 
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frequency (e.g., f0=5 Hz) moving train loadings be-
comes the strongest at certain distances from the tun-
nel centerline. However, for moving train loadings 
with high vibration frequency (e.g., f0=40 Hz), most 
wave energy will be absorbed during the propagation 
process in the adjacent soil medium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3  Wave field generated by moving train load-
ings at the ground surface 

Fig. 10 depicts the wave motions at the ground 
surface generated by moving train loadings in a tunnel 

at a speed of c=20 m/s. Four vibration frequencies are 
taken into account: f0=0 Hz, 5 Hz, 20 Hz and 40 Hz, to 
consider the effects of both pseudo-static and dy-
namic components in moving train loadings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

0 10 20 30 40 50 60
20

40

60

80

100

120

140

160

180

M
ax

. X
 d

is
pl

ac
em

en
t l

ev
el

 (
d

B
)

Distance from the centerline (m)

 0 Hz
 5 Hz
 20 Hz
 40 Hz

(a) 

0 10 20 30 40 50 60
20

40

60

80

100

120

140

160

180

M
ax

. Y
 d

is
p

la
ce

m
en

t 
le

ve
l (

dB
)

Distance from the centerline (m)

 0 Hz
 5 Hz
 20 Hz
 40 Hz

0 10 20 30 40 50 60
20

40

60

80

100

120

140

160

180

M
ax

. Z
 d

is
pl

ac
em

en
t l

ev
el

 (
dB

)

Distance from the centerline (m)

 0 Hz
 5 Hz
 20 Hz
 40 Hz

(c) 

Fig. 9 Vibration attenuation at ground surface with dis-
tance from the tunnel centerline 
(a) Horizontal displacement response level along the tunnel; 
(b) Horizontal displacement response level perpendicular to 
the tunnel; (c) Vertical displacement response level 
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Fig. 10  Wave motions at the ground surface due to a train 
running at a speed of c=20 m/s in a tunnel with variable 
vibration frequencies 
(a) f0=0 Hz; (b) f0=5 Hz; (c) f0=20 Hz; (d) f0=40 Hz 
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For moving train loadings without a vibration 
frequency, i.e., f0=0 Hz, the ground vibration due to 
moving train loadings at a speed of c= 20 m/s can be 
regarded as the pseudo-static deformation induced by 
the total weight within the whole train geometry and 
no significant wave propagation phenomena can be 
observed at the ground surface. The ground motions 
generated by moving train loadings with certain vi-
bration frequencies are quite different. At a relatively 
low vibration frequency of f0=5 Hz, the wave motions 
can propagate a considerable extent from the tunnel 
centerline. With increasing vibration frequency, up to 
20 Hz or 40 Hz, the vibration amplitudes at the 
ground surface decrease dramatically, and the effects 
of the distribution of wheel axle loads on ground 
responses become more apparent. In contrast to the 
results of a low vibration frequency, f0=5 Hz, the 
ground motions due to moving train loadings with a 
high frequency, e.g., f0=20 Hz or f0=40 Hz, have a 
narrow propagation distance in the direction perpen-
dicular to the tunnel centerline, but quite a large lon-
gitudinal propagation distance. 
 
 
4  Conclusions 
 

In this study, a high-efficiency 2.5D finite ele-
ment approach incorporating a gradually-damped 
artificial boundary is proposed to calculate ground 
vibrations generated by subway trains. By comparing 
the computed responses of the ground surface due to 
a rectangular load moving inside soil stratum using 
our proposed method with the semi-analytical solu-
tion, we found that our 2.5D finite element method 
can calculate the ground response with very high 
accuracy.  

Through the numerical computations, we found 
that the vibration frequency of moving train loadings 
has a great effect on the ground responses. The wave 
motions at the ground surface are confined to a nar-
row zone under pseudo-static moving train loadings 
without a vibration frequency, and are found in a 
much broader zone under moving train loadings with 
low frequency. But with increasing vibration fre-
quency, the wave propagation zone at the ground 
surface becomes narrower and the effects of the dis-
tribution of wheel axle loads on ground responses 
become more apparent. 
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