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Abstract:    The efficiency of a long-span structure relies on how material is locally distributed within a fixed structural shape. 
In this paper a design procedure for thin plates made of three layers of a depleted material subject to a distributed vertical load is 
proposed. The investigation is driven by the idea of the optimal material organization and has the objective of maximizing the 
overall stiffness/weight ratio of the structure. Two microstructural architectures of the media are considered: a porous solid 
structure and a truss arrangement. For each type of microstructure the flexural stiffness has been correlated to the level of deple-
tion by the use of a power law function by setting very few parameters. Finally, invoking the principles of structural homogeni-
zation theory, the global flexural response of the plate has also been calculated. The validity of the method is demonstrated by 
comparing the analytical results with those obtained by a numerical finite element simulation of the structure based on a detailed 
model of the media.  
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1  Introduction 
 

Wide-span buildings require the adoption of 
light-weight roof structures, with few vertical sup-
ports, due to the architectural requirement of large 
column-free interior spaces, which can be obtained 
by either shaping efficient structural forms and/or 
optimizing the spatial arrangement of the resisting 
material.  

When the shape of the roof is predetermined, as 
in the case of flat roof structures, the only strategy 
toward lightness is the rational distribution of the 
structural material, namely the best allocation of the 
material for resisting the global bending action and 
the insertion of voids in useless zones. Historically, 
this approach has driven the development of new 
structural concepts, forms, and aesthetics, with pre-

cious contributions provided by innovative engineers 
and smart researchers: from the prototype tetrahe-
dron kites and the pioneering space frames con-
ceived by Bell (Chilton, 2000); through the huge 
theoretical and practical contributions by Fuller 
(1982) on geodesic domes and tensegrity structure, 
then further developed by his student, Snelson (Snel-
son, 2012); to the thought of Le Ricolais, who 
pushed the ancient builders’ ethic of doing the most 
with the least to its extreme consequence “infinite 
span zero weight” (Emmerich, 1994). The challenge 
of long-span structures has been the search for light-
ness and structural efficiency, mainly focused on the 
articulation of form, i.e., on how material is locally 
distributed within a fixed structural shape (Sandaker, 
2008).  

What is most important in this approach is the 
material philosophy behind it: “matter is no longer 
solid; it is made of air, a structured void, it is a re-
versal from the stone, monolithic view of matter, 
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into a metallic, composite one. It looks not at the 
materiality of space but at the spatiality of matter” 
(Spuybroek, 2008). 

The line traced by this new philosophy can also 
be found in the forms and structures of nature, 
“which reflect the unquestionable laws of economy 
and efficiency: seashells, radiolariae and crystals are 
examples of veils, networks and skeleton structures 
that can be transposed into actual projects”. In the 
words of Le Ricolais (McClearly, 1998) “... struc-
tures composed of holes, all different in dimension 
and distribution, but with an unmistakable purpose 
in their occurrence. So we arrive at an apparently 
paradoxical conclusion that the art of structure is 
how and where to put holes: to build with holes, to 
use things which are hollow, things which have no 
weight.” 

This lesson has been absorbed by the engineer-
ing design disciplines, but in different ways, at the 
micro-scale and the macro-scale (Hashin and 
Shtrikman, 1963; Nemat-Nasser and Hori, 1999): 
while composite materials, foam structures, and 
sandwich panels are typical applications at the  
micro-scale level, a more superficial and incomplete 
awareness of the material philosophy taught by na-
ture is found at the macro-scale in the field of civil 
engineering.  

In fact, in materials engineering, micromechan-
ics and physical properties of heterogeneous media 
have been intensely studied in recent decades (Gib-
son and Ashby, 1988; Evans, 2001; Evans et al., 
2001). The starting point is the observation of the 
countless examples of natural heterogeneous media, 
made of different elements, cells, or fibres, different-
ly arranged to form intricate interior structural net-
works, self-organized in hierarchies to produce 
modularity, redundancy, and differentiation, which 
guarantee the optimal mechanical performance; with 
this background, synthetic materials, composites, 
foams, and lattices, all belonging to the category of 
cellular materials, are nowadays developed for dif-
ferent engineering applications, with special atten-
tion to design strategies and optimization techniques 
for creating high-performance man-made products. 

According to Weinstock (2006), cellular mate-
rials display open and ductile structural systems 
which are stiff, strong, and permeable, making them 
an attractive proposition for developments not only 

in materials science, but also for new structural sys-
tems in architecture and engineering. 

In this sense, the material distribution method 
(Bendsøe and Sigmund, 2003), which is largely 
adopted in structural applications, seeks the opti-
mum lay-out of a structure, and aims to solve the 
structural design problem in terms of sizing, shape, 
and topology optimization with the goal of minimiz-
ing (or maximizing) a physical quantity, such as the 
strain energy, the local stress, and deflection. 

However, while the idea of optimal material or-
ganization has been worked out in the search for 
lightness and exploited in the conception of large-
scale space frames throughout the last century, civil 
engineers and architects are not familiar with cellu-
lar materials, and preserve the obsolete ways of 
thinking about material as something independent of 
form and structure. The fundamental unawareness 
and conservatism lead to limited and constrained 
design visions and produce architectural applications 
dominated by a substantial lack of novelty. 

However, some very recent examples contradict 
this general trend. 

The idea of porous media conceived on a very 
large scale, with void inclusions thought of as part of 
continuity and not as interruptions, is at the core of 
the Taichung Metropolitan Opera House in Taiwan, 
China (Fig. 1a), designed by Toyo ITO, where the 
orthogonal external form is punctured with countless 
holes, cave-like holes that penetrate the form, giving 
rise to an interior space made up of continuous con-
vex surfaces (Ito, 2012). 

The concept of foam structure and the relevant 
physical model has also been tested for applications 
involving different scale dimensions, giving rise to 
the bubble-like structure of the Water Cube, China 
(Fig. 1b), an example of foam structures at extreme-
ly large scale. 

 
 
 
 
 
 
 
 
 
 

Fig. 1  Structure of the Taichung Metropolitan Opera 
House in Taiwan, China (a) and the bubble-like structure 
of the Water Cube, National Aquatics Center, China (b)

(a) (b) 
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The Water Cube exemplifies how science 
cross-fertilization and knowledge transfer among 
different fields of science and engineering can pro-
duce innovative forms and structure. The design 
starts from the Weaire-Phelan physical-mathematical 
model, which provides the most efficient subdivision 
of space into equal volume cells, by assembling 
bubble clusters made of eight polyhedrons, with ei-
ther 14 or 12 faces; filling the notional building vol-
ume according to the bubble packing rules, then by 
cutting the bubbles at the exterior and interior sur-
face intersection, the steel structural wire frame is 
obtained. 

The Water Cube can be taken as a benchmark 
for innovative space frame structures, and provides 
data, knowledge, and inspiration for future projects. 
However, the variety of tetrahedral nets that could 
be inspired by nature, from the diamond nets to the 
closed-cell foams, is almost infinite, and all exhibit 
interesting structural properties to be transposed in 
large scale applications. 

While some examples of structures with appar-
ently random organization of steel elements have 
been recently proposed or realized (e.g., the Federa-
tion Square complex in Melbourne, Australia, de-
signed by Lab Architecture Studio with the structur-
al engineering consultancy of Atelier One, UK), ma-
jor questions arise for the structural engineers: how 
to deal with, how to model, analyze, and design 
these complex structures, where the load paths, the 
local resisting mechanisms, and deformation modes 
cannot be intuitively derived?  

Tristram CARFRAE, Arup’s structural designer 
of the Water Cube, reported that the structure was 
tested using algorithmic optimization allied to in-
formed personal judgement, using purpose-built 
tools, as well as rapid prototyping and building in-
formation modelling (Hill, 2008). However, as Hyde 
(2010) observed, “... given that ... Carfrae’s tetrahe-
dral space frames in Beijing are structures long 
known to certain scientists ...”, many steps of the 
design process could have been carried out by means 
of a simpler, more straightforward and aware proce-
dure, “... rather than relying on computational  
black-boxes.” 

In this paper the authors propose an alternative, 
more general, methodology for dealing with these 

complex, foam-like macrostructures, made of thou-
sands interconnected beam elements: the idea is to 
idealize them as continuous depleted media, charac-
terized by penalized mechanical properties, namely 
by using the classical micromechanical approach 
based on homogenization methods; the starting point 
is the mechanical study of the representative volume 
element (RVE), the unit, repetitive structure of the 
specific depleted medium (Nemat-Nasser and Hori, 
1999). This deterministic method is based on a con-
tinuum theory where the micro-structural properties 
are incorporated in prescribed architectural variables, 
whose choice is generally suggested by analytical 
results. The connectivity as well as the distribution 
of the media within the representative volume are 
described by topological measures, such as the ap-
parent density (volume fraction) or stereological 
surveys (Turner and Cowin, 1987). 

In Toreno et al. (2011), this approach has been 
successfully applied to the Water Cube structure. In 
fact, behind the highly random appearance of the 
Water Cube, it is simply a recursive structure like 
other space frame structures, with the repetitive 
module obtained on the basis of the Weaire-Phelan 
bubble cluster. The application has confirmed the 
potential of classical micromechanical-based strate-
gies for the design and assessment of mega-scale 
civil structures, generated by complex, non-
conventional patterns. Furthermore, since the main 
parameters governing the model are the RVE density, 
connection degree, and orientation, topological op-
timization procedures are relatively effortless and 
retain conceptual consistency and control capacity. 

In this paper, an additional step towards gener-
alization of the approach is made; in particular, an 
analytical procedure is proposed for defining a de-
sign tool for long-span structures made by recursive 
patterns of a base unit (RVE). Two different RVE 
topologies are studied through the finite element 
method (FEM), and related penalty coefficients of 
the homogenization law are found. 

 
 

2  Object, aim, and method 
 
This paper establishes the analytical framework 

for dealing with a three-layered (sandwich) thin 
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plate made of depleted materials, to define simpli-
fied tools for the preliminary design of large-span, 
weight efficient structures. 

Depleted media are materials whose overall 
stiffness and strength are reduced due to presence of 
cavities in the solid matrix, but are characterized by 
potentially high stiffness/weight ratios, thanks to 
optimal void distribution. 

Of particular interest are the low volume frac-
tion (LVF) ones, where a structurally ordered or 
randomly-arranged network of thin elements (beams 
and/or plates) can be generally observed at the  
micro-scale level, as in trabecular bone tissues, hon-
eycomb materials, or truss structures. In particular, 
spatially organized truss structures can be interpreted 
as overall macroscopically arranged depleted media, 
and the micromechanical approaches can be em-
ployed for analyzing and designing civil engineering 
structures. 

In this framework, a key point is how macro-
scopic effective physical properties of heterogeneous 
materials can be derived from their microstructures. 
From a mechanical standpoint, a continuum-theory-
based approach may be adopted for analyzing com-
plex microstructures, once the RVE, i.e., the smallest 
homogeneous material volume which macroscopic 
constitutive relationships must be referred to, is cho-
sen (Chilton, 2000). Overall mechanical properties 
of depleted media depend on the elasticity and 
strength of the solid matrix and upon RVE micro-
structural features, namely topology, density, and 
orientation. Therefore, following a classical homog-
enization approach, it is possible to deduce the re-
sponse of the whole structure from the mechanical 
properties of the single unit element. 

In particular, with reference to the sandwich 
plate, given a specific depletion strategy for plate 
layers, and given the performance requirements 
(namely, the maximum vertical deflection of the 
plate), the procedure provides the level/degree of 
depletion, i.e., the volume solid fraction, to be 
adopted in each layer for ensuring the required per-
formance; since the volume fraction is related to the 
geometrical parameters which define the layer mi-
crostructure, the procedure finally results in the size 
of the structural elements in the plate layers. 

For this purpose, the following steps are  
developed. 

First, the flexural behaviour of a sandwich plate 
structure, with three solid layers, is examined, and 
the governing mechanical parameters are identified. 

Then, two different microstructures are consid-
ered and the relevant RVEs are analyzed to define 
the flexural stiffness as a function of the volume 
fraction and to investigate the sensitivity of the RVE 
response to additional parameters, related to the spe-
cific microstructure. 

Finally, adopting the RVE flexural stiffness for 
characterizing the plate layers, and following a ho-
mogenization approach, a design formula is suggest-
ed that provides the volume fraction in each layer as 
a function of the global geometry, of the prescribed 
displacement and of the layer microstructure. 

 
 

3  Flexural stiffness of a thin three-layer 
plate 

 
A thin plate made of three layers, as it is sche-

matically illustrated in Fig. 2, is considered. The 
sandwich structure, composed of stiff external layers 
and a low-density core arrangement, is adopted as a 
weight efficient structure (Evans, 2001).  

The plate is square, with dimension a, total 
thickness H=h1+h2+h3, external layer thickness h1 
and h3, and core thickness h2; it is simply supported 
at the edges and subject to a uniform vertical pres-
sure, q, applied statically to the top surface of the 
plate; the pressure q is given by q=qw+qa, i.e., made 
up of the weight of the plate per unit area (qw) and 
for possible additional load (qa).  

 
 
 
 
 

 
 
 
 
 
Each layer is assumed as transversely isotropic 

and homogeneous, in a way that the plate structure is 
characterized, at the macroscopic level, by transver-
sal isotropic mechanical behaviour, with the plane of 
isotropy coincident with the plane of the plate. 

Fig. 2  A thin plate made of three layers 
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We here consider a section of the plate of 
length b=1, supported at the edges. Thus, invoking 
the Kirchhoff-Love theory for a thin elastic plate, the 
maximum vertical displacement δmax=uy{G}, in the 
case of small deformations, is directly related to the 
vertical load q:  

 

max ,
q

K
                                   (1) 

with 
4

f/ ( ),K K a C                            (2) 

 
where Kχ=M/χ is the ratio between the flexural mo-
ment per unit length and the relative curvature, and 
Cf relates to the geometry and the boundary condi-
tions of the problem. In the case of an infinite plate 
the term Cf can be determined analytically, for ex-
ample for a simply supported plate of infinite length 
it results in Cf=5/384, while in the case of a plate of 
finite dimension it can be deduced by the Fourier 
series of the displacement field equations (e.g., for a 
squared plate clamped at the edges, Cf ≈0.004 06) 
(Timoshenko, 1936). 

The overall flexural stiffness exhibited by a ge-
neric multilayered plate made of N layers can be 
computed as the summation of the single layer con-
tributions, kχi=EiIi: 

 

2
1

,
1

N
i

i i

k
K 

 


                             (3) 

 
where Ei and νi are Young’s modulus and Poisson’s 
ratio, respectively, of the material in the ith layer; Ii 
is the inertia per unit length of the cross sectional 
area.  

The problem presented in this framework deals 
with the optimal design of a model of the three lay-
ered structure subject to uniform distribute vertical 
load, whose parts (layers) are characterized by dis-
tinct mechanical response, in a way that the flexural 
stiffness can be mainly addressed to the external 
layers, in such specific case Eq. (3) becomes 

 

3 31 1 2 2
2 2 2
1 2 3

.
1 1 1

E IE I E I
K   

  
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                (4) 

4  Design and optimization procedure of 
multilayered plate with depleted materials 

 
The analytical model developed in Section 3 for 

the thin sandwich plate composed by three homoge-
neous and transversely isotropic layers, is adopted 
for describing the overall behaviour of a thin sand-
wich plate with depleted materials, i.e., a plate con-
stituted by three layers realized through a recursive 
arrangement of a specific microstructure of an iso-
tropic material which is defined by two elastic con-
stants, Young’s modulus E0i and Poisson’s ratio ν0i, 
and by the specific density si

0.  
In this framework, the volume fraction ρi is 

adopted as the basic measure of the arrangement of 
the solid material that composes the microstructure 
of each layer, defined as 

 

2
,i

i
i

V

h a
                              (5) 

 
where hi is the thickness of the ith layer, and Vi is the 
volume of the total amount of material employed in 
the structure. 

The idea is to deal with the design flexural 
problem of the inhomogeneous sandwich plate 
through Eqs. (1)–(3) previously defined for the ho-
mogeneous sandwich plate, provided that a homoge-
nization process of the single layers is first carried 
out. Thus, the procedure able to design the inner mi-
crostructure of a heterogeneous plate subject to a 
vertical distributed load is presented and verified. 
Therefore, an analytical design procedure for the 
inner microstructure of a heterogeneous plate under 
uniform vertical pressure is proposed and verified 
against numerical results. 

The depleted material in the single layers is as-
sumed to be given by a repetitive spatial pattern of a 
microstructure unit, the RVE, which is able to ac-
count for the mechanical response associated to the 
specific structure connectivity. Therefore, the start-
ing point for the definition of the homogenized mod-
el of each layer is the assessment of the mechanical 
performance of the RVE; then, the layer flexural 
stiffness kχi can be defined as a function of the layer 
volume fraction and of the parameters related both to 
the RVE connectivity and to the plate global geome-
try. The next paragraph deals with this issue. 
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Now, let us assume that the flexural stiffness kχi 
of the ith layer of the heterogeneous plate has been 
determined following the same approach commonly 
used in the homogenization procedure of the me-
chanical response of depleted media, and that it is 
expressed according to the general power function:  

 

0 0( , ) ,im
i ki i i i i ik f k k c                       (6) 

 
where k0i is the corresponding value for the solid 
layer (i.e., in the case of ρi→1), and ci and mi are 
constants related to the specific topology of the mi-
crostructure. Note that the value of Poisson’s ratio of 
the depleted media νi is assumed to be equal to the 
respective value of the solid material constituting the 
microstructure ν0i, i.e., 
 

0 .i i                                    (7) 

 
Moreover, it is assumed that, from the macro-

scopic point of view, the material is homogeneously 
disposed in the layer in such a way that the global 
value of the inertia can be calculated through the 
inertia of the section diminished by the value of the 
volume fraction: 

 

0 ,i i iI I                                  (8) 

 
where I0i is the inertia per unit length of the cross 
sectional area Ai respect to the neutral axis, defined 
as 
 

3
2

0 ,
12

i
i i i

h
I b b h y                           (9) 

 
with yi the distance between the neutral axis and the 
centre of the area Ai.  

Eq. (6) calculated for each layer allows the cal-
culation of the global flexural stiffness as prescribed 
in Eq. (3). 

To highlight the dependence of the maximum 
vertical displacement on the volume fraction of the 
layers, it is also necessary to express the weight per 
unit area of the plate qw as a function of the layer 
volume fractions and of the density of the material 
constituting the layer microstructure, si

0, i.e., 

3
0

w
1

,i i i
i

q g s h 


                              (10) 

 
where g is the acceleration due to gravity. From the 
definitions of the vertical load and the flexural stiff-
ness, Eqs. (3)–(10), Eq. (1) can be rewritten taking 
into account Eqs. (2)–(10), in a form that highlights 
the dependence of the maximum vertical displace-
ment on the volume fraction of the layers in the form 
of  

 

0
a

4 1
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0
2
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,
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i
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mi
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i i

q g s h
a C

k
c
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









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




               (11) 

 
where N is the number of the layers presented in the 
sandwich structure, and Cf depends on the plate di-
mensions and boundary conditions. As already stat-
ed, the coefficients ci and mi of the homogenization 
power function have to be specified depending on 
the microstructure connectivity, as will be done in 
the next paragraph.  

Eq. (11) represents a useful tool for the design, 
and eventually for the optimization, of multilayered 
plates of depleted material in pure bending. In fact, 
once a limit value for δmax is fixed, it allows the  
derivation in a numerical way of the volume frac-
tions i, as a function of the coefficients

 
ci and mi 

and of the global plate parameters (geometry, 
boundary conditions, layer thickness, etc.), and then, 
through Eq. (10), the weight of the structure.  

Moreover, given the flexural stiffness calculat-
ed in the general form of Eq. (3), Eq. (11) can be 
easily applied, in most common applications, to 
many cases of a thin composite structure, starting 
from the multilayer film characterized by nano-scale 
dimension (Ariga et al., 2014) up to the macro-scale 
level of wide span roof structures (Sandaker, 2008). 
A further step towards a more direct and handy de-
sign tool can be made by adopting some simplified, 
though reasonable, assumptions, as reported in the 
following. 

It is assumed that the microstructure of each 
layer is constituted by the same material, character-
ized by Young’s modulus

 
E0, Poisson’s ratio ν0, and 

density s0. 
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The inner and external layers are characterized 
by a diverse density of the same isotropic recursive 
arrangement; in other words, the structural connec-
tivity of each layer is provided through the same 
heterogeneous material, but is characterized by a 
different amount of material per unit of volume (i.e., 
different ρi). 

Furthermore, considering the optimal design of 
three layered structures in pure bending (i.e., the 
lightest weight solution), it is possible to assume that 
the greater part of the material is concentrated in the 
external layers and symmetrically distributed, in 
such a way that I01=I03>>I02 and consequently kχ1= 
kχ3>>kχ2, and the volume fractions follow the rela-
tions of  

 

1 3 2 ,n                               (12)
 

 
with the ratio between the volume fraction of the 
outer layers and the middle layer n≥1. 

Finally, it is assumed that no additional load is 
applied on the structure, i.e., qa=0.  

Given the last hypothesis, it is possible to invert 
Eq. (11) and deduce the volume fraction of the lay-
ers in the algebraic form: 
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            (14) 

 
However, it is possible, in a general form to 

compute any additional value of the vertical load qa, 
and obtain from Eq. (11) the volume fraction of the 
layers in a numerical way. 

Therefore, setting a maximum displacement al-
lowable for the plate structure, Eqs. (13) and (14) 
furnish the volume fractions ρi of the inner and outer 
layers able to satisfy the performance requirement 
expressed in terms of vertical displacement  
limitation.  

Eqs. (13) and (14) of ρ1 and ρ2 can be substitut-
ed into Eq. (10), thus providing the weight of the 
structure per unit area as  
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  (15) 

 
Finally, the flexural stiffness of the plate given 

by Eq. (4), and considering Eq. (6), can be estimated 
through the approximate expression:  

 

1 01
1 1 2

0

2 .
1

m k
K c 
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
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                         (16) 

 
The strength of the method lies in the definition 

of the optimum topological distribution of the mate-
rial employed along the section of the plate follow-
ing the objective of maximizing the flexural stiffness. 
To evaluate the effective flexural stiffness Kχ of a 
plate made of three heterogeneous layers, we con-
sider a reference, a section of dimensions b×H of a 
depleted medium made of a material with Young’s 
modulus E0 and characterized by a volume fraction 
of  
 

1 1 2 2

1 2

2
,

(2 )

bh bh

b h h

 






                        (17) 

 

and the value K  of the flexural stiffness of the sec-

tion follows the relation:  
 

3
0

2
0

.
1 12

m E bH
K c 





                      (18) 

 
In such a way, the ratio 
 

K

K





                                  (19) 

 
accounts for the gain of the overall stiffness of the 
layered plate for that amount of material. 
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For such a microstructure it is possible now to 
investigate the dependence of the ratio ηχ on the de-
sign parameters. Fig. 3 highlights the meaning of ηχ, 
based on Eqs. (16) and (18), in relation to the pa-
rameters h1/H and n=ρ1/ρ2; note that in the calcula-
tion it is assumed c=c1 and m=m1 to pass over the 
dependence on ρ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the other hand, starting from a prescribed 
value of the flexural stiffness, the proposed approach 
can also be adopted to find the optimum topological 
distribution of the material employed along the sec-
tion of the plate with the objective of minimizing the 
amount of material required. 

