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Abstract:    An approximate method for predicting the stationary response of stochastically excited nonlinear systems with  
continuous-time Markov jump is proposed. By using the stochastic averaging method, the original system is reduced to one gov-
erned by a 1D averaged Itô equation for the total energy with the Markov jump process as parameter. A Fokker-Planck-
Kolmogorov (FPK) equation is then deduced, from which the approximate stationary probability density of the response of the 
original system is obtained for different jump rules. To illustrate the effectiveness of the proposed method, a stochastically excit-
ed Markov jump Duffing system is worked out in detail. 
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1  Introduction 
 

The operation of complex dynamical systems is 
often accompanied by abrupt changes in their con-
figurations caused by component or interconnection 
failure, or by the onset of environmental disturbance. 
When these sudden changes in the operating rules 
occur in accordance with a Markov process, the as-
sociated stochastic system is referred to as a  
continuous-time Markov jump system (MJS). MJSs 
have many applications in a variety of fields, includ-
ing air vehicles (Stoica and Yaesh, 2002), economics 
(do Val and Basar, 1999), power systems (Ugri-
novskii and Pota, 2005), satellite dynamics (Meskin 
and Khorasani, 2009), and communication systems 

(Abdollahi and Khorasani, 2011).  
Since Kats and Krasovskii (1960), Krasovskii 

and Lidskii (1961) first introduced MJSs, considera-
ble attention has been devoted to the analysis and 
synthesis of MJSs (Costa et al., 2006; 2013). Neces-
sary and sufficient conditions for moment stability 
were obtained by means of an explicit formula for 
the corresponding Lyapunov exponent for a piece-
wise deterministic jump linear system (Mariton, 
1988). Kushner (1967) applied the ‘almost sure sta-
bility’ concept to jump linear systems. Krasovskii 
and Lidskii (1961) studied the linear quadratic regu-
lator (LQR) control of Markov jump linear systems. 
Sworder (1969) solved the optimal control problem 
with finite time horizon using the maximum princi-
ple. The ergodic control problem of MJS is studied 
based on the dynamic programming principle 
(Ghosh et al., 1997). However, previous study on 
MJSs mainly focused on stability and optimal con-
trol (Ji and Chizeck, 1992; Natache and Vilma, 
2004; Luo, 2006; Huang and Nguang, 2008). Little 
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effort has been given to studying the response of 
MJSs, especially for stochastically excited nonlinear 
MJSs. Development of the methodology for analyz-
ing nonlinear MJS is thus much deserving. 

In this paper, a method for predicting the sta-
tionary response of stochastically excited nonlinear 
systems with continuous-time Markov jump is pro-
posed. In the case of small transition rate, an aver-
aged Itô equation governing the energy envelope 
with the Markov jump process as parameter is first 
derived using stochastic averaging (Zhu and Lin, 
1991; Zhu, 2006; Huan et al., 2008). The associated 
Fokker-Planck-Kolmogorov (FPK) equation is then 
set up, from which the approximate stationary prob-
ability density of the response of the original system 
with different jump rules is finally obtained.  

In this study, first, the nonlinear MJS subjected 
to stochastic excitation is introduced, and the sto-
chastic averaging method is applied to the system. 
Then, the associated FPK equation is set up. Finally, 
the validity and accuracy of the proposed method are 
demonstrated by using the Markov jump Duffing 
oscillator subjected to Gaussian white noise, wherein 
the detailed calculation is provided and comparison 
with direct simulation of the original system is made.  

 
 

2  Formulation of problem 
 
Consider a single-degree-of-freedom (SDOF) 

stochastically excited nonlinear system with  
continuous-time Markov jump: 
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where g(x) is the nonlinear restoring force, ε is a 
small parameter, ( , , ( ))f x x s t   denotes light Markov 

jump damping force, ε1/2hk(x, s(t)) (k=1, 2, …, m) 
represent the Markov jump amplitudes of weakly 
external and/or parametric stochastic excitations, and 
Wk(t) are the independent Gaussian white noises with 
zero means and intensities 2Dk. The repeated index k 
implies the summation over its range, i.e.,  
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s(t) is a continuous-time Markov jump process 
which takes discrete values in a given finite set 
S={1, 2, …, l}. Each sS denotes the mode in which 
the system operates. The transition probability be-
tween the modes is  
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where o(Δt) is such that 
0

lim ( )/ 0,
t

o t t
 

    P{s(t+Δt) 

=j | s(t)=i} represents the probability that the system 
takes the mode j at time t+Δt given that it has the 
mode i at time t. λij>0 for i≠j, is the transition rate 
from mode i  to mode j  and (Wonham, 1970) 
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Eq. (1) can be used, for instance, to model a 
class of linear or nonlinear systems whose random 
changes in their structures may be a consequence of 
abrupt phenomena such as component and/or inter-
connection failure. Our primary concern here is the 
stationary response of Eq. (1). 

 
 

3  Averaged equation 
 
In this paper, s(t) is supposed to be ergodic and 

independent of system state. To apply the stochastic 
averaging method to Eq. (1), the Markov jump pro-
cess is first assumed to be fixed at s(t)=iS. That 
means, the system operates in the mