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Abstract:    It is crucial to conduct a study of vehicle ride comfort using a suitable physical model, and a precise and effective 
problem-solving method is necessary to describe possible engineering problems to obtain the best analysis of vehicle vibration 
based on the numerical model. This study establishes different types of vehicle models with different degrees of freedom (DOFs) 
that use different types of numerical methods. It is shown that results calculated using the Hamming and Runge-Kutta methods are 
nearly the same when the system has a small number of DOFs. However, when the number is larger, the Hamming method is more 
stable than other methods. The Hamming method is multi-step, with four orders of precision. The research results show that this 
method can solve the vehicle vibration problem. Orthogonal experiments and multi-objective optimization are introduced to 
analyze and optimize the vibration of the vehicle, and the effects of the parameters on the dynamic characteristics are investigated. 
The solution F1 (vertical acceleration root mean square of the vehicle) reduces by 0.0352 m/s2, which is an improvement of 7.22%, 
and the solution F2 (dynamic load coefficient of the tire) reduces by 0.0225, which is an improvement of 6.82% after optimization. 
The study provides guidance for the analysis of vehicle ride comfort.  
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1  Introduction 

 
With the development of society, cars have 

become an indispensable part of people’s lives. The 
demand for vehicle comfort is increasing, and vehicle 
ride comfort, in particular, has become the focus of 
research into vehicle dynamics. How to reduce the 
vibration from random excitation from the road or 
other vibration sources is a key problem for manu-
facturers and researchers. To achieve better ride 
quality, one of the most useful ways is to establish a 
numerical model to predict the vibration source, and 

an effective method is then derived. However, an 
accurate model is usually difficult to establish and the 
precise method for solving the model is also difficult 
to determine. Despite this, several types of optimiza-
tion methods have been introduced to improve the 
ride comfort of vehicles. Therefore, studying the 
numerical model of vehicle dynamics and its solution 
are very important.  

As a vehicle travels on the road, excitations 
arising from irregularities on the road surface, forces 
of acceleration, the engine itself, and the inertial 
forces on a curved track cause discomfort to the driver 
and influence the vehicle’s maneuverability. Multi-
body system is usually used to analyze the vehicle’s 
handling, and the research can be conducted in terms 
of multi-rigid-body dynamics and flexible multibody 
dynamics. There are many analytical methods for 
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multi-rigid-body dynamics, such as the Newton- 
Euler method, Lagrange method, Kane method, and 
R-W method. Building a multi-degree of freedom 
(DOF) mathematical vehicle model using the  
Newton-Euler formulation and multibody dynamic 
simulation model has been refined to provide a good 
prediction when applied to numerical vehicle models 
for a controlled vibration simulation. With the de-
velopment of computer-aided engineering and virtual 
reality techniques, virtual prototyping software, such 
as ADAMS, has been used extensively to predict 
vehicle behavior and is used by leading manufactur-
ers to shorten product development lead-times and 
meet the challenges of today’s complex design and 
optimization problems. Compared with multi-DOF 
dynamic simulation, the results calculated using so-
phisticated dynamic software packages generate more 
precise responses. However, the multi-DOF model 
can predict, with acceptable accuracy, an engineering 
result with a shorter computational time and mini-
mum complexity. 

Bae et al. (2000) proposed an efficient imple-
mentation algorithm for explicit numerical integration 
methods so that relatively low-cost computers could 
be used for a real-time simulation of multibody vehi-
cle dynamics models. The Newton chord method has 
been used to solve the equations of motion and con-
straints. Hegazy et al. (1999) used ADAMS to estab-
lish a multi-DOF nonlinear multibody dynamic model 
of a vehicle, comprising the front and rear suspension, 
steering system, road wheels, tires, and vehicle iner-
tia. Schmitke et al. (2008) used graph theory and 
symbolic computing to generate efficient models for 
multibody vehicle dynamics. In addition to the 
aforementioned analyses, many researchers have used 
other methods to validate the analysis conducted 
using multi-DOF analysis. Vaddi and Kumar (2014) 
proposed a nonlinear full-vehicle model with 14 
DOFs for the simulation of vehicle ride and handling 
performance. Various handling characteristics ob-
tained from this model were compared with those 
from a full-vehicle multibody dynamics model in 
ADAMS. A vehicle with 10 DOFs incorporating 
nonlinear damper and suspension kinematic profiles 
was mathematically modeled by Yuen et al. (2014). 
The model was then validated against a similar vehi-
cle model in multibody dynamic software and other 

conventional vehicle models by comparing the sim-
ulated results from the handling tests. A 14-DOF 
vehicle dynamic model was validated with a 
multibody simulation by Kadir et al. (2012). A 
nine-DOF vehicle dynamics model that considered 
several steering inputs was also validated by Nasir et 
al. (2012). The authors showed that the simulation 
results were fairly close to the multibody simulation. 

There are many factors that affect the ride 
comfort of a vehicle, and the suspension system can 
be designed with the best combination of parameters 
to provide optimum vibration performance. In the 
multi-DOF vehicle system model, the variables for 
the model design and suspension system evaluation 
are the sprung mass, sprung stiffness, and damping, 
which determine the ride comfort and suspension 
deflection of the vehicle. These parameters indicate 
the limit of the motion of the vehicle body. To expe-
rience real ride comfort within the vehicle design, the 
more powerful the optimization approaches, the bet-
ter the results that will be obtained. Thus, researchers 
have attempted to use various optimization methods 
to optimize the performance criteria of the vehicle 
suspension, such as the single-objective optimization 
algorithm, genetic algorithm (GA), and multi- 
objective GA. Among optimization studies on sus-
pension design, many studies have been performed 
using single-objective optimization, which can be the 
summation of several performance criteria multiplied 
by the appropriate weighting factors (Baumal et al., 
1998; Hegazy et al., 1999). Jamali et al. (2014)  
established a multi-objective optimization model to 
optimize a five-DOF vehicle model that was capable 
of predicting actual suspension performance with 
acceptable results. Tamboli and Joshi (1999) used a 
simple two-DOF half-car model without considering 
any practical constraints to simulate actual random 
road excitations. Their model employed nonlinear 
programming to optimize the suspension parameters. 
Mirzaei and Hassannejad (2007) applied GA opti-
mization to a passive suspension system. This 
method was initially applied to a simple two-DOF 
half-car model and the results were also compared 
with those obtained using nonlinear programming. 
Gündoğdu (2007) used single-objective GA to opti-
mize a four-DOF quarter-car model and suspension 
system to achieve the best ride comfort performance 



Guo and Zhang / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(5):393-412 395

of the vehicle. According to global criterion method 
(Rao, 1996), this single-objective was composed by 
four design objectives to form, such as head accel-
eration, crest factor, suspension deflection, and tire 
deflection.  

In the literature reviewed, many researchers fo-
cused on the multi-DOF model and achieved the 
following: (1) the establishment of a vehicle model 
based on different DOFs; (2) vehicle vibration control 
based on a different algorithm; (3) optimization of the 
vehicle dynamics based on the multi-DOF model; (4) 
a comparison of the characteristics of the multi-DOF 
model and multibody simulation; (5) vibration control 
based on the multi-DOF model; (6) assessment of the 
effect of suspension and tires on vehicle ride comfort. 
Thite et al. (2011) used a four-DOF vehicle model to 
analyze the ride dynamic of heavy vehicles. Ikenaga 
et al. (2000) applied a seven-DOF vehicle model to 
evaluate the dynamic characteristics using an active 
suspension system. Sulaiman et al. (2012) presented a 
model for a seven-DOF full-vehicle that was vali-
dated to study the ride comfort of a heavy vehicle. 
Yuen et al. (2014) used a ten-DOF mathematical 
vehicle model that was coupled with a suspension 
kinematic profile to design the suspension. With the 
development of the model, some special problems 
were considered, such as the standing posture. Gupta 
(2007) established a 15-DOF linear damped lumped- 
parameter vehicle model with the standing posture. 
Nigam and Malik (1987) developed a 15-DOF linear 
undamped lumped-parameter model based on the 
anthropomorphic model, which also considered the 
standing posture. Reddy et al. (2015) used a 15-DOF 
human-seat vibratory model to couple a seven-DOF 
model to study the dynamic response of a human 
driver to vehicle vibrations. 

In addition to the aforementioned analyses, there 
have been many researchers focused on vibration 
control and tire-suspension response analysis. Ekoru 
and Pedro (2013) presented a proportional-integral- 
derivative (PID)-based control method for active 
vehicle suspension systems based on a half-car 
model. To improve the efficiency and capacity use, 
He et al. (2015) conducted an investigation on an 
active-suspension linear quadratic Gaussian control-
ler based on a seven-DOF full-vehicle mode. 
Soleymani et al. (2012) used a full-vehicle model 

with eight DOFs to design front and rear suspensions 
using two separate fuzzy controllers. The road adhe-
sion condition always changes at a relatively low 
frequency, and Campbell (1981) found suspensions 
and tires should possess many attributes for ride 
comfort, durability, and vehicle handling. von 
Chappuis et al. (2013) applied impulsive suspension 
loads to tire and suspension elements to study the 
reactions of jounce bumper-rebound stop and tire 
characteristics. Zong et al. (2011) considered the tire- 
road friction coefficient in the multi-DOF model to 
improve the precision of vehicle state estimation. 

In the literature reviewed, most of the multi- 
DOF vehicle models were simplified. Some models 
ignored the effect of kinematic changes toward the 
tire or used a linear suspension kinematic model with 
a small angle assumption. A small number used a 
parametric model that coupled with kinematic pro-
files to simulate the effect of suspension kinematics.  

To summarize, some types of multi-DOF models 
of a vehicle have been used to analyze the ride 
comfort of the vehicle, and the models are becoming 
increasingly complex. Most researchers have focused 
on the linear model; a small number of researchers 
have focused on the nonlinear model, and they have 
usually neglected the effect on solving methods from 
dynamic simulation and low-amplitude vibration ride 
comfort, such as from vibration transmitted from the 
road.  

To gain an insight into vehicle dynamic charac-
teristics, some types of vehicle dynamic simulation 
models have been established and are presented here, 
such as the quarter-vehicle model, half-vehicle mod-
el, and full-vehicle model. To determine the precise 
effect of the numerical algorithm on solutions, the 
numerical functions are listed and then the dynamic 
problem is also solved using the Hamming method, 
Runge-Kutta method, Newmark method, and finite 
difference method (FDM) using the MATLAB pro-
gram. The relative precision of the methods is then 
discussed. In addition to the aforementioned descrip-
tions, considering that low-amplitude vibration has a 
great effect on ride comfort, the vibration transmitted 
from the road is considered in this study. Thus, two 
criteria are selected for this study for the optimization 
and evaluation of the design of ride comfort, and then 
orthogonal experiments are used to determine the 
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effect of the parameters on the dynamic characteris-
tics and the interaction effect. Then, two aims, such as 
the dynamic load coefficient and vertical acceleration, 
are selected as multi-objective optimization aims to 
analyze and optimize the vehicle’s dynamic behavior. 
The optimized dynamic characteristic is then com-
pared with the original result.  
 
 
2  Vehicle model and road dynamics 

In this section, the road-vehicle coupling dy-
namics model and performance indices, such as ride 
comfort, energy, and road handling, are discussed. 

2.1  Condensation of the degrees of freedom 

The model of vehicle dynamics can be estab-
lished using traditional methods, modal synthesis, or 
nonlinear modeling methods. The traditional model 
was established using Newton’s laws, the Lagrange 
equation, and D'Alembert’s principle to derive dif-
ferential equations. A quarter-vehicle model is shown 
in Fig. 1. The dynamic equations for the dynamic 
simulation model can be expressed as follows:  
 

1 1 t 1 s 1 2 s 1 2

2 2 s 1 2 s 1 2

= ( ) ( ) ( ),

= ( ) ( ),

         
       

m z K q z K z z C z z

m z K z z C z z

  
        (1) 

 
where m2 represents the sprung mass, m1 represents 
the unsprung mass, Ks and Cs are the stiffness and 
damping of the suspension, respectively, Kt is the tire 
stiffness, z′2 and z′1 are the displacements of the 
sprung and unsprung masses, respectively, and q is 
the road displacement input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Half-vehicle model 

When a vehicle runs on the road, the excitation 
of the rear and front tires is different owing to the 
excitation delay. The half-vehicle model with four 
DOFs is shown in Fig. 2. In this paper, the structure of 
the vehicle body is presented with respect to the cen-
tral axis perpendicular to the vehicle’s plane of 
symmetry, where Mwf is the unsprung mass on the 
front tire, Mwr is the unsprung mass on the rear tire, 
and Mbh is the mass of the body.  

According to Fig. 2, the dynamic equations of 
the half-vehicle motion model can be written as  
follows:  
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where z1 and z2 are the vertical displacements of the 
unsprung and sprung masses at the front axis, z3 and z4 
are the vertical displacements of the unsprung and 
sprung masses at the rear axis and rear tires, and qt 
and qtt are the input displacements at the front and rear 
tires, respectively. φ is the roll angle of the body, a is 
the distance from the front axis to the center of mass, 
b is the distance from the rear axis to the center of 
mass, Jb is the moment of inertia of the body around 
the lateral axis, Ktf is the vertical stiffness of the front 
tire, Ktr is the vertical stiffness of the rear tire, Ksf is 
the stiffness of the front suspension, Ksr is the stiffness 
of the rear suspension, Csf is the damping of the front 
suspension, and Csr is the damping of the rear  
suspension. 

2.3  Full-vehicle model 

In this study, a seven-DOF vehicle model is es-
tablished to analyze the dynamic motion of a vehicle. Fig. 1  A quarter-vehicle model 

Ks 



Guo and Zhang / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(5):393-412 397

This model consists of a sprung mass free to bounce, 
pitch, and roll, connected to four unsprung masses 
free to bounce vertically with respect to the sprung 
mass. The sprung mass has three DOFs representing 
the body bounce, pitch, and roll movement. The un-
sprung masses of the vehicle model have four DOFs, 
due to the vertical motions. Fig. 3 shows a seven-DOF 
full-vehicle model. 

Much work based on the multi-DOF model has 
been conducted. However, the fundamental questions 
are still not clear. A detailed seven-DOF model can be 
established and its function written as follows:  
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where Ip is the pitching moment of inertia, Ir is the roll 
moment of inertia, θb is the pitch angle of the body, φ 
is the roll angle of the body, mwA is the unsprung mass 
at the left front tire, mwB is the unsprung mass at the 
right front tire, mwC is the unsprung mass at the left 
rear tire, mwD is the unsprung mass at the right rear 
tire, KsA is the stiffness of the suspension at the left 
front tire, KsB is the stiffness of the suspension at the 
right front tire, KsC is the stiffness of the suspension at 
the left rear tire, KsD is the stiffness of the suspension 
at the right rear tire, CsA is the damping of the sus-

pension at the left front tire, CsB is the damping of the 
suspension at the right front tire, CsC is the damping of 
the suspension at the left rear tire, CsD is the damping 
of the suspension at the right rear tire, KtA is the 
stiffness of the left front tire, KtB is the stiffness of the 
right front tire, KtC is the stiffness of the left rear tire, 
KtD is the stiffness of the right rear tire, L is the dis-
tance between the shafts, Bf represents the distance 
between the front wheel and mass center, Br repre-
sents the distance between the rear wheel and mass 
center, zb is the vertical displacement of the center of 
mass, zbA is the vertical displacement of the body 
endpoint at the left front tire, zbB is the vertical dis-
placement of the body endpoint at the right front tire, 
zbC is the vertical displacement of the body endpoint 
at the left rear tire, zbD is the vertical displacement of 
the body endpoint at the right rear tire, zgA is the ver-
tical displacement of the left front tire, zgB is the ver-
tical displacement of the right front tire, zgC is the 
vertical displacement of the left rear tire, zgD is the 
vertical displacement of the right rear tire, and mb is 
the sprung mass of the body. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  A seven-DOF full-vehicle model 

Fig. 2  A four-DOF half-vehicle model 
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3  Road roughness model 
 

Road excitation varies randomly over a wide 
range. A rough road can be typically represented by a 
stationary Gaussian stochastic process of a given 
displacement power spectral density (PSD) in 
m2/(m1). To simulate the vehicle suspension system 
with road excitation, a road profile is defined as the 
cross-sectional shape of the road surface under the 
given conditions, which can be written as statistical 
procedures (Taghirad and Esmailzadeh, 1998; Zuo 
and Nayfeh, 2003). The relationships between the 
spatial frequency n and PSD function Gq(n) can be 
approximated by two straight lines on a log-log scale, 
and expressed as  

 

   q q 0
0

, 0,

W
n

G n G n n
n


 

  
 

              (4) 

 
where n0 is the reference spatial frequency, and the 
value of W is 2.0. 

Mesh the region (n1, n2) into m sections using the 
PSD at the central frequency nmid_i to represent the 
PSD over the entire region. The PSD at the ith section 
can be expressed as follows: 

 

1 q mid_( )Δ , 1, 2, , ,i iq S n n i m                 (5) 

 
where Δni=(n2n1)/(m+1) is the interval frequency in 
this section.  

For every small section, the standard deviation 

for every frequency nmid_i is q mid_2 ( )Δi iG n n  and its 

sine wave function can be expressed as  
 

q mid_ mid_2 ( )Δ sin(2π ).i i i iq G n n n x             (6) 

 
Overlaying the sine wave function in each sec-

tion simultaneously, the frequency domain of the 
random pavement displacement can be expressed as  
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1

( ) 2 ( )Δ sin(2π ),
n

i i i i
i

q x G n n n x 

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where x is the displacement along longitudinal direc-
tion, and θ is the random value in the region of (0, 2π). 

The signal in Eq. (7) is in frequency domain, 
which needed to be transformed to the time domain. 

The frequency domain pavement random with the 
time input form can be expressed as  

 

q mid_ mid_
1

( ) 2 ( )Δ sin(2π ),
n

i i i i
i

q t G f f f t 


        (8) 

 

where f ′=u·n, the center frequency in the ith region 
f ′mid_i=u·nmid_i, x/u=t, and u is the vehicle velocity.  

The dynamics of the vehicle are always sensitive 
to road roughness. Road roughness is very important 
in vehicle design, so it has been studied for a long 
time. It can be described by wheel track elevation 
profiles. Recently, the effects of the road profile on 
the ride comfort of a vehicle have been widely stud-
ied. Road profiles must be described in a statistical 
way because of their random profile. The Interna-
tional Standardization Organization (ISO) proposed a 
method that classifies road roughness using power 
spectral density functions. Table 1 shows the power 
spectral density of road roughness log scale plots 
proposed by the ISO, which are in eight classes (from 
A to H). They are approximated using two straight 
lines. Class H indicates the roughest road profile, 
whereas class A indicates the smoothest road profile. 
Through numerous measurements, the ISO suggested 
a road classification scheme based on the degree of 
road roughness S0 (Zuo and Zhang, 2013) (Table 1). 

For the simulation of a vehicle undergoing ran-
dom road excitation, road roughness expressed in the 
time domain with class B is shown in Fig. 4. This is 
also the load excitation in the analysis below. Addi-
tionally, excitation can also be expressed in the fre-
quency domain, and it needs to be transformed into 
the distance domain using an inverse Fourier trans-
form. Fig. 5 presents three classes of road profiles 
(classes B, C, and D), which are expressed in the 
distance domain.  

 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Parameters for different classes of road 

Road class 
S0 range  

(×10−6 m2/(cycle/m)) 
S0 mean  

(×10−6 m2/(cycle/m))
A (very good) <8 4 

B (good) 8–32 16 

C (average) 32–128 64 

D (poor) 128–512 256 

E (very poor) 512–2048 1024 

F 2048–8192 4096 

G 8192–32 768 16 384 

H >32 768  
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4  Method for solving the dynamic simulation 
 

There are many methods for solving the dynamic 
simulation of a vehicle. In this study, different types 
of numerical methods are introduced to solve the 
multi-DOF vehicle model. The typical numerical 
methods for solving linear dynamic equations are the 
Newmark method, FDM, finite element method, 
Wilson method, and Runge-Kutta method. 

The dynamic equation for the mass matrix can be 
expressed as  

2

2

d d
,

d d
  

t t

z z
M C Kz f                     (9) 

 
where z=(z1, z2, …, zn), M is the mass matrix com-
posed of different vehicle parts, C is the damping 
matrix composed of different vehicle parts, K is the 
stiffness matrix composed of different vehicle parts, 
and f is the excitation force. 

4.1  Finite difference method 

There are two ways for second-order linear or-
dinary differential equations to be discretized into 
finite difference equation. One is to use the difference 
instead of the derivative; the other is to use the inte-
gral interpolation method. The highest order deriva-
tive in equation is reduced to one order, so the re-
quirement for z smoothness is weakened. Assume that 
the calculation regarding the dynamics is in the region 
of [a′, b′], then the integration of Eq. (9) over the 
interval [x′, x″] can be written as  
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Meshing the region [a′, b′] into N parts, every 

node can be expressed as t=a′+ih (0≤i≤N, and h is the 
step), and the finite difference equation in the mesh 
region with respect to time ti1/2 and ti+1/2 about x′ and 
x″ can be written as  
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The integral terms in Eq. (11) can be represented 

by rectangular formulas, and they can be written as  
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Submitting Eq. (12) into Eq. (11) and neglecting 

the error part O(h3), and using zi to represent [z]i, 

Fig. 5  Excitation PSD of the vehicle 

Fig. 4  Road excitation of the front (a) and rear (b) tires
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Eq. (11) can be rewritten as  
 

1 1 1 12
.

2
     

  i i i i i
i ih h

h

z z z z z
M C Kz f     (13) 

 

4.2  Revised Hamming method 

For initial value of the differential problems: 
 

0
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                  (14) 

 
When the numerical solution is carried out, be-

cause y0, y1, …, yn have been obtained, the calculation 
formula can be constructed using this information. It 
can also reduce the amount of calculation, and obtain 
the higher accuracy. The general expression can be 
written as  

 

1
0 1

.   
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Eq. (15) can be expanded based on Taylor’s 

theorem, so the fourth-order and four-step explicit 
function can be written as  
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The local truncation error for Eq. (13) can be 

written as  
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Another Hamming method with a fourth-order 

and three-step explicit function can be written as  
 

1 2 1 1

1 3
(9 ) ( 2 ),

8 8n n n n n n

h
y y y f f f             (18) 

 
where the local truncation error for Eq. (18) is 

5 (5) 6
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Eq. (16) and Eq. (18) are combined to obtain the 
prediction-correction formula: 

1 3 1 2

1 2 1 1 1

4
(2 2 ),

3
1 3

(9 ) [ ( , ) 2 ].
8 8

p
n n n n n

p
n n n n n n n

h
y y f f f

h
y y y f x y f f

   

    

    

     


    (19) 

 
 

5  Design of experiments 
 

The design of experiments (DOE) is important 
as a formal way to maximize information gained 
while minimizing required resources, especially for 
the orthogonal experiment. It can identify the main 
effects of every input variable on global aim re-
sponses when optimizing vehicle dynamic behavior. 
In this paper, six input variables with three levels are 
used, as shown in Table 2. Some outputs are selected 
to evaluate lubrication performance, such as dynamic 
acceleration and the dynamic load coefficient (He et 
al., 2015). 

Six input parameters with three levels for each 
parameter imply a set of 36 runs for the entire ex-
periment with one change at a time. Every experiment 
to perform the simulation requires at least 5 h. Thus, 
5×37 min is required to achieve the goal. To overcome 
this problem, the orthogonal experiment, which con-
sists of one component with three levels, is intro-
duced. The DOE L(37) is described as a 64 design of 
resolution. This means that an overall number of n=6 
factors is studied, which only requires at least 
320 min. However, the variables’ interaction is ne-
glected in the experiment. In future work, an exper-
iment considering the variables’ interaction will also 
be designed. 

 
 

6  Multi-objective optimization theory 
 
There are several objective functions in the lit-

erature for optimizing the ride comfort of a vehicle. A 
single-objective optimizer is always used to solve the 
ride comfort problem to obtain one optimum solution. 
However, it is always difficult to obtain the desired 
result using this optimization technique, so the multi- 
objective approach is used to optimize the ride com-
fort of the vehicle. There are two multi-objective 
optimization approaches to optimize the ride comfort 
of a vehicle: the weighted-sum approach and Pareto- 
based approaches. The weighted-sum approach is a 
classical multi-objective optimization approach in  
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which all the objectives are weighted and added to-
gether to form a single objective. However, it is al-
ways difficult to define the weighted coefficient using 
this method. In this paper, root mean square (RMS) 
acceleration with human vibration-sensitivity and the 
response force to tire are selected as the aims to op-
timize. Thus, a multi-objective optimization problem 
with a number of minimized or maximized functions 
can be solved. By applying the non-dominated sorting 
genetic algorithm (NSGA)-II to the above problem, a 
set of optimal solutions (a Pareto front) is obtained for 
the suspension system design. In the following, the 
multi-objective optimization problem (MOOP) is 
stated in its general form of  
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       (20) 

 
where x=[x1, x2, …, xn], and gi(x) and hk(x) are  
the equality and inequality constraint functions,  
respectively.  

NSGA was first proposed by Srinivas and Deb 
(1994). However, there are many defects in this op-
timization, such as: (1) the number of non-domination 
sorting algorithm calculations is too high, in particu-
lar, when the size of the population increases, the 
number of calculations increases rapidly; (2) no elitist 
preservation method; (3) need to set sharing parame-
ters σ. Later, the researchers changed the algorithm, 
and it is developed NSGA-II. The algorithm uses the 
crowding and crowding comparison operators to re-
tain the best individual among the parents to go into 
the next generation to ensure the algorithm obtains the 
best solution. Non-dominated sorting is performed for  

 
 
 
 
 
 
 
 
 
 
 

every generation of the parent and offspring. The 
detailed process of NSGA-II is explained as follows: 

1. In this study, the decision variables are the 
width of bearing, radius of the journal, and viscosity 
of the oil film. The method uses a random number 
generator to produce n populations of individuals, 
where each individual within the population repre-
sents a possible solution, and population initialization 
is the basis for subsequent operations.  

2. Individual numerical information in the group 
is read into a MATLAB program, and its fitness 
values are calculated through their objective function. 

3. When fast non-dominated sorting is per-
formed, there is a ni and a pi corresponding at each 
individual set after different individuals compared 
with each other. ni and pi are generated by the indi-
vidual of the non-dominated sequence rank i. Thus, 
fast non-dominated sorting is completed. The calcu-
lation of the individual crowding corresponds to each 
non-dominated set. 

4. Given crossover probability Pc, all individuals 
will be paired off. Let P1 and P2 be the parent indi-
viduals, C1 and C2 the child self, and V the string 
length. Quantity V of random number Ri is produced 
in the region [0, 1] before crossing, where 1≤i≤V. 
Parent individuals that satisfy Ri<Pc perform the gene 
exchange, and new individuals are produced. 

5. The offspring and parents mix together after 
genetic manipulation. Repeat steps 2 and 3 and then 
select half the population according to non-dominated 
sorting. This can take the best individual parent into 
the next generation. The population level can be 
rapidly promoted. 

As mentioned previously, two criteria were se-
lected for this study for optimization and evaluation 
of the design of ride comfort. Additionally, some 
parameters from the suspension system were consid-
ered as design variables, including the suspension 

Table 2  Orthogonal experiment 

Influence  
factor No. 

Variable Variable meaning 
Value 

Level 1 Level 2 Level 3 

A KsA (N/m) Stiffness of front suspension 15 300 17 000 18 700 

B KsC (N/m) Stiffness of rear suspension 19 800 22 000 24 200 

C CsA (N·s/m) Damping of front suspension 1350 1500 1650 

D CsC (N·s/m) Damping of rear suspension 1350 1500 1650 

E Kt (N/m) Stiffness of tire  172 800 192 000 211 200 

F a (m) Distance from mass center to front axis 1.125 1.25 1.375 

G b (m) Distance from mass center to rear axis 1.359 1.51 1.661 
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spring stiffness and hydraulic damper coefficient of 
four tires. The indices for the problem are then de-
fined as 
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where Fdi and Gi are respectively the dynamic load 
and static load that the tire acts on the ground 
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is the distance between the body endpoint at the left 
front tire and the mass center, b′r is the distance be-
tween the body endpoint at the right front tire and the 
mass center, bl is the body endpoint at the left rear tire 
and the mass center, br is the body endpoint at the 
right rear tire and the mass center). In this study, 
b′l=b′r=Bf, bl=br=Br. F1 is the vertical acceleration root 
mean square of the vehicle, and F2 is the dynamic 
load coefficient of the tire. 

The excitation forces of the four tires are com-
posed of Eq. (22) and they can be written as  
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The optimization satisfies the following  

constraints: 
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where fdi is the travel for every suspension, and [fd] is 
the maximum travel for the suspension. 

 
 

7  Parameters and numerical process 
 
Input data for the quarter-vehicle model, half- 

vehicle model, and full-vehicle model are provided in 
Tables 3–5. The type of vehicle is a Ford Granada, 
which has been widely researched. The relevant pa-
rameters are selected from the relevant research and 
Yu and Lin (2005). In this study, the analysis is 
mainly focused on the numerical solution method and 
optimization method. Some parameters are limited to 
a range to determine the optimum result; thus, the 
basic parameters are known. These parameters near 
their regions can be changed, and the multi-objective 
optimization method is performed to search the pa-
rameters set in their regions. First, different types of 
vehicle models are established and different types of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Relevant quarter-vehicle parameter values 

Vehicle parameter Value 

Sprung mass, m2 (kg) 317.5 

Unsprung mass, m1 (kg) 45.4 

Suspension stiffness, Ks (N/m) 22 000 

Tire stiffness, Kt (N/m) 192 000 

Suspension damping, Cs (N·s/m) 1520 

 

Table 4  Relevant half-vehicle parameter values 

Vehicle parameter Value 

Sprung mass, Mbh (kg) 690 

Moment of inertia, Jb (kg·m2) 1222 

Front axle unsprung mass, Mwf (kg) 40.5 

Rear axle unsprung mass, Mwr (kg) 45.4 

Distance from center of gravity to front 
axle for wheel, a (m)  

1.25 

Distance from center of gravity to rear 
axle for wheel, b (m) 

1.51 

Front suspension stiffness, Ksf (N/m) 17 000 

Rear suspension stiffness, Ksr (N/m) 22 000 

Front suspension damping, Csf (N·s/m) 1500 

Rear suspension damping, Csr (N·s/m) 1500 

Front tire stiffness, Ktf (N/m) 192 000 

Rear tire stiffness, Ktr (N/m) 192 000 
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algorithms are applied to these models. The precision 
of the calculations are compared, and the reason for 
the precision difference is explained. In addition to 
the aforementioned analyses, the seven-DOF vehicle 
model (full-vehicle model) is selected as the basic 
model to design the experiment. The effects of the 
parameters on vibration and tire excitation are listed, 
and then an approximate model is established. Sur-
face response analysis is also performed, and then the 
NSGA-II algorithm is used to solve the above prob-
lem. Because the aim of this study is to improve the 
vibration performance of the vehicle based on the 
multi-objective theory, the variable of all the input 
parameters satisfies a′≤x≤b′. In this paper, from the 
constraint of all the variables, it can be concluded 
that: 15 300≤KsA≤18 700, 19 800≤KsC≤24 200, 1350≤ 
CsA≤1650, 1350≤CsC≤1650, 172 800≤Kt≤211 200, and 
2.484<a+b<3.036. All the analysis is based on the 
seven-DOF model. In future work, a new model with 
more DOFs will be built, and then a more precise 
prediction model can be obtained. It is expected that 

the difference arises from the negligibility of some 
details and the rough algorithm in the present theory. 
 
 
8  Results and discussion 

8.1  Characteristics comparison under a different 
model 

In this study, two traditional methods, the 
Runge-Kutta method and Newmark method, are 
selected to compare with the FDM and Hamming 
method. Fig. 6 shows the vertical acceleration of the 
vehicle based on a two-DOF vehicle system; some 
results in this region have been expanded because 
they were too dense. The results show that the ac-
celeration values calculated by these four methods 
agree well with each other. 

Fig. 7 shows the vertical acceleration and pitch 
acceleration values calculated by the four-DOF ve-
hicle model. Different types of solving methods are 
compared. To gain an insight into the results, they are 
expanded in some time regions. The results show that 
the acceleration values calculated by these four 
methods also agree well with each other. 

Fig. 8 shows the seven-DOF model for the entire 
vehicle. It compares different types of solving 
methods to gain an insight into the results. The re-
sults are expanded in some time regions and show 
that the acceleration values calculated by these four 
methods also agree well with each other. However, 
the waving trend in the same time-expanded region is 
not the same. 

According to the above analysis, it is difficult to 
determine the precise difference calculated by dif-
ferent models. In fact, in realistic engineering, the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Relevant full-vehicle parameter values 

Vehicle parameter Value 

Vehicle mass, mb (kg) 1380 

Pitch moment of inertia, θb (kg·m2) 2444 

Roll moment of inertia, φ (kg·m2) 380 

Front axle left unsprung mass, mwA (kg) 40.5 

Front axle right unsprung mass, mwB (kg) 40.5 

Rear axle left unsprung mass, mwC (kg) 45.4 

Rear axle right unsprung mass, mwD (kg) 45.4 

Front left suspension stiffness, KsA (N/m) 17 000

Front right suspension stiffness, KsB (N/m) 17 000

Rear left suspension stiffness, Ksf (N/m) 22 000

Rear right suspension stiffness, Ksr (N/m) 22 000

Front left suspension damping, CsA (N·s/m) 1500 

Front right suspension damping, CsB (N·s/m) 1500 

Rear left suspension damping, CsC (N·s/m) 1500 

Rear right suspension damping, CsD (N·s/m) 1500 

Front left tire stiffness, KtA (N/m) 192 000

Front right tire stiffness, KtB (N/m) 192 000

Rear left tire stiffness, KtC (N/m) 192 000

Rear right tire stiffness, KtD (N/m) 192 000

Distance from center of gravity to front axle 
for wheel, a (m) 

1.25 

Distance from center of gravity to rear axle 
for wheel, b (m) 

1.51 

Front wheel-base, Bf (m) 0.74 

Rear wheel-base, Br (m) 0.74 

Fig. 6  Comparison of vertical acceleration among dif-
ferent methods in two DOFs 
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RMS of the acceleration is usually used to evaluate 
the vibration performance of the vehicle. Thus, the 
RMS of the acceleration calculated by different 
models and different algorithms are listed in Table 6. 
The results show that there is little difference for the 
RMS of the vertical acceleration among these results 
calculated by different models based on two DOFs. 
The results calculated by the Runge-Kutta and 
Hamming methods are 1.2428 m/s2 and 1.2500 m/s2, 
respectively, which are less than the Newmark 
method and FDM. Compared with the two-DOF 
model, the result calculated by the four-DOF model 
is smaller, and the errors of the vertical acceleration 
for these four methods can achieve 53.74%, 52.28%, 
53.11%, and 52.83%, respectively. The vertical ac-
celeration calculated by the Runge-Kutta or Ham-
ming method based on the two-DOF model is close 
to that for the four-DOF model. These two methods 
are better than the Newmark method and FDM; their 
errors are less than approximately 3.9%–4.7% in 
terms of the vertical acceleration and 4.6%–5.5% in 
terms of the pitch acceleration. Comparing the errors 
for the four-DOF model among these four methods, 
the results show that the Runge-Kutta and Hamming 
methods are also close to the seven-DOF model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Compared with the four-DOF model, the result cal-
culated by the seven-DOF model is smaller, and the 
errors of the vertical acceleration for the four meth-
ods can achieve 5.11%, 5.54%, 4.84%, and 4.90%, 
respectively. The errors of the Newmark method and 
FDM are larger than approximately 3.7%–4.1% in 
terms of the vertical acceleration and 5.9%–9% in 
terms of the pitch acceleration.  

A detailed analysis is performed to analyze why 
the Runge-Kutta and Hamming methods are better. 
The results calculated by the FDM and Newmark 
method are less precise because these two methods 
need to call four steps. This will lead the error to 
average; thus, it causes the error of the entire result to 

Fig. 7  Comparison of vertical acceleration and pitch 
acceleration among different methods in four DOFs: (a)
vertical acceleration; (b) pitch acceleration 
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Fig. 8  Comparison of vehicle acceleration with different 
methods in seven DOFs for the entire vehicle: (a) vertical 
acceleration; (b) pitch acceleration; (c) roll acceleration 

(a) 

P
itc

h 
ac

ce
le

ra
tio

n
 (

ra
d/

s2 )

(b) 

(c) 



Guo and Zhang / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(5):393-412 405

increase. However, the FDM and Newmark method 
only need to call for the former step result; thus, they 
accumulate the error. The Runge-Kutta method ob-
tains the result of the broken line, which is relatively 
smooth, in a large deviation node position. It requires 
approximately three steps to approach a good result. 
The correction value is a slower speed solution. The 
Hamming law also requires three steps to adjust the 
numerical results, and they oscillate up and down 
around the true values of the approach point. 

Table 7 also presents the calculation time for 
different numerical methods, and the results show 
that when the model changes from the quarter- 
vehicle model to full-vehicle model, the calculation 
time increases. The calculation time for the revised 
Hamming method is longer than that for the other 
three methods. The calculation time for the Runge- 
Kutta method increases significantly for the full- 
vehicle model. 

Fig. 9 shows the comparison of the dynamic 
characteristics based on different models. Because 
the quarter-vehicle model only considers vertical 
acceleration and the half-vehicle model only con-
siders vertical acceleration and pitch acceleration, 
only the PSDs of vertical acceleration and pitch ac-
celeration are shown. The results show that the error 
of the quarter-vehicle model is larger compared with 
the other two models, but their trends are the same, 
and the half-vehicle model is nearly the same as the 
full-vehicle model. In the comparison of pitch  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

acceleration, there is some difference between the 
half-vehicle model and full-vehicle model, but this 
error is very small and it only appears at the peak 
position. Thus, the analysis that follows will be per-
formed using the seven-DOF model to evaluate the 
dynamic characteristics of the vehicle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

Table 6  Comparison of acceleration RMS values in different DOFs 

Parameter 
RMS (m/s2) 

Newmark FDM Runge-Kutta Hamming 

2-DOF Dynamic deflection 0.0101 0.0102 0.0101 0.0106 

Vertical acceleration 1.3082 1.3074 1.2428 1.2500 

4-DOF Vertical acceleration 0.8509 0.8585 0.8117 0.8179 

Pitch acceleration 0.6196 0.6141 0.5832 0.5855 

7-DOF Vertical acceleration 0.8095 0.8134 0.7742 0.7797 

Pitch acceleration 0.5949 0.5872 0.5616 0.5641 

Roll acceleration 0.6436 0.6806 0.5942 0.6056 

Table 7  Comparison of calculation time for different numerical methods 

Model 
Calculation time (s) 

Newmark FDM Runge-Kutta Hamming 

Quarter-vehicle model 0.0554 0.0298 0.0070 0.2524 

Half-vehicle model 0.0573 0.0600 0.0153 0.2850 

Full-vehicle model 0.0746 0.0806 0.2216 0.3414 

Fig. 9  Comparison of the dynamic characteristics based 
on different models: (a) vertical acceleration; (b) pitch
acceleration 
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8.2  Effect of parameters on the evolution index 
 
To determine the effect of some parameters on 

the dynamic characteristics of the vehicle, the effect 
of pavement grade and vehicle speed on the dynamic 
load of the tire and the vertical acceleration of the 
vehicle mass center are calculated based on the 
seven-DOF model. Fig. 10a shows the effect of ve-
hicle speed on the dynamic load of the tire under 
different pavement grades. The results show that the 
dynamic load coefficient increases with the speed, 
the amplitude for grades A and B is very small, and 
the dynamic load increases clearly with speed, espe-
cially for pavement grade D. The same result can be 
seen in Fig. 10b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 11 shows the effect of pavement grade on 

the vertical acceleration and dynamic load for dif-
ferent vehicle speeds. The results show that vertical 
acceleration and dynamic load coefficient increase 
with speed. When the pavement grade changes from 

A to D, the road becomes rough; hence, these two 
characteristics increase. 

 
 
 
 
 
 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

 

 

 

8.3  Effect of parameters on the evolution index 

There are many factors that affect the dynamic 
characteristics of a vehicle, such as suspension 
stiffness, suspension damping, unsprung mass, ve-
hicle mass, and tire stiffness. These parameters are 
always coupled together to affect the evolution in-
dices, and how one parameter affects the evolution 
indices is always easy to understand. In this section, 
the rule for the parameters on the characteristics must 
be known. If the vehicle design manifests some 
problems, the reason can be obtained quickly by 
investigating the effect of the parameters. To deter-
mine how suspension stiffness and damping affect 
the dynamic characteristics, Fig. 12 shows the effect 
of suspension stiffness and damping on the PSD of 
the dynamic characteristics. Fig. 12a shows the PSD 
of the dynamic characteristics with different  
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Fig. 10  Effect of vehicle speed on the dynamic load (a)
and vertical acceleration (b) under different pavement 
grades 

Fig. 11  Effect of pavement grade on the vertical acceler-
ation (a) and dynamic load coefficient (b) for different 
vehicle speeds 
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suspensions: K=17 000 N·m and K=10 000 N·m. The 
results show that the PSD of the dynamic load coef-
ficient is greatly different in the range 0–5 Hz. The 
amplitude decreases when the stiffness decreases in 
this region. There is little difference from the range 
5–15 Hz (greater difference appears at the region of 
10 Hz) and the amplitude is the same in the region of 
15–30 Hz. Thus, there is no effect of improving the 
PSD of the dynamic characteristics by changing the 
suspension stiffness. Compared with suspension 
stiffness, damping nearly has an effect on all the 
frequency regions (0–30 Hz), as shown in Fig. 12b. 
When damping increases from 900 to 1500 N·s/m, 
the dynamic load coefficient decreases quickly in the 
vicinity of 1.226 Hz and 10.5 Hz; the value differ-
ence can achieve 0.00047 and 0.00088, respectively. 
Additionally, the order of magnitude for the damping 
effect is obviously higher than that for stiffness. 

Figs. 12c and 12d show the effect of suspension 
stiffness and damping on the PSD of vertical accel-
eration. The results also show that the stiffness also 
only affects the frequency in the range 0–5 Hz; there 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

is nearly no effect in the range 5–30 Hz. Compared 
with stiffness, damping has an effect on vertical ac-
celeration in the entire frequency region (0–30 Hz). 
However, the results clearly show that the contribu-
tion of stiffness and damping to the PSD of vertical 
acceleration are nearly the same, which is unlike their 
effect on the dynamic load coefficient. From the 
above analysis, the results show that the PSD of the 
dynamic characteristics can be improved by chang-
ing the suspension stiffness and damping according 
to different frequency problems. 

8.4  DOE analysis for the dynamic characteristics 

The factors dominating the dynamic load coef-
ficient and vertical acceleration can be identified 
through their levels. The parameters that weight the 
effect of dynamic load coefficient (RDLC) and vertical 
acceleration (RVC) on every performance can be 
written as follows: 

 

DLC max( ) min( ), i iR R R                  (25) 

VC max( ) min( ).i iR R R                    (26) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Effect of stiffness K and damping C on the dynamic load and vertical acceleration: (a) effect of stiffness on the 
dynamic load coefficient; (b) effect of damping on the dynamic load coefficient; (c) effect of stiffness on vertical accelera-
tion; (d) effect of damping on vertical acceleration 
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According to Eqs. (25) and (26), the effect of the 
input parameters on the dynamic load coefficient (F2) 
and vertical acceleration (F1) responses is analyzed, 
as shown in Fig. 13. The effect of the aforementioned 
seven factors on the dynamic load coefficient can be 
arranged as B>A>E>D>C>F>G; the dominating 
weight of the aforementioned seven factors on ver-
tical acceleration can be arranged as E>G>F>D>C> 
A>B. In fact, there are some other indexes in the 
dynamic analysis of the vehicle. If the best vehicle 
that has the smallest vibration is desired, the multi- 
objective function needs to be established and the 
weight power of every aim also needs to be set, and 
then a suitable design can be obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In fact, the parameters’ interaction is always 

neglected. In this paper, the Pareto effect of all the 
parameters and parameters’ interaction are all inves-
tigated. The results show clearly that the contribution 
of all the parameters can be arranged as B>E>A> 
D>C>G>F, as shown in Fig. 14a. There is little dif-
ference from the above orthogonal experiment. The 
reason for this difference will be researched in future 

work. In addition to the above, the parameters’ in-
teractions CsA-KsA, a-KsA, and CsA-Kt also have an 
effect on F1, to some extent, so the parameters’ in-
teraction cannot be neglected. The results also show 
that the contribution of some parameters are nega-
tive, such as CsA-KsA, a-KsA, and a. Fig. 14b shows 
the contribution of the parameters and parameters’ 
interaction to F2. The results show that the contribu-
tion of all the parameters can be arranged as E>G> 
F>D>B. This result agrees well with the orthogonal 
experiment. In addition to the above discussion, 
some parameters’ interactions also make a contribu-
tion to F2, such as a-b, CsC-Kt, a-Kt, and b-Kt. Thus, 
when analysis regarding the effect of the parameters 
on the aim is performed, the parameters cannot be 
neglected; it may contribute more than a single pa-
rameter to the aim. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.5  Optimization analysis 

This section describes the details of the GA, 
which is fitted to solve the vehicle dynamic optimi-
zation problem. Seven design variables, the stiffness 
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Fig. 14  Pareto effect of all the parameters: (a) contribu-
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Fig. 13  Weight comparison of factors: (a) comparison of 
the dynamic load coefficient by various factors and their 
levels; (b) comparison of the vertical acceleration by var-
ious factors and their levels 
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of the front suspension (KsA), stiffness of the rear 
suspension (KsC), damping of the front suspension 
(CsA), damping of the rear suspension (CsC), stiffness 
of the tire (Kt), distance from the mass center to front 
axis (a), and distance from the mass center to rear 
axis (b), are selected to control the vehicle’s dynamic 
performance. The mass of the vehicle, moment of 
pitch inertia of the vehicle, moment of roll inertia of 
the vehicle, distance between the tires, and mass of 
the upspring are fixed for two reasons: (1) the mass is 
always related to the moment of inertia; there is a 
complex relationship between these variables and the 
variation of mass around this point is substantially 
small; (2) the distance between the tires is always 
fixed. Therefore, these design variables are omitted. 
Thus, a rank-based GA with niche operator and 
‘separate pool scheme’ is used to optimize the two 
objective functions, the minimum dynamic load co-
efficient and the minimum vertical acceleration, 
under many constraints. The binary coded NSGA-II 
using three digits for each variable is chosen. The 
total population is 100 members and the population 
size is 40, with a crossover probability of 0.9 and 
crossover distribution of index 10, and a mutation 
distribution of index 20 is considered. A constraint 
on the total distance between the front axis and rear 
axis (2.484 m<a+b<3.036 m), i.e., fd1, fd2, fd3, and fd4< 
30 mm, is imposed.  

Fig. 15 illustrates the results obtained for vehi-
cle dynamics. The Pareto frontier can be clearly seen 
(round point) from the results of the dynamic load 
coefficient and vertical acceleration for the Pareto 
design variables. There are many optimized results in 
the multi-objective optimization analysis. These 
results form a set and they move to a small region 
after the calculation and form an edge, as shown in 
Fig. 15. One of these results is the optimal result. The 
reason for using the Pareto approach in this study is 
to show that when the multi-objective optimization is 
performed, the optimal results are not always the 
only results; they form a set. Simultaneously, the  
 

 
 
 
 
 
 

entire optimization process is reflected in this figure, 
for example, the initial parameters used to calculate 
the aim are located at position B, and then the next 
calculation aim will achieve position C which is 
closer to the optimal result. However, this value is 
not the optimal result. After some calculations, the 
result becomes closer to the Pareto edge.  

Table 8 presents the comparison of parameters 
and results before and after optimization. The results 
show that the solution F1 reduces by 0.0352 m/s2, 
which is an improvement of 7.22%, and the solution 
F2 reduces by 0.0225, which is an improvement of 
6.82% after optimization. The parameters changed, 
to some extent. The close agreement between the 
expected and predicted data shows that NSGA-II can 
be used to obtain optimized results in the theoretical 
program. 

To verify the results, Fig. 16 also shows the 
comparison of the PSD of the vertical acceleration 
and dynamic load coefficient before and after opti-
mization. The results show that nearly all the infor-
mation is optimized over the entire frequency region. 
 
 
9  Conclusions 

 
Based on the dynamic simulation of different 

vehicle systems, a study to establish the two-DOF,  
 
 

 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Table 8  Parameters and results comparison 

Status a (m) b (m) 
KsA 

(N/m)
KsC 

(N/m) 
CsA 

(N·s/m)
CsC 

(N·s/m)
Kt  

(N/m) 
F1 

(m/s2) 
F2 

Before optimization 1.25 1.51 17 000 20 000 1500 1500 192 000 0.4871 0.3300

After optimization 1.37 1.36 15 301 19 800 1353 1366 172 800 0.4519 0.3075
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four-DOF, and seven-DOF models was performed in 
a simulation program. Different types of numerical 
methods used to solve the dynamic simulation equa-
tion were studied. Multi-objective optimization was 
introduced to optimize the vibration of the vehicle. 
The effects of the parameters on the dynamic char-
acteristics were all investigated, and the precision of 
the average acceleration was compared. The conclu-
sions are summarized as follows: 

1. In the multi-degree system, the results calcu-
lated by these four methods agreed well with each 
other. The Hamming method was a new method that 
could calculate the dynamic characteristic of the 
system, and it was better than the Newmark method 
and FDM. The average acceleration was also used for 
comparison. The Runge-Kutta method was better 
than the four-step Hamming method. The Hamming 
method calls former steps. An error exists at every 
step, which leads to the RMS being larger than that 
for the Runge-Kutta method, but this does not affect 
precision.  

2. Orthogonal experiments were combined to 
identify the factors dominating the vehicle’s dynamic 

behavior. The effect of the weight of the aforemen-
tioned seven factors on the dynamic load coefficient 
can be arranged as E>G>F>D>C>A>B. The domi-
nating weight of the aforementioned seven factors on 
vertical acceleration can be arranged as B>A>E>D> 
C>F>G. Thus, this technique can be used to find the 
effect of the parameters on the ride comfort of the 
vehicle. 

3. Orthogonal experiments can be used to de-
termine the parameters of the dynamic characteristics. 
In fact, some parameters always couple with each 
other to affect characteristics; the interaction effect 
sometimes has a greater effect on the vehicle’s dy-
namic behavior, and these effects are always  
neglected.  

4. The overall objective raised in this study 
integrates the problem of the complex dynamic 
modeling of a vehicle and an optimization process 
characterized by a high number of variables to be 
simultaneously modified and a high number of 
constraints to be satisfied. After the optimization 
analysis, the results showed that the optimal results 
were not always the only results; there are many 
optimized results in the multi-objective optimization 
analysis and these results form a set. They move to a 
small region after the calculation and form an edge, 
which is called a Pareto edge. One optimum result 
shows that the solution F1 reduces by 0.0352 m/s2, 
which is an improvement of 7.22%, and the solution 
F2 reduces by 0.0225, which is an improvement of 
6.82% after optimization. In a practical design, it is 
better to couple the DOE with the multi-objective 
optimization method to perform the optimization, 
which can avoid trapping in a local minimum or 
maximum, because the sample can distribute the 
entire space after the design of the experiment. 
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中文概要 
 

题 目：基于数值算法的车辆动力学模型及数值求解方法

精度的对比研究 

目 的：通过采用不同数值方法求解不同的车辆动力学模

型，为车辆动力学模型研究提供参考；结合正交

试验和多目标优化算法来分析各个参数对车辆

性能的影响权重，采用多目标优化算法进行车辆

动力学多目标优化分析，为车辆的设计提供参考

依据。 

创新点：研究不同数值方法的求解精度，为车辆动力学求

解方法提供新途径；采用正交试验设计研究车辆

各参数的影响权重，为车辆设计提供参考；采用

多目标优化算法设计车辆，能兼顾车辆多个方面

的性能。 

方 法：采用不同动力学求解算法、正交试验设计和多目

标优化分析方法。 

结 论：1. 基于不同数值求解算法的研究表明，Hamming

法要优于 Newmark 法和有限差分法，四阶

Hamming 法的精度不如龙格库塔法；2. 正交试验

可得到各参数对车辆动力学的影响权重，但忽略

了参数间的交互效应；3. 经过多目标优化设计，

衡量车辆振动性能的两个指标分别减少了 7.22%

和 6.82%。 

关键词：车辆；Hamming 法；龙格库塔法；数值算法；动

力仿真 

 