Let K  be the flexural stiffness of a homoge-

neous section as presented in Eq. (18) and 
 

1 2(2 )b h h                             (20) 

 
be the amount of material used per unit length of the 
plate. Then it is possible to design an heterogeneous 
section made of three layers with volume fraction 
ρ1=nρ2=ρ3 and a total amount of material 
 

1 1 2(2 / ),b h h n                           (21) 

 
characterized by a flexural stiffness Kχ, see Eq. (16), 
that respects the position: 
 

.K K                                  (22) 

Finally, the ratio 
 





                                   (23) 

 
expresses the reduction of the amount of material 
required. 

Fig. 4 highlights the meaning of ηΩ, based on 
Eqs. (20) and (21), in relation of the parameters h1/H 
and n=ρ1/ρ2; note that in the calculation it is as-
sumed c=c1 and m=m1 in order to pass over the de-
pendence on ρ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Microstructure of depleted layers 
 
In the present framework the elastic properties 

of each layer are associated to the flexural stiffness; 
through the homogenization procedure already in-
troduced, it is thus possible to correlate ρi to the me-
chanical response of that kind of microstructure. In 
fact the volume fraction can be adopted as a scalar 
measure of the elastic behaviour of the media. 
Moreover, the periodic spatial pattern of the micro-
structure, as well as the stress distribution in each of 
the layers, allows the definition of a specific material 
unit that is able to report the mechanical response 
associated to the type of connectivity of that kind of 
structure: the RVE. The RVE approach has been 
widely used to account for several mechanical be-
haviours of a recursive medium, such as static 

Fig. 3  Gain of the overall stiffness of the layered plate in
relation to the thickness of the layers. The maximum val-
ue for each value of the ratio n is highlighted (gray line) 
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strength, fatigue, and non-linear behaviour (Hill, 
1963; Hild et al., 1996; Nemat-Nasser and Hori, 
1999). In this study it is adopted to deduce the linear 
elastic response of the structure. Compared with tra-
ditional design methods, the homogenization method 
based on the definition of the RVE of a recursive 
structure furnishes the analytical solution to the 
problem of the mechanical response of complex 
and wide structures giving the optimal configura-
tion with respect to any specific application. Thus, 
we first investigate the specific RVE model for var-
iable volume fraction in such a way as to provide 
insights on the global response of each single layer 
to use in the optimal design of multilayered plate 
structures. 

From a homogenization approach it is actually 
possible to deduce the stiffness K of the plate section, 
Eq. (3), through the mechanical properties of the 
single unit elements. Furthermore, the flexural stiff-
ness kχi of each layer can be easily determined 
through the flexural stiffness of the relative RVE, 
which is identified by a measure of its volume frac-
tion ρi in the form of the penalization power law, i.e., 
Eq. (6). 

To understand the effect of different orders of 
connectivity on the mechanical response of depleted 
media, two different types of recursive microstruc-
ture are here considered: 

1. A porous solid structure with cubic depleting 
voids, with the recursive unit reported in Fig. 5. 

2. A truss structure, with the recursive unit re-
ported in Fig. 6.  

In the following, the two microstructures are 
analyzed through the FEM and the specific form of 
the penalization law Eq. (6) is derived, i.e., the coef-
ficients ci and mi are evaluated. 

5.1  Porous solid structure 

A specific morphology of a solid porous RVE 
is here considered and analyzed through the FEM, to 
evaluate how the presence of a recursive arrange-
ment of voids and the geometrical parameters char-
acterizing the voids affect the overall mechanical 
response.  

The specific morphology of a solid porous RVE 
is depicted in Fig. 5: it has a cubic shape of dimen-
sion   (spatial period of the recursive microstructure) 

and is occupied by a solid isotropic matrix (with 
Young’s modulus E0 and Poisson’s ratio ν0) depleted 
by a cubic cavity of dimension d. The depleting void 
is positioned at the RVE centre.  

Several solid porous RVEs of this type have 
been realized with different volume fraction values, 
with the aim of finding the correlation between the 
flexural stiffness penalization of the medium and its 
level of geometrical depletion.  

For this purpose, bending tests on the RVEs 
have been performed using the FEM, and varying 
the volume fraction. As the point of the bending tests 
is to investigate the flexural response of the structure, 
represented by the RVE, within the bended plate, the 
distance of the mass centre of the RVE from the neu-
tral axis will change in such a way to account for the 
different positions that the depleted layers take along 
the plate cross section. The setting of the boundary 
conditions is shown in Fig. 5: with reference to the 
o-xyz coordinate system, the RVE has been forced to 
assume the deformed configuration related to a pure 
bending with the neutral axis parallel to the x direc-
tion, the mass centre of the RVE being at distance yI 
from the neutral axis, through a prescribed dis-
placement w applied on all nodes of the model that 
lie at 2z     assigned in the following form: 

 
3

node I2( ) 10 ,w y y                         (24) 

 
where ynode is the y coordinate of the node in the ref-
erence system. The curvature associated with the 
configuration can be thus deduced through a first-
order approximation as 
 

32 10
.

/ 2






                             (25) 

 
Finally, the finite element (FE) procedure al-

lows the calculation of the reaction solution Rnode in 
each node, hence the value M of the related moment 
as  

 

node node I
node

( ),M y y  R                    (26) 

 
and the flexural stiffness consequently being given by 
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/ .k M                               (27) 

 
The normalized flexural stiffness, kχ/k0χ, has 

been computed as the response parameter, with k0χ 
the flexural stiffness of the RVE with ρi→1, equal to: 

 
4

2 2
0 0 0 0 I .

12
k E I E y

 
   

 

                  (28) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note that the normalized flexural stiffness is a 
function of the volume fraction and of the distance 
of the neutral axis from the mass centre of the RVE, 
i.e., kχ/k0χ=fχ(ρ, yI); for this reason, the bending tests 
have been performed for different values of yI, with 

I0 / 10.y   

Fig. 7 shows the results of the parametric nu-
merical analysis, reporting the value of the ratio 
kχ/k0χ obtained for each value of ρ. The grey dashed 
curves represent the third polynomial regression 
functions of ρ that best fit the numerical values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The curves show that starting from a value 

I / 1y   the term that takes into account the distance 

of the neutral axis from the mass centre becomes the 
most relevant part of the inertia calculation, and the 
gradient of stress in the media drops sufficiently to 
allow the consideration of the RVE as subject to a 
simple axial load to a good approximation. 

For the specific mechanical problem examined 
in this study (multilayered plate with recursive struc-
ture), the above observation suggests analysis of the 
results referring to two main conditions, i.e., 

I / 0y   and I / 1.y   

The first case ( I / 0y  ) represents the middle 

layer of the plate, since the stiffness can be entirely 
related to the inertia of the section. Conversely in the 
second case ( I / 1y  ) the inertia of the section is 

negligible compared to the term 2 2
Iy , thus, it repre-

sents the external layers of the plate. 
For the two cases, the power functions of ρ that 

best fit the numerical values can be written as: 

Fig. 7  Normalized flexural stiffness as a function of the 
volume fraction ρ and of the distance of the neutral axis 
from the centre of mass of the RVE 
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Fig. 5  Porous solid structure with cubic depleting voids, 
setting of the boundary conditions, and finite element
(FE) model 

Fig. 6  Truss structure, setting of the boundary conditions,
and FE model 
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case I / 0,y   

0I
0 0 0

0

, 0 , 1, 0.71289;mk y
f c c m

k





       
 

 (29) 
 

case I / 1,y   

I

0

, 1 , 1, 1.42928.mk y
f c c m

k





       
 

 

(30) 
 

The above functions are defined for the specific 
microstructure herein considered, i.e., a solid iso-
tropic matrix depleted by a cubic cavity. Varying the 
void shape produces a unique influence on the dis-
tribution of stress in the matrix and on the overall 
stiffness. As an example, in the case of spherical 
voids, the stiffness penalization laws are: 
 
case I / 0,y    

0I
0 0 0

0

, 0 , 1, 1.0846;mk y
f c c m

k





       
 

  

(31) 
 

case I / 1,y 
 

I

0

, 1 , 1, 1.63226.mk y
f c c m

k





       
 

  

(32) 
 

5.2  Truss structure 

The connectivity related to a spatial arrange-
ment of beams is analyzed by the FEM to evaluate 
how the geometrical properties of the beam section 
affect the overall mechanical response in terms of 
flexural stiffness. 

The representative volume has a cubic shape of 
dimension .  In particular, the RVE is occupied by 
24 beams connected at their ends, with connections 
arranged to lie on a spherical surface of radius 

/ 2,  as shown in Fig. 6. The linear length of all 

24 beams that form the RVE is defined as λ. The 
beam material is isotropic with Young’s modulus E0 
and Poisson’s ratio ν0, and the beam cross section is 
a hollow circle, with inner radius ri and outer radius 
ro.  

Since the RVE volume fraction ρ depends on 
the beam cross sectional area, in the following we 
refer to the equivalent area radius rae, defined as 
 

2 2
ae o i ,r r r                            (33) 

 
and to the equivalent inertia radius rie, defined as 
 

4 44
ie o i .r r r                             (34) 

 
To compute the dependence of the mechanical 

properties penalization on the geometrical properties 
of the beam section, several RVEs are realized with 
different values of the volume fraction ρ, i.e., differ-
ent values of rae and different values of rie. For the 
specific purpose of the following analyses, a sensi-
tivity parameter is introduced: the ratio between rae 
and rie, rr=rae/rie. Note that rr=1 in the case of a solid 
circular section, while rr<1 in the case of a hollow 
circular section.  

Bending tests have been performed using the 
FEM (refer to Eq. (24) and Fig. 6 for the specific 
boundary conditions), assuming the relative normal-
ized flexural stiffness kχ/k0χ as the response parame-
ter (refer to Eqs. (25)–(28)). The results show that 
the normalized flexural stiffness is not only a func-
tion of the volume fraction and the ratio rr, but also 
depends on the distance of the neutral axis from the 
RVE mass centre, i.e., kχ/k0χ=fχ(ρ, rr, yI). The bend-
ing tests are performed for different values of yI, 

with I0 / 10.y   

The FE results are highlighted in Figs. 8 and 9, 
which show the relation between the normalized 
flexural stiffness kχ/k0χ and the volume fraction ρ. 
This, in turn, is directly related to rae. In particular, 
from Fig. 8 it is possible to evaluate the sensitivity 
of the results for yI, in the case rr=0.5, while Fig. 9 
shows (in the case of I / 0y  ) the sensitivity of the 

results for the ratio rr, which, once defined ρ, is di-
rectly related to rie. 

The grey dashed curves (Figs. 8 and 9) show the 
third polynomial regression functions of ρ that best 
fit the numerical values. Similar to the previous case, 
it is worth noting that, starting from the values of 

I / 1y   the term that takes into account the distance 
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of the neutral axis from the mass centre becomes the 
most relevant part of the inertia calculation, and the 
gradient of stress in the media drops sufficiently to 
make it possible, to a good approximation, to con-
sider the RVE as subject to a simple axial load. 

Then the power functions of ρ that best fit the 
numerical values can be written as: 

 
case I / 0,y   

I

0

, rr, 0 ,

2.40765 1.91875rr, 1.33006 0.507134rr,

mk y
f c

k

c m






     
 

   

  

(35) 
 

case I / 1,y 
 

I

0

, rr, 1 ,

=2.01178 1.91875rr, =1.33388 0.507134rr.

mk y
f c

k

c m






     
 

 



 

 

(36) 
 
The above functions are defined for the specific 

microstructure considered, i.e., the spatial arrange-
ment of beams shown in Fig. 6, which reacts to the 
load through a unique distribution of stress, and cor-
responds, in general, to a specific overall stiffness. 

 
 

6  Design applications 
 
In the following, the design procedure provided 

in Section 4 is applied to a three-layer plate of de-
pleted material, characterized by the different cases 
of connectivity already presented; two design exam-
ples are developed, namely a plate realized through a 
porous solid structure, and a plate with a truss struc-
ture. Then, the design procedure is tested by as-
sessing the linear mechanical response of detailed 
FE models of the plates. Then, to present a practical 
application, an example of a long-span structure sub-
ject to self-weight is proposed. A structure subject to 
its self-weight and an additional vertical load can be 
designed via the same procedure. The steps followed 
in the design procedure are: (i) setting the global 
plate geometric parameters, i.e., the plate dimension 
a, the layer thickness hi, and the ratio n between the  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

inner and the outer layer volume fractions, as well as 
the matrix material properties, i.e., E0 and ν0; (ii) 
setting the vertical load condition, q=qw, and the 
relevant structural performance requirement, defined 
in terms of maximum vertical displacement δmax un-
der the applied load q; (iii) defining the local con-
nectivity of the single layer of depleted material, 
through the parameters ci and mi; (iv) computing the 
layer volume fractions ρi able to satisfy the vertical 
displacement condition (from Eqs. (13) and (14), or, 
more generally, by inverting Eq. (11) and through 
the relation Eq. (12)).  

In other words, the procedure defines the level 
of depletion that furnishes the global flexural stiff-
ness able to support the vertical distributed load qw, 
Eq. (10), without exceeding a maximum vertical 
deflection δmax. It is worth noting that, because of the 

Fig. 8  Normalized flexural stiffness as a function of the 
volume fraction and of the distance of the neutral axis 
from the centre of mass of the RVE 
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linearity of the method, the vertical displacement 
δmax is directly related to the inverse of the ratio E0/s0, 
as the analytical expression Eq. (11), by means of 
the relation Eq. (4), highlights.  

In the former case (plate with a porous solid 
structure), 3D, eight-node, and brick elements are 
used in the FE model, while in the latter case (plate 
with a truss structure) 1D beam elements are used. 
Fig. 10 shows the porous solid structure and Fig. 11 
shows the truss structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each multilayered plate has a basic unit that is 

repetitive in the long direction (perpendicular to the 
cross-section in Fig. 2). The vertical load is assumed 
to be independent of the coordinate in the long direc-
tion, and therefore, it is possible to consider just one 
3D unit of the structure that repeats periodically 
along its length. The recursive unit is simply sup-
ported at the edge, and symmetry boundary condi-
tions are applied at the sides.  

6.1  Sandwich plate with solid structure 

The design example refers to a square plate, 
with dimension 90 m×90 m and the total thickness H 
=2.5 m; upper and lower thicknesses are h1=h3= 
0.5 m, and the middle layer thickness is h2=1.5 m. 
The solid matrix is made of a material with ratio 
between Young’s modulus and density of E0/s0= 
2.6×106 (m/s)2 and Poisson’s ratio ν0=0.3. The ratio 
between the volume fractions of the inner and the 
outer layer is n=10; no vertical load is applied in 
addition to the plate self-weight, and the allowed 
vertical displacement is δmax=(90/500) m=0.18 m. 

Combining Eq. (30) with Eqs. (13) and (14), it 
is possible to determine the optimal values of ρi 
which gives the design value of the vertical dis-
placement (δmax); the following values of the volume 
fraction were obtained: ρ1=ρ3=0.187 498 0 and ρ2= 
0.018 749 8; the dimension of the cubic voids in the 
three layers, i.e., the main design parameters, corre-
sponding to such values of ρi are obtained from the 
expression of 

 
3 1 ,i i id h                               (37) 

 
which provides that d1=d3=0.466 564 m and d2= 
1.490 570 m. 

The FE results of the model of the porous plate 
are reported in Fig. 12, with a sketch of the inner 
microstructure shown in detail at the upper right 
corner. It is clearly shown that the prescribed dis-
placement δmax is in good agreement with the maxi-

mum vertical displacement FE
max 0.1901 m   such 

that: 
 

FE
max max

FE
max

100% 5.31285%.
 




