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Abstract:    In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic 
algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of 
this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), 
which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were 
performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust 
emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The 
outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a 
decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions 
can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, 
respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, 
respectively. 
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1  Introduction 
 
Emissions of air pollutants are known to have a 

variety of negative effects on public health and natu-
ral environment. For several years, emissions of ni-
trogen oxides (NOx), hydrocarbons (HC), carbon 
monoxide (CO), and particulate matter (PM) have 
been regulated in different regions of the globe. It has 
been identified that hydrocarbons are among the most 
relevant pollutants as they are the major contributor to 
smog. They are the result of partially burned fossil 
fuels occurring during the operation of internal 
combustion engines; this is also known as incomplete 

combustion. One of the adverse effects to human 
health of this pollutant is the reduction of the blood’s 
ability to carry oxygen, which can lead to fatal results 
in cases of overexposure. Other emissions of interest 
are NOx, which are generated when the nitrogen 
contained in the air reacts with oxygen at high tem-
perature and pressure inside the engine. While NOx 
are precursors to smog and acid rain, they are also part 
of greenhouse gases. This means that they trap the 
heat from solar radiation within our atmosphere 
provoking a rise in the temperature of the Earth’s 
surface. Thus, engine emissions play a significant role 
in global warming (Mori, 1997). 

In Europe, as in other regions, European emis-
sions standards are created to define the acceptable 
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limits for exhaust emissions for new vehicles sold in 
the European Union (EU). The compliance is deter-
mined by running the engine through a standardized 
test cycle. However, the new standards do not apply to 
vehicles already in use. The engines of these vehicles 
should be checked and recalibrated to meet current or 
planned standards. 

Spark ignition (SI) engines have multiple rele-
vant inputs, such as the ignition advance timing, in-
jected fuel mass flow, injection time, engine speed, 
and in addition air/fuel ratio, and intake manifold 
absolute pressure (IMAP), among many others that 
are feedforward or feedback controlled. The outputs 
of the engine (emissions, drivability) are influenced in 
a nonlinear way (Guerrier and Cawsey, 2004). There-
fore, in the production of a new car, the design of 
control systems is a very time-consuming task. This 
requires recycling those engines that have been util-
ized in the past to power-up new vehicles. An inter-
esting engineering paradox therefore takes place: in 
order to decrease the design time an old engine is 
used, but it is necessary to invest a lot of time in 
modifying the old engine in order to meet the new 
emission regulations. 

In order to optimize the engine operating pa-
rameters, a parameter search method should be util-
ized for many of the engine operating conditions to 
determine the ideal exhaust emissions. However, 
when this parameter search method is executed ex-
perimentally, it requires a great deal of resources, 
time, and labor. The optimization of engine parame-
ters by simulation on a computer-based environment 
is very useful and is replacing the traditional tune-up 
method. This process is based on modeling the engine 
responses at a limited set of operating points obtained 
from experimental measurements using an engine test 
bench. Artificial neural network (ANN) models have 
been widely used in several engineering fields due to 
their ability to find highly nonlinear relationships. 
This ability makes ANNs appropriate to solve com-
plex nonlinear problems. Many studies of engine 
calibration have investigated the application of ANNs 
to model emissions in combustion engines necessary 
to minimize engine responses (Langouet et al., 2011; 
Yap et al., 2012). Ismail et al. (2012) reported on an 
ANN model to predict nine different diesel engine 
responses including CO and carbon dioxide (CO2). 

Ghobadian et al. (2009) used a multilayer perceptron 
network (MLP) to model the brake power, output 
torque, specific fuel consumption, and exhaust emis-
sions of a diesel engine. Canakci et al. (2009) used an 
ANN model to predict the performance and exhaust 
emissions of a diesel engine including CO, NOx and 
unburned hydrocarbons. However, Saerens et al. 
(2009) used a mean value model of an internal com-
bustion engine instead of ANN to minimize the fuel 
consumption by acting on the throttle valve. 

Many researchers are conducting tests for the 
optimization of engine parameters with different 
types of optimization methods. Particle swarm opti-
mization (PSO) (Kennedy and Heberhart, 1995) is 
one of the newest techniques within the family of 
evolutionary optimization algorithms. PSO is a 
swarm intelligence method that models social be-
havior to guide swarms of particles towards the most 
promising regions of the search space and has been 
extended in order to solve multiple objective opti-
mization problems (Coello and Lechuga, 2002). A 
multiple objective particle swarm optimization 
(MOPSO) algorithm is efficient at solving a broad 
variety of engineering optimization problems due to 
its fast convergence (Zhao and Cao, 2005; Abido, 
2009). On the other hand, genetic algorithms have 
been used to solve multiobjective optimization prob-
lems (MOPs) including minimization of exhaust 
emissions and fuel consumption. Langouet et al. 
(2011) used a local linear model tree (LOLIMOT) and 
multiobjective covariance matrix adaptation evolu-
tion strategy (MO-CMA-ES) algorithm to carry out 
the optimization problem of minimizing emissions of 
NOx, HC, CO, CO2, also for a diesel engine, utilizing 
six engine parameters for many engine operating 
conditions. D’Errico et al. (2011) used the nondo-
minated sorting genetic algorithm II (NSGA-II) in 
order to find parameters that minimize the break 
specific fuel consumption and NOx emissions, as well 
as maximize the torque of a single cylinder SI engine. 
Kesgin (2004) increased the efficiency keeping NOx 
emissions under a constraint value of a turbocharged 
natural gas engine. Shi and Reitz (2010) minimized 
CO, unburned hydrocarbon (UHC), NOx emissions of 
a heavy-duty compression ignition engine fueled with 
diesel and gasoline by using NSGA-II to find optimal 
combinations of eight optimization parameters. 
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Atashkari et al. (2007) preferred NSGA-II to run a 
Pareto-based optimization of a variable valve-timing 
engine considering conflicting objectives such as fuel 
consumption and torque. Alonso et al. (2007) com-
bined ANNs with genetic algorithms to optimize the 
diesel engine settings reaching important reductions 
in emissions as CO, HC, NOx, break specific fuel 
consumption (BSFC), and PM for two engine oper-
ating conditions. 

Although the minimization of engine emissions 
via computerized optimization processes is not a 
novel proposal, only a few studies have been reported 
for gasoline engines (Atashkari et al., 2007; Saerens 
et al., 2009), while most of the work reported is for 
diesel engines. In this research project an ascendant 
approach is performed. In the first instance, ANN 
models are obtained for each exhaust emission of 
interest, i.e., CO, HC, and NOx. The inputs for each 
model are the engine parameters found in the elec-
tronic control unit (ECU) of the engine, which can be 
modified to change the operating point, and eventu-
ally to minimize the corresponding emissions. Then, a 
minimization process is run using two multi- 
objective optimization algorithms (MOPSO and 
NSGA-II). A set of optimal solutions, called Pareto 
front, is found. The aim of this paper is to show the 
comparison of emissions reductions obtained by two 
evolutionary algorithms, and then to make an in-
formed decision on the new values of the engine pa-
rameters. A final solution is obtained from the Pareto 
front by applying a fuzzy method. 

It is of a key importance to note that this work 
intends to contribute in three particular areas. In the 
first place, having a model that allows predicting the 
behavior of the internal combustion engine of a ve-
hicle in terms of identified significant pollutants be-
comes substantial for shortening the time to market 
for a new engine. This study will show that it has the 
necessary accuracy to facilitate this conclusion. In the 
second place, a model that can be run to make a new 
set point of circulating vehicles in order to make them 
fulfill the strictest environmental regulations is nec-
essary. It is estimated that testing old vehicles takes a 
lot of resources while keeping a high level of incer-
titude in the results. Finally, the adaptation process of 
a vehicle to a local market can take into account local 
environmental conditions that affect engine per-
formance, which becomes critical when trying to keep 
emissions low without compromising performance. 

2  Gasoline engine emissions models 
 
Using real data obtained from an engine test 

bench, three neural network models are generated in 
order to predict engine emissions. 

2.1  Experimental setup 

A four cylinder SI gasoline engine coupled to a 
hydraulic dynamometer controlling the engine speed 
in real time is used to conduct the experiments. Ex-
haust emissions are measured by a gas analyzer type 
FGA4000XDS from InfraredIndustries® (USA), for 
60 different values of the engine angular speed (neng) 
in revolutions per minute and the angle of the admis-
sion throttle valve (αth) in %. There are four additional 
operating parameters whose values are determined for 
each one of 60 operating conditions. The additional 
operating parameters are the time of the open state of 
an injector (tinj) in ms measured by a Tektronix® os-
cilloscope from USA. The injected fuel mass flow 
(mfuel) in lb/h (1 lb=0.454 kg) is measured by the test 
bench sensor and conditioned by the software of the 
SF-902 hydraulic dynamometer from SuperFlow® 
Corporation in USA. Moreover, the ignition advance 
timing (θign) in degrees (°) relative to #1 cylinder and 
the IMAP in kPa are taken by an on-board diagnostics 
II (OBD II) system. 

The ECU controls all actuators and regulators of 
the engine according to the measured signals obtained 
from the sensors. There are prerecorded integrated 
look up tables in memory for each operating condition 
that impose the values of the engine operating pa-
rameters. These look up tables, called cartography, 
can be adjusted in order to change the engine response 
in performance as well as in exhaust emissions. Ta-
bles 1 and 2 show the characteristics of the studied 
internal combustion engine and the hydraulic dyna-
mometer, respectively. 

Table 3 shows the taken values for a total of 60 
operating points (four angles of the admission throttle 
valve for 15 engine speed values), which are evalu-
ated in the experimental setup to collect the values of 
CO, HC, and NOx emissions. These 60 engine condi-
tions are selected covering approximately the New 
European Driving Cycle (NEDC). 

In Fig. 1, the equipment to measure engine op-
erating parameters and the engine test-bench used in 
this study is shown. It consists of a dynamometer 
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connected with the crankshaft of the engine. This 
dynamometer has an electrically controlled throttle 
actuator to vary the angle of the throttle valve. A fuel 

canister is used to measure the fuel consumption of 
the engine in the range from 20 to 270 lb/h. 

The ignition advance timing is obtained with a 
crankshaft position sensor. This sensor indicates that 
when a notch on the crankshaft goes by and sends a 
pulse to the ECU, as it is referenced to the top dead 
point of the piston 1, it is possible to calculate the 
angular position of the crankshaft. A manifold abso-
lute pressure (MAP) sensor provides manifold pres-
sure information to the engine ECU. This MAP sensor 
is also used with an OBD-II PC. A tachometer 
(magnetic pickup on a 60-tooth gear) measures the 
engine speed and it is transformed to r/min. Fig. 2 
shows the schematic diagram of the experimental 
apparatus. Measurements are performed with the 
engine operating at steady state; this data are recorded 
10 s after setting an operating point to avoid the 
transient phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Before carrying out the first measurement the 
engine is warmed for 10 min to ensure that the engine 
operates in an optimal temperature condition to es-
tablish a reference scenario. Table 4 shows some 
sample data of the studied gasoline engine for four 
operating points defined at an engine speed of 
neng=2500 r/min. 

2.2  Neural models of the engine exhaust emissions 

The LOLIMOT approximates a nonlinear func-
tion with piece-wise linear models (Hafner et al., 
2000; Nelles, 2001). The predicted emission by  

Table 2  Characteristics of the hydraulic dynamometer

Characteristic Value 

Absorber type Water brake 

Maximum speed 15 000 r/min 

Horsepower capacity 1500 hp 

Torque capacity 1200 lb-ft 

1 hp=0.75 kW; 1 ft=0.3048 m 

Table 3  Engine speeds values evaluated in the ex-
perimental setup for each angle of throttle valve 

neng (r/m) 

αth=25% αth=50% αth=75% αth=100%

1500 1750 2000 2250 

2500 2750 2900 3000 

3100 3200 3300 3400 

3500 3750 4000  

Fig. 1  Experimental setup of internal combustion engine 

Table 1  Characteristics of the studied gasoline engine

Characteristic Value 

Model Z16SE 2005 

Maximum power 100 hp on 5600 r/min 

Displacement 1.597 L 

Race 81.5 mm 

Compression ratio 9.4:1  

Injection type Sequential 

Maximum torque 138 N·m on 3200 r/min 

1 hp=0.75 kW  

Fig. 2  Schematic diagram of the engine test stand 
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LOLIMOT neural network ypred is calculated by 
adding the contributions of all M linear models 

 

pred LLM
1

( ) ( ),
i

M

i
i

y y 


 x x                     (1) 

 
where x=[x1, x2, ···, xQ]T are the Q inputs of the net-
work, each neuron represents a local linear model 
(LLM) and an associated validity function that de-
termines the validity region of the LLM. The outputs 
of each LLM are given by 
 

iLLM 0
1

( ) ,
Q

ij j i
j

y p x p


 x                 (2) 

 
where pij and pi0 denote the LLM parameters of the ith 
hidden neuron. The validity function of the ith hidden 
neuron corresponds to standard Gaussian function 
defined as 
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where the centers ρij and standard deviations σij define 
the position of the center of the peak and the width of 
the Gaussian functions, respectively. LOLIMOT is an 
incremental construction algorithm that divides the 
input space in hyper-rectangles. The validity function 
of the corresponding LLM is located in their center. 
The standard deviations σij are proportional to the size 
of the hyper-rectangle. 

A new LLM is attached to a model partition 
during every iteration, which is derived from the 
LLM with the largest local error until the number of  
 

 
 
 
 
 
 
 

iterations is exceeded. The whole model is a network 
with one hidden layer (Nelles, 2001), and each neuron 
in this layer produces a linear part of the model. The 
output layer calculates the weighted sum of the out-
puts of local linear models. The approximating func-
tion generated by the neural network is used to 
transform the nonlinear behavior of the combustion 
engine inputs x into the outputs ypred which approxi-
mates the actual output of the engine for each oper-
ating condition. 

Fig. 3 shows the structure of the used LOLIMOT 
neural network, whose engine input variables are the 
engine speed, the angle of the admission throttle 
valve, the injection time, the injected fuel mass flow, 
the ignition advance timing, and the IMAP. The out-
put is one of the selected exhaust emissions. Due to 
the nonlinear relationship of the data, one ANN is 
constructed for each exhaust emission. 

2.3  Predicted emissions and performance criteria 

In this study, a total of 60 operating conditions 
are under consideration. Forty of them are used for 
training of the ANN model, while the other 20 cases 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Table 4  Measurement results of the parameters for an operating point of the gasoline engine 

αth  
(neng=2500 r/min) 

mfuel 
(lb/h) 

tinj 
(ms) 

IMAP 
(kPa) 

θign 

(°) 
CO 
(%) 

HC 
(%) 

NOx 
(%) 

25% 18.0  9.1 187 29.5 0.58 0.0553 0.0471 

50% 21.0 11.6 179 25.5 0.60 0.0568 0.0507 

75% 21.0 11.9 178 25.0 0.56 0.0567 0.0523 

100% 22.8 13.0 178 25.0 2.55 0.0683 0.0308 

 

Fig. 3  LOLIMOT-ANN structure used for modeling en-
gine emissions 
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are used for the validation and comparison of the 
ANN model. It is relevant to mention that a total of 
nine parameters are monitored during the process. 
Each operating condition is represented by a dataset. 
With the aim of conserving the statistical validity of 
the experiment, it was decided that the datasets for 
each phase, training as well as testing, would be 
randomly chosen with a uniform distribution. Thus, 
all data have the same probability of being selected, 
ensuring a different selection for each phase. Figs. 4 
and 5 present the input and the output training and test 
datasets for each operating parameter and engine 
emission, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Three different criteria are considered in order to 
evaluate the ANN performance: (1) the mean absolute 
percentage error (MAPE) that expresses accuracy as a 
percentage; (2) the correlation coefficient R2 used to 
evaluate the linear relationship between predicted and 
measured output; and (3) the root mean square errors 
(RMSE) that are taken into account in order to esti-
mate the ANNs prediction qualities for many archi-
tectures of the models. MAPE, RMSE, and R2 per-
formances are calculated as (Canakci et al., 2009) 

 

           

20
meas pred

1 meas

1
MAPE 100,

20
i i

i
i

y y

y

 
  

  


       

(5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 10 20 30 40 50 60
0

2

4

6

C
O

 (
%

)

0 10 20 30 40 50 60
0

0.50

0.10

0.15

H
C

 (
%

)

0 10 20 30 40 50 60
0

0.02

0.04

0.06

N
O

x 
(%

)

Number of sample

 

Training set

Test set

Fig. 5  Engine output emissions for training and test phase 
(a) CO; (b) HC; (c) NOx 
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Fig. 4  Engine input parameters for training and test phase 
(a) Ignition angle; (b) IMAP; (c) Injection time; (d) Fuel mass flow 

m
fu

e
l (

lb
/h

) 
θ i

gn
 (

°)
 40 

30 

20 

220 
200 
180 
160 

(a) 

(c) 

(d) 

(b) 
0 10 20 30 40 50 60 

0 10 20 30 40 50 60 

0 10 20 30 40 50 60 5 

10 

15 

0 10 20 30 40 50 60 
0 

20 

40 

Number of sample

Training set 
Test set 

t in
j (

m
s)

 
IM

A
P

 (
kP

a)
 



Martínez-Morales et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(9):657-670 
 

663

             
20

2
meas pred

1

1
RMSE [( ) ],

20 i i
i

y y


             (6) 

              
20 2

meas pred2 1
20 2

pred1

( )
1 ,

( )
i i

i

i

i

y y
R

y




 
  
 
 




               (7) 

 
where measi

y is a measured value and pred i
y a predicted 

value by the neural model over all test datasets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To choose the size of ANNs, MAPE, RMSE and 
R2 are calculated for the testing data for different 
numbers of hidden neurons as shown in Fig. 6 and 
Table 5. The RMSE and MAPE are smaller and R2 is 
close to one, with (6, 10, 1), (6, 9, 1), and (6, 15, 1) 
LOLIMOT neural network architectures for CO, HC, 
and NOx prediction, respectively. The corresponding 
correlations between recorded and predicted exhaust 
emissions for these architectures are shown in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 5  Performance criteria comparison 

RMSE R2 
Number of hidden neurons 

CO HC NOx CO HC NOx 

4 0.192 116.925 41.308 0.981 0.955 0.991 

5 0.296 115.920 32.584 0.939 0.957 0.994 

6 0.207 97.773 37.437 0.968 0.970 0.992 

7 0.172 136.421 33.690 0.978 0.933 0.933 

8 0.150 93.646 39.546 0.975 0.967 0.991 

9 0.271 86.895 38.390 0.957 0.972 0.992 

10 0.155 135.260 29.417 0.982 0.935 0.995 

11 0.195 77.599 66.207 0.965 0.968 0.975 

12 0.178 139.049 36.340 0.973 0.937 0.993 

13 0.294 165.358 35.820 0.947 0.912 0.993 

14 0.189 355.495 46.633 0.977 0.604 0.988 

15 0.519 100.311 19.252 0.831 0.968 0.998 

16 0.217 74.120 44.071 0.969 0.970 0.989 

17 0.249 223.741 37.523 0.958 0.850 0.992 

18 0.313 106.785 37.058 0.896 0.966 0.992 

19 0.271 314.494 31.064 0.958 0.663 0.994 

20 0.200 125.111 42.944 0.977 0.944 0.990 

21 0.102 146.630 38.231 0.973 0.925 0.992 
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Figs. 7–9. The obtained values in each model are very 
close to the experimental data. The values of R2 are 
0.982, 0.972, and 0.998 for testing datasets in the 
LOLIMOT neural networks models in predicting CO, 
HC, and NOx, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Multi-objective optimization problem 

3.1  Definition 

The optimization approach described here uses 
ANNs as the basis for the evaluation of the objective 

functions. These are used in the optimization process. 
Mathematically, the multi-objective optimization 
problem can be written as 

 

               L U
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where Ω is the parameter space, x is a point in this 
space, N is the number of objective functions and ζ is 
the vector-valued constraint function with upper and 
lower limits ζU and ζL. The three engine responses 
considered for minimizing are CO, HC, and NOx 
emissions of the studied gasoline engine. This mini-
mization is done by the variables of injection time tinj, 
the injected fuel mass flow mfuel, the ignition advance 
timing θign, and the IMAP. The optimization process 
is performed for each operating condition defined by 
engine speed neng and the angle of the admission 
throttle valve αth. The complete details of the 
multi-objective optimization problem are specified in 
Table 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Objective functions 

The definition of the objective function is very 
important for solving an optimization problem, con-
sidering that the main objective of the optimization is 
to reduce CO, HC, and NOx emissions, subject to the 
restrictions of the operating parameters of the studied 
gasoline engine. The objective functions are defined 
by  
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Table 6  Details of the multi-objective optimization 
problem 

Optimization  objective: minimize CO, HC, and NOx 

Range 
mfuel  
(lb/h) 

tinj 
(ms) 

IMAP 
(kPa) 

θign 
(°) 

Min 6.1 7.7 168 20 

Max 37.2 14.4 202 37 

Range 
neng 

(r/min) 
αth 
(%) 

  

Min 1500 25   

Max 4000 100   
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where e(x)i represents the value of the ith emission for 
the operating parameters x, MEi represents the 
maximum value allowed for the ith emission, and γi is 
a penalty factor. Here i=1, 2, 3, for CO, HC, and NOx 
objective function f(x)i respectively. The larger the 
value of γi, the greater the value of the objective 
function, causing the algorithm to explore other re-
gions in the search space. However, the values of γi 
are set to 1 for the multi-objective optimization 
problems treated here by using MOPSO and NSGA-II 
methods. 

3.3  MOPSO optimization method 

A MOP requires the simultaneous satisfaction of 
a number of different objective functions, under a 
number of inequality or equality constraints. MOPs 
generally give a possibly uncountable set of solutions, 
whose evaluated vectors represent the best possible 
trade-offs in the objective function space. In this 
sense, Pareto optimality is the procedure to establish a 
hierarchy among the solutions in order to determine 
whether a solution is really one of the best possible 
trades-off. 

The solution x* is said to be Pareto optimal 
(minimal) if no other solution can be found to domi-
nate x* using the definition of Pareto dominance. 
Given two solutions x* and x, vector F(x*) is said to 

dominate vector F(x) (denoted by *( ) ( ))F x F x  if 

and only if 
 

*{1, 2, ..., } : ( ) ( ),i ii N f f  x x               (10) 
*{1, 2, ..., }: ( ) ( ).i ii N f f  x x                 (11) 

 
In MOPSO, a population of potential solutions ran-
domly distributed called particles is created over the 
search space with random velocity. The positions of 
the particles are moving towards the positions of the 
local best element Xj

*(t) and the global best element 
Xj

**(t). These are selected from the updated set of 
recorded nondominated solutions. Then, the particles 
change their positions during generations until a ter-
mination criterion is met (Coello and Lechuga, 2002). 

The following gives a brief introduction to the 
operation of the proposed MOPSO algorithm. Con-
sider a swarm of n particles, and each particle is an 
m-dimensional vector, where m is the number of op-
timized parameters. 

1. Initialize the number of iterations until a given 
limit is reached. 

2. Generate randomly n particles, Xj, with j=1, 
2, ···, n, where Xj=[xj,1, xj,2, ···, xj,m]. 

3. Generate randomly initial velocities of all 
particles Vj, with j=1, 2, ···, n, where Vj=[vj,1, vj,2, ···, 
vj,m]. 

4. All initial particles are evaluated by using the 
objective functions. 

5. Define the local best element for each particle 
as Xj

*(0)=Xj(0), j=1, 2, ···, n. 
6. Define a global set S**(0), with all nondomi-

nated solutions. 
7. Calculate the distances between Xj(0) and the 

members in S**(0) by using the Euclidian distance. 
Define the global best element Xi

**(t) as the nearest 
member in S**(t) to the ith particle. 

8. Set the initial value of the inertia weight w(0). 
9. Update the inertia weight w(t) according to  
 

max min
max

max

iter,
iter

w w
w w


                (12) 

 
where itermax is the number of generations, and iter is 
the current number of iteration. 

10. The jth particle velocity in the kth dimension 
is updated by 

 
*

, , 1 1 , ,

**
2 2 , ,

( 1) ( ) ( ( ) ( ))

( ( ) ( )),

j k j k j k j k

j k j k

v t wv t c r x t x t

c r x t x t

   

 
        (13)  

 
where c1 and c2 are positive constants, j=1, 2, ···, n, 
k=1, 2, ···, m, and r1 and r2 are uniformly distributed 
random numbers in [0, 1]. 

11. Based on the updated velocities, each particle 
changes its position according to 
 

, , ,( 1) ( ) ( 1).j k j k j kx t x t v t                       (14) 

 
12. The updated position of each particle Xi(t+1) 

is added to the local set Si
*(t+1). 

13. Update the global set S**(t+1) with all the 
nondominated solutions of *

1 ( 1)n
j j t  S . 

14. The nearest member in Sj
*(t+1) to the jth 

particle is defined as Xj
*(t+1). Similarly, the nearest 

member in the global set S**(t+1) to the ith particle is 
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defined as the global best element Xj
**(t+1). 

15. If the number of iterations exceeds its limit 
then stop, else go to step 9. 

3.4  NSGA-II optimization method 

The NSGA-II method has a diversity preserva-
tion mechanism that involves calculation of the 
so-called crowding distance, which evaluates the 
density of individuals surrounding a particular indi-
vidual in the population. Details on NSGA-II can be 
found in (Deb et al., 2002). It can be summarized as 
follows: 

1. Generate a random population P0 of l indi-
viduals. 

2. Evaluate objective functions for each indi-
vidual, and sort the population using nondomination 
order and their crowding distances. 

3. Initialize current population Pl=P0. 
4. Apply binary tournament in order to create a 

mating pool of parents of size l/2 from Pl based on 
Pareto front ranking and crowding distance. 

5. Randomly select couples from mating pool 
and apply bimodal crossover and polynomial muta-
tion operators in order to generate offspring popula-
tion Rl called children of size l. 

6. Parents and children populations are merged, 
thus creat a single intermediate population made of 2l 
individuals; sort them using nondomination order 
relation. 

7. The population is ranked according to the 
fitness parameters and only the best l individuals are 
chosen to create the new parents population for the 
subsequent generation Pl+1 of size l. 

8. Go to step 4 with Pl=Pl+1. 
In this study, the minimization process finds the 

optimal solution for each operating condition, defined 
by engine speed and the angle of the admission 
throttle valve. For each engine condition the operating 
parameters are constrained by maximum and mini-
mum values defined by their cartography nominal 
levels. 

3.5  Fuzzy decision-making 

The multi-objective evolutionary algorithms 
provide a set of nondominated solutions which form 
the Pareto front; here a fuzzy-based mechanism is 
used to find an acceptable solution on the Pareto front. 
A membership value for the ith objective of the jth 

solution in the Pareto front is calculated using the 
membership function given by 

 

 

min

max
min max

max min

max

1, if ,

, if ,

0, if ,

i i

j i i
i i i i

i i

i i

f f

f f
mf f f f

f f

f f

 


  


 

   (15) 

 
where fi is the value of the ith objective function, fi

max 
and fi

min are the maximum and minimum values of the 
ith objective function, respectively, and mfi

j indicates 
how well the jth nondominated solution is able to 
satisfy the ith objective. The accomplishment of each 
Pareto solution with respect to all the D nondomi-
nated solutions can be obtained as 
 

1

1 1

.

N j
ij i

D N j
ij i

mf
mf

mf


 

 
 

                      (16) 

 
The solution with the maximum value of mf j is the 
solution that can be accepted by the decision-maker. 
 
 
4  Results 

 
For the MOPSO, the inertia weight factor w de-

creases linearly during the optimization run, wmax and 
wmin are set to 1.2 and 0.1, respectively, the amount of 
particles n is set at 50, itermax=10, and constants 
c1=c2=0.5. Whereas for NSGA-II a population of l=80 
individuals and G=20 generations, with crossover 
probability pc=0.9 and mutation probability pm=0.033 
are considered here. The simulation programs are 
written in MATLAB and run in a 2.20 GHz Pentium-4 
processor with 1 GB of RAM. To evaluate the con-
vergence of the algorithm, a map of the objective 
space is created. The Pareto solutions indicating the 
selection made by the fuzzy decision method are 
presented in Figs. 10a–10c. For the optimization of 
the engine operating condition defined by neng= 
3500 r/min and αth=75%, reductions of 27.56%, 
99.67%, and 83.72% for CO, HC, and NOx emissions 
with NSGA-II are achieved, respectively. Utilizing 
MOPSO, reductions of 26.6%, 99.96%, and 69.97% 
for CO, HC, and NOx emissions are achieved,  
respectively. 
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After the NSGA-II and MOPSO converged, the 
values for the emissions corresponding to the ob-
tained Pareto solutions and fuzzy decision-maker (for 
10 engine operating conditions) are analyzed as 
shown in Tables 7 and 8, respectively.  As a result of 
the optimization processes and the reduction per-
centages, the values of emissions were obtained with 
the nominal values of the operating parameters (Table 
7 and 8). Table 7 shows the reduction for the operat-
ing point defined by neng=2900 r/min and αth=25%. 
This is about 91.44% with NSGA-II for CO emis-
sions, which is greater than that achieved with  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 10  Pareto fronts using MOPSO and NSGA-II methods 
(a) f1 vs f2; (b) f2 vs f3; (c) f1 vs f3 
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Table 7  Comparison of nominal values and NSGA-II 
optimized values for emissions in 10 operating points

 CO (%) HC (%) NOx (%) 

Regime neng=2000 r/min, αth=50% 

Nominal 0.530 0.06000 0.04900 

Best found 0.446 0.00744 0.03552 

Reduction 15.770 87.580 27.505 

Regime neng=2250 r/min, αth=75% 

Nominal 0.520 0.06180 0.05180 

Best Found 0.157 0.00403 0.02622 

Reduction 69.630 93.470 49.370 

Regime neng=2500 r/min, αth=100% 

Nominal 2.550 0.06830 0.03080 

Best Found 0.111 0.00258 0.01598 

Reduction 95.630 96.210 48.080 

Regime neng=2900 r/min, αth=25% 

Nominal 0.710 0.04350 0.04320 

Best Found 0.253 0.00704 0.03570 

Reduction 64.170 83.800 17.340 

Regime neng=3000 r/min, αth=50% 

Nominal 0.730 0.03820 0.04480 

Best Found 0.630 0.00185 0.04136 

Reduction 13.680 95.150 7.670 

Regime neng=3100 r/min, αth=75% 

Nominal 0.710 0.03740 0.05010 

Best Found 0.405 0.00029 0.02737 

Reduction 42.930 99.190 45.351 

Regime neng=3200 r/min, αth=100% 

Nominal 3.910 0.052900 0.01920 

Best Found 2.869 0.000016 0.00576 

Reduction 26.600 99.960 69.970 

Regime neng=3400 r/min, αth=75% 

Nominal 0.820 0.043800 0.04740 

Best Found 0.418 0.000018 0.02783 

Reduction 49.000 99.950 41.270 

Regime neng=3500 r/min, αth=50% 

Nominal 0.820 0.03900 0.046300 

Best Found 0.438 0.00252 0.000359 

Reduction 46.490 93.534 99.220 

Regime neng=3750 r/min, αth=75% 

Nominal 0.960 0.034700 0.04560 

Best Found 0.753 0.000923 0.02689 

Reduction 21.540 97.330 41.022 
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MOPSO that reduces emissions only 64.17%. Also 
for the engine operating condition neng=3100 r/min 
and αth=75%, a reduction with NSGA-II (72.19% for 
CO) is achieved, which is higher than that with 
MOPSO which reduces 42.93% CO emissions. 
However, with the MOPSO algorithm, greater reduc-
tions (41.27%) for NOx at the operating point defined 
by neng=3400 and αth=75% are achieved, whereas the 
NSGA-II reduces emissions by only 13.78%. Simi-
larly for the engine operating condition neng= 
3750 r/min and αth=75%, a reduction of 41.02% for 
NOx emission with MOPSO is reached, while 
NSGA-II only reduces this emission by 26.64%.  

While neng=3750 r/min and αth=75%, the reduc-
tions achieved are 96.00% and 97.33% for HC by 
employing NSGA-II and MOPSO, respectively. 

Tables 7 and 8 present reductions of at least 
9.84%, 82.44%, and 13.78% achieved for CO, HC, 
and NOx emissions respectively with NSGA-II, while 
with MOPSO algorithm reductions of at least 
13.68%, 83.8%, and 7.67% for CO, HC and NOx 
emissions are reached, respectively. On the other 
hand, similar reductions are obtained for HC emis-
sions with both algorithms in most engine operating 
conditions, for example reductions of 88.247% and 
87.580% using NSGA-II and MOPSO respectively 
for the operating point neng=2000 r/min and αth=50% 
are obtained. 

