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linearity of the method, the vertical displacement
Omax 18 directly related to the inverse of the ratio Ey/s,
as the analytical expression Eq. (11), by means of
the relation Eq. (4), highlights.

In the former case (plate with a porous solid
structure), 3D, eight-node, and brick elements are
used in the FE model, while in the latter case (plate
with a truss structure) 1D beam elements are used.
Fig. 10 shows the porous solid structure and Fig. 11
shows the truss structure.

Fig. 10 Three-layer plate of depleted material (plate with
porous solid structure)

Fig. 11 Three-layer plate of depleted material (plate with
truss structure)

Each multilayered plate has a basic unit that is
repetitive in the long direction (perpendicular to the
cross-section in Fig. 2). The vertical load is assumed
to be independent of the coordinate in the long direc-
tion, and therefore, it is possible to consider just one
3D unit of the structure that repeats periodically
along its length. The recursive unit is simply sup-
ported at the edge, and symmetry boundary condi-
tions are applied at the sides.

6.1 Sandwich plate with solid structure

The design example refers to a square plate,
with dimension 90 mx90 m and the total thickness H
=2.5m; upper and lower thicknesses are h;=h;=
0.5 m, and the middle layer thickness is 4,=1.5 m.
The solid matrix is made of a material with ratio
between Young’s modulus and density of Ey/s¢=
2.6x10° (m/s)* and Poisson’s ratio vo=0.3. The ratio
between the volume fractions of the inner and the
outer layer is n=10; no vertical load is applied in
addition to the plate self-weight, and the allowed
vertical displacement is J,x=(90/500) m=0.18 m.

Combining Eq. (30) with Egs. (13) and (14), it
is possible to determine the optimal values of p;
which gives the design value of the vertical dis-
placement (dmax); the following values of the volume
fraction were obtained: p;=p;=0.1874980 and p,=
0.018 749 8; the dimension of the cubic voids in the
three layers, i.e., the main design parameters, corre-
sponding to such values of p; are obtained from the
expression of

d=hil-p,

which provides that di=d;=0.466564 m and d,=
1.490570 m.

The FE results of the model of the porous plate
are reported in Fig. 12, with a sketch of the inner
microstructure shown in detail at the upper right
corner. It is clearly shown that the prescribed dis-
placement dp,y 1S in good agreement with the maxi-

(37

mum vertical displacement &t =0.1901m such
that:

_ SFE
Omax = O 100% = _5.31285%.

FE
6max

(38)

6.2 Sandwich plate with truss structure

As in the previous design example, the square
plate has dimension 90 mx90 m and the total thick-
ness H=2.5 m, with thickness values for the external
layers /#;=h;=0.5 m, and for the middle layer /=
1.5 m. The ratio of Young’s modulus to density of
the solid matrix material is still Ey/so=2.6x10° (m/s)?,
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and Poisson’s ratio vy=0.3; the ratio between the vol-
ume fractions is equal to the previous design example,
i.e., n=10; the allowed vertical displacement under
vertical load deriving from the self-weight is Jpyax=
(90/500) m=0.18 m. The total length of the beams in
each recursive element is set as 4;=4;=5.226 m and
4,=15.679 m; the ratio rr between the equivalent area
and inertia radii has been assumed the same in the
three layers, i.e., rry=rr,=113=0.8.
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Fig. 12 FE results of the model of the plate with porous
solid structure, contour of the vertical displacement (unit:
m). It is a sketch of the inner microstructure in the upper
right corner

Combining Eq. (36) with Egs. (13) and (14), it
is possible to determine the optimal values of p;
which give the design value of the vertical displace-
ment (dmax); the following values of the volume frac-
tion were obtained: p;=p;=0.1439290 and p,=
0.0143929; the equivalent area radii r,; of the beam
circular hollow sections in the three layers, corre-
sponding to such values of p,, are obtained from the
expression of

hp
i =\ 22 (39)

1

Then, having fixed the ratio 1r=ru/ri, the
equivalent inertia radii 7 can be calculated from the
values of r,. and rr; finally through the inverse of
Egs. (33) and (34) it is possible to determine, for

each single layer, the inner and outer radii of the
hollow sections, i.e., the main design parameters,
with the result: 7;;=r3=0.028102 m, 7y 1=ry=
0.043 422 m, r;,=0.026 660 m, and r,,=0.041 194 m.
The FE results of the model of the plate truss
structure are shown in Fig. 13, where a sketch of the
inner microstructure is shown in detail. Meanwhile,
in this case, the prescribed displacement Jy,x is in
good agreement with the maximum vertical dis-
placement obtained through the FE analysis,

Sk =0.8889 m, resulting in

5 _5FE
—max__max o 100% =1.25033%.

FE
max

(40)
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Fig. 13 FE results of the model of the plate with truss
structure, contour of the vertical displacement (unit: m).
It is a sketch of the inner microstructure in the upper
right corner

7 Conclusions

In this paper a general design procedure has
been developed for thin plates made of three layers
of depleted material subject to vertical distributed
load. The approach allows the locally definition of
the optimal amount of material for a specific micro-
structure with the objective of maximizing the over-
all flexural stiffness/weight ratio of the structure.

To assess the influence of connectivity both a
porous solid structure and a truss arrangement were
investigated using the FEM.



Perrella et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2016 17(6):427-442 441

For each kind of microstructure the flexural
stiffness has been successfully correlated to the level
of depletion by means of a power law function by
setting very few parameters. Starting from the local
response of the media, it has been possible to de-
scribe, to a good approximation, the global flexural
response of the structure.

To test the accuracy of the method, each type of
microstructure has been employed in a case study of
a squared thin plate made of three layers subject to a
vertical distributed load: with the aid of the FEM,
the structure has been modelled in detail by repro-
ducing the geometries at the micro scale. The accu-
rate mechanical response has been calculated and
compared with the results furnished by the homoge-
nization approach proposed in this paper. The good
agreement between the analytical and numerical re-
sults for both types of the microstructure, proves that
the procedure is able to provide, with good reliabil-
ity, the most favorable design of light-weight roof
structures.

In more general terms, the method prescribes,
for a thin plate made of a depleted material, the defi-
nition of a penalization law able to predict the flex-
ural stiffness of the specific microstructure, and then
it is able to provide a very straightforward procedure
for the structural optimization. Moreover, the meth-
od based on homogenization theory is suitable for
every kind of architecture of the microstructure.
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