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linearity of the method, the vertical displacement 
δmax is directly related to the inverse of the ratio E0/s0, 
as the analytical expression Eq. (11), by means of 
the relation Eq. (4), highlights.  

In the former case (plate with a porous solid 
structure), 3D, eight-node, and brick elements are 
used in the FE model, while in the latter case (plate 
with a truss structure) 1D beam elements are used. 
Fig. 10 shows the porous solid structure and Fig. 11 
shows the truss structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each multilayered plate has a basic unit that is 

repetitive in the long direction (perpendicular to the 
cross-section in Fig. 2). The vertical load is assumed 
to be independent of the coordinate in the long direc-
tion, and therefore, it is possible to consider just one 
3D unit of the structure that repeats periodically 
along its length. The recursive unit is simply sup-
ported at the edge, and symmetry boundary condi-
tions are applied at the sides.  

6.1  Sandwich plate with solid structure 

The design example refers to a square plate, 
with dimension 90 m×90 m and the total thickness H 
=2.5 m; upper and lower thicknesses are h1=h3= 
0.5 m, and the middle layer thickness is h2=1.5 m. 
The solid matrix is made of a material with ratio 
between Young’s modulus and density of E0/s0= 
2.6×106 (m/s)2 and Poisson’s ratio ν0=0.3. The ratio 
between the volume fractions of the inner and the 
outer layer is n=10; no vertical load is applied in 
addition to the plate self-weight, and the allowed 
vertical displacement is δmax=(90/500) m=0.18 m. 

Combining Eq. (30) with Eqs. (13) and (14), it 
is possible to determine the optimal values of ρi 
which gives the design value of the vertical dis-
placement (δmax); the following values of the volume 
fraction were obtained: ρ1=ρ3=0.187 498 0 and ρ2= 
0.018 749 8; the dimension of the cubic voids in the 
three layers, i.e., the main design parameters, corre-
sponding to such values of ρi are obtained from the 
expression of 
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which provides that d1=d3=0.466 564 m and d2= 
1.490 570 m. 

The FE results of the model of the porous plate 
are reported in Fig. 12, with a sketch of the inner 
microstructure shown in detail at the upper right 
corner. It is clearly shown that the prescribed dis-
placement δmax is in good agreement with the maxi-

mum vertical displacement FE
max 0.1901 m   such 

that: 
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6.2  Sandwich plate with truss structure 

As in the previous design example, the square 
plate has dimension 90 m×90 m and the total thick-
ness H=2.5 m, with thickness values for the external 
layers h1=h3=0.5 m, and for the middle layer h2= 
1.5 m. The ratio of Young’s modulus to density of 
the solid matrix material is still E0/s0=2.6×106 (m/s)2, 

Fig. 10  Three-layer plate of depleted material (plate with 
porous solid structure) 

Fig. 11  Three-layer plate of depleted material (plate with
truss structure) 
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and Poisson’s ratio ν0=0.3; the ratio between the vol-
ume fractions is equal to the previous design example, 
i.e., n=10; the allowed vertical displacement under 
vertical load deriving from the self-weight is δmax= 
(90/500) m=0.18 m. The total length of the beams in 
each recursive element is set as λ1=λ3=5.226 m and 
λ2=15.679 m; the ratio rr between the equivalent area 
and inertia radii has been assumed the same in the 
three layers, i.e., rr1=rr2=rr3=0.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Combining Eq. (36) with Eqs. (13) and (14), it 

is possible to determine the optimal values of ρi 
which give the design value of the vertical displace-
ment (δmax); the following values of the volume frac-
tion were obtained: ρ1=ρ3=0.143 929 0 and ρ2= 
0.014 392 9; the equivalent area radii raei of the beam 
circular hollow sections in the three layers, corre-
sponding to such values of ρi, are obtained from the 
expression of 
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Then, having fixed the ratio rr=rae/rie, the 

equivalent inertia radii rie can be calculated from the 
values of rae and rr; finally through the inverse of 
Eqs. (33) and (34) it is possible to determine, for 

each single layer, the inner and outer radii of the 
hollow sections, i.e., the main design parameters, 
with the result: ri1=ri3=0.028 102 m, ro1=ro3= 
0.043 422 m, ri2=0.026 660 m, and ro2=0.041 194 m. 

The FE results of the model of the plate truss 
structure are shown in Fig. 13, where a sketch of the 
inner microstructure is shown in detail. Meanwhile, 
in this case, the prescribed displacement δmax is in 
good agreement with the maximum vertical dis-
placement obtained through the FE analysis, 

FE
max 0.8889 m,   resulting in 
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7  Conclusions 
 
In this paper a general design procedure has 

been developed for thin plates made of three layers 
of depleted material subject to vertical distributed 
load. The approach allows the locally definition of 
the optimal amount of material for a specific micro-
structure with the objective of maximizing the over-
all flexural stiffness/weight ratio of the structure. 

To assess the influence of connectivity both a 
porous solid structure and a truss arrangement were 
investigated using the FEM. 

Fig. 13  FE results of the model of the plate with truss
structure, contour of the vertical displacement (unit: m).
It is a sketch of the inner microstructure in the upper
right corner 

Fig. 12  FE results of the model of the plate with porous 
solid structure, contour of the vertical displacement (unit: 
m). It is a sketch of the inner microstructure in the upper
right corner 
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For each kind of microstructure the flexural 
stiffness has been successfully correlated to the level 
of depletion by means of a power law function by 
setting very few parameters. Starting from the local 
response of the media, it has been possible to de-
scribe, to a good approximation, the global flexural 
response of the structure. 

To test the accuracy of the method, each type of 
microstructure has been employed in a case study of 
a squared thin plate made of three layers subject to a 
vertical distributed load: with the aid of the FEM, 
the structure has been modelled in detail by repro-
ducing the geometries at the micro scale. The accu-
rate mechanical response has been calculated and 
compared with the results furnished by the homoge-
nization approach proposed in this paper. The good 
agreement between the analytical and numerical re-
sults for both types of the microstructure, proves that 
the procedure is able to provide, with good reliabil-
ity, the most favorable design of light-weight roof 
structures. 

In more general terms, the method prescribes, 
for a thin plate made of a depleted material, the defi-
nition of a penalization law able to predict the flex-
ural stiffness of the specific microstructure, and then 
it is able to provide a very straightforward procedure 
for the structural optimization. Moreover, the meth-
od based on homogenization theory is suitable for 
every kind of architecture of the microstructure. 
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中文概要 
 

题 目：基于中空单元的夹层平板结构设计方法研究 

目 的：大型的桁架结构或空间刚架结构可以认为是用

中空单元组合而成的宏观结构，在结构初步设

计时，如何设计排布中空基本单元以满足结构

的性能要求是设计的关键。本文旨在探讨夹层

平板结构，在给定竖向变形控制指标后，如何

使用简化的方法快速设计各层中空基本单元的

尺寸和空隙程度。 

创新点：1. 对于水立方这种复杂的空间多面体网格结

构，本文将其理想化为连续的中空介质，利用

微观力学中的均质化分析方法，将结构分解为

多个基本单元（RVE）进行分析，从而推导出

结构性能指标与单元参数之间的关系。2. 对于

大跨度平板结构，本文提出一种基于 RVE 重复

叠加组合的设计方法，并利用有限元法对该方

法进行检验。 
方 法：1. 对夹层平板结构的弯曲特性进行理论分析，

根据 Kirchhoff-Love 理论，得到板弯曲刚度与各

层的截面惯性矩之间的关系；2. 通过理论推导

出结构弯曲刚度（图 3）、材料使用量（图 4）

随层厚度和层密度的变化关系；3. 从基本单元

出发，利用均质化分析方法分别对中空立方体

（图 5）和空间桁架结构（图 6）进行分析，得

到结构抗弯刚度随单元中空程度和距截面中性

轴距离的函数关系（图 7 和 8），进而推导出结

构参数化设计的拟合公式；4. 利用该设计公

式，针对一个 90 m×90 m×2.5 m 的平板结构，

以跨中挠度为跨度的 1/500 为设计指标，分别设

计由两种基本单元组成的夹层平板结构，并将

结构挠度的有限元计算结果与设计指标进行比

较（图 12）。 

结 论：1. 本文提出的利用中空单元组成的夹层平板结

构的设计方法，通过优化设计中空单元的各项

参数，可以在保证性能指标的同时最大化降低

结构质量，得到最优刚度质量比。2. 本设计方

法和有限元法得到的结果之间差异非常小，说

明该设计方法准确可靠。 

关键词：薄板；多层板；中空材料；均质化分析方法；

刚度设计 
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