It is possible to use the NSGA-II to diminish 
emissions in some engine operating conditions and 
the MOPSO method in the rest of the engine condi-
tions, such that the engine is calibrated with parame-
ter values that result in a greater reduction of emis-
sions. Tables 9 and 10 show the optimal configura-
tions of parameters obtained with NSGA-II and 
MOPSO, respectively, for the 10 operating points of 
the studied gasoline engine which resulted in the 
identified emissions reductions.  

Thus, the emissions of the gasoline engine can 
be reduced by updating the engine operating pa-
rameters. As a comparison, Alonso et al. (2007) 
found reductions of 25.8%, 36.2%, and 4.4% for CO, 
HC, and NOx emissions; however, this was for a di-
esel engine at full load operating condition, using the 
NSGA-II algorithm. Although the case study is not 
the same, similar reductions are obtained here by 
using NSGA-II algorithm. 

Table 8  Comparison of nominal values and MOPSO 
optimized values for emissions in 10 operating points

 CO (%) HC (%) NOx (%) 

Regime neng=2000 r/min, αth=50%  

Nominal 0.530 0.06000 0.04900 

Best Found 0.393 0.00705 0.04056 

Reduction 25.730 88.247 17.220 

Regime neng=2250 r/min, αth=75% 

Nominal 0.520 0.06180 0.05180 

Best Found 0.103 0.00569 0.03501 

Reduction 80.125 90.782 32.407 

Regime neng=2500 r/min, αth=100% 

Nominal 2.550 0.06830 0.03080 

Best Found 0.551 0.0000056 0.00174 

Reduction 78.370 99.990 94.310 

Regime neng=2900 r/min, αth=25% 

Nominal 0.710 0.04350 0.04320 

Best Found 0.060 0.000519 0.02590 

Reduction 91.440 98.805 40.038 

Regime neng=3000 r/min, αth=50% 

Nominal 0.730 0.03820 0.04480 

Best Found 0.658 0.00029 0.03106 

Reduction 9.840 99.230 30.660 

Regime neng=3100 r/min, αth=75% 

Nominal 0.710 0.03740 0.05010 

Best Found 0.197 0.00180 0.02689 

Reduction 72.193 95.186 46.310 

Regime neng=3200 r/min, αth=100% 

Nominal 3.910 0.05290 0.01920 

Best Found 2.832 0.00017 0.00312 

Reduction 27.560 99.670 83.720 

Regime neng=3400 r/min, αth=75% 

Nominal 0.820 0.04380 0.04740 

Best Found 0.122 0.00315 0.04086 

Reduction 85.110 92.780 13.780 

Regime neng=3500 r/min, αth=50% 

Nominal 0.820 0.03900 0.04630 

Best Found 0.072 0.00684 0.03275 

Reduction 91.205 82.440 29.253 

Regime neng=3750 r/min, αth=75% 

Nominal 0.960 0.03470 0.04560 

Best Found 0.247 0.00139 0.03344 

Reduction 74.219 95.968 26.646 



Martínez-Morales et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(9):657-670 
 

669

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5  Conclusions 

 
In this paper, neural network models for exhaust 

emissions of an SI gasoline engine are used as the 
basis for the evaluation of the objective functions 
which are evaluated within the MOPSO and NSGA-II 
optimization methods. These methods are applied to 
find a solution to the problem of reducing the emis-
sions of a gasoline engine. LOLIMOT neural net-
works are utilized to determine suitable predictions 
for three exhaust emissions under stationary condi-
tions. The carbon monoxide (CO), hydrocarbons 
(HC) and nitrogen oxides (NOx) emissions are mod-
eled and subsequently reduced. Performance of the 
ANNs has been evaluated by calculating the coeffi-
cient of correlation (R2) and mean absolute percent-
age error (MAPE). LOLIMOT networks with archi-
tectures (6, 10, 1), (6, 9, 1), and (6, 15, 1) are found to 

be capable to approximate the CO, HC, and NOx 
emissions of the studied gasoline engine, with R2 of 
0.982, 0.972, and 0.998, respectively. The MOPSO 
and NSGA-II methods are performed for 10 engine 
operating conditions, where the limits in the engine 
operating parameters are established according to the 
values in the nominal engine cartography. Important 
improvements with respect to the nominal manufac-
turer engine cartographies are observed, reaching 
reductions of at least 9.84%, 82.44%, and 13.78% for 
CO, HC, and NOx emissions respectively with 
NSGA-II, although with MOPSO algorithm reduc-
tions are reached at least 13.68%, 83.8%, and 7.67% 
for CO, HC, and NOx emissions, respectively. The 
main limitation of this study is that the determined 
parameters are only valid for the particular engine 
used in this case study. However, the methodology 
can be used to perform the minimization of emissions 
on hydrogen or biodiesel fueled internal combustion 
engines. 
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