               (38) 

 

6.2  Sandwich plate with truss structure 

As in the previous design example, the square 
plate has dimension 90 m×90 m and the total thick-
ness H=2.5 m, with thickness values for the external 
layers h1=h3=0.5 m, and for the middle layer h2= 
1.5 m. The ratio of Young’s modulus to density of 
the solid matrix material is still E0/s0=2.6×106 (m/s)2, 

Fig. 10  Three-layer plate of depleted material (plate with 
porous solid structure) 

Fig. 11  Three-layer plate of depleted material (plate with
truss structure) 
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and Poisson’s ratio ν0=0.3; the ratio between the vol-
ume fractions is equal to the previous design example, 
i.e., n=10; the allowed vertical displacement under 
vertical load deriving from the self-weight is δmax= 
(90/500) m=0.18 m. The total length of the beams in 
each recursive element is set as λ1=λ3=5.226 m and 
λ2=15.679 m; the ratio rr between the equivalent area 
and inertia radii has been assumed the same in the 
three layers, i.e., rr1=rr2=rr3=0.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Combining Eq. (36) with Eqs. (13) and (14), it 

is possible to determine the optimal values of ρi 
which give the design value of the vertical displace-
ment (δmax); the following values of the volume frac-
tion were obtained: ρ1=ρ3=0.143 929 0 and ρ2= 
0.014 392 9; the equivalent area radii raei of the beam 
circular hollow sections in the three layers, corre-
sponding to such values of ρi, are obtained from the 
expression of 

 

ae .
π

i i

i
i

h
r




                              (39) 

 
Then, having fixed the ratio rr=rae/rie, the 

equivalent inertia radii rie can be calculated from the 
values of rae and rr; finally through the inverse of 
Eqs. (33) and (34) it is possible to determine, for 

each single layer, the inner and outer radii of the 
hollow sections, i.e., the main design parameters, 
with the result: ri1=ri3=0.028 102 m, ro1=ro3= 
0.043 422 m, ri2=0.026 660 m, and ro2=0.041 194 m. 

The FE results of the model of the plate truss 
structure are shown in Fig. 13, where a sketch of the 
inner microstructure is shown in detail. Meanwhile, 
in this case, the prescribed displacement δmax is in 
good agreement with the maximum vertical dis-
placement obtained through the FE analysis, 

FE
max 0.8889 m,   resulting in 

 
FE

max max
FE
max

100% 1.25033%.
 




               (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7  Conclusions 
 
In this paper a general design procedure has 

been developed for thin plates made of three layers 
of depleted material subject to vertical distributed 
load. The approach allows the locally definition of 
the optimal amount of material for a specific micro-
structure with the objective of maximizing the over-
all flexural stiffness/weight ratio of the structure. 

To assess the influence of connectivity both a 
porous solid structure and a truss arrangement were 
investigated using the FEM. 

Fig. 13  FE results of the model of the plate with truss
structure, contour of the vertical displacement (unit: m).
It is a sketch of the inner microstructure in the upper
right corner 

Fig. 12  FE results of the model of the plate with porous 
solid structure, contour of the vertical displacement (unit: 
m). It is a sketch of the inner microstructure in the upper
right corner 
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For each kind of microstructure the flexural 
stiffness has been successfully correlated to the level 
of depletion by means of a power law function by 
setting very few parameters. Starting from the local 
response of the media, it has been possible to de-
scribe, to a good approximation, the global flexural 
response of the structure. 

To test the accuracy of the method, each type of 
microstructure has been employed in a case study of 
a squared thin plate made of three layers subject to a 
vertical distributed load: with the aid of the FEM, 
the structure has been modelled in detail by repro-
ducing the geometries at the micro scale. The accu-
rate mechanical response has been calculated and 
compared with the results furnished by the homoge-
nization approach proposed in this paper. The good 
agreement between the analytical and numerical re-
sults for both types of the microstructure, proves that 
the procedure is able to provide, with good reliabil-
ity, the most favorable design of light-weight roof 
structures. 

In more general terms, the method prescribes, 
for a thin plate made of a depleted material, the defi-
nition of a penalization law able to predict the flex-
ural stiffness of the specific microstructure, and then 
it is able to provide a very straightforward procedure 
for the structural optimization. Moreover, the meth-
od based on homogenization theory is suitable for 
every kind of architecture of the microstructure. 
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中文概要 
 

题 目：基于中空单元的夹层平板结构设计方法研究 

目 的：大型的桁架结构或空间刚架结构可以认为是用

中空单元组合而成的宏观结构，在结构初步设

计时，如何设计排布中空基本单元以满足结构

的性能要求是设计的关键。本文旨在探讨夹层

平板结构，在给定竖向变形控制指标后，如何

使用简化的方法快速设计各层中空基本单元的

尺寸和空隙程度。 

创新点：1. 对于水立方这种复杂的空间多面体网格结

构，本文将其理想化为连续的中空介质，利用

微观力学中的均质化分析方法，将结构分解为

多个基本单元（RVE）进行分析，从而推导出

结构性能指标与单元参数之间的关系。2. 对于

大跨度平板结构，本文提出一种基于 RVE 重复

叠加组合的设计方法，并利用有限元法对该方

法进行检验。 
方 法：1. 对夹层平板结构的弯曲特性进行理论分析，

根据 Kirchhoff-Love 理论，得到板弯曲刚度与各

层的截面惯性矩之间的关系；2. 通过理论推导

出结构弯曲刚度（图 3）、材料使用量（图 4）

随层厚度和层密度的变化关系；3. 从基本单元

出发，利用均质化分析方法分别对中空立方体

（图 5）和空间桁架结构（图 6）进行分析，得

到结构抗弯刚度随单元中空程度和距截面中性

轴距离的函数关系（图 7 和 8），进而推导出结

构参数化设计的拟合公式；4. 利用该设计公

式，针对一个 90 m×90 m×2.5 m 的平板结构，

以跨中挠度为跨度的 1/500 为设计指标，分别设

计由两种基本单元组成的夹层平板结构，并将

结构挠度的有限元计算结果与设计指标进行比

较（图 12）。 

结 论：1. 本文提出的利用中空单元组成的夹层平板结

构的设计方法，通过优化设计中空单元的各项

参数，可以在保证性能指标的同时最大化降低

结构质量，得到最优刚度质量比。2. 本设计方

法和有限元法得到的结果之间差异非常小，说

明该设计方法准确可靠。 

关键词：薄板；多层板；中空材料；均质化分析方法；

刚度设计 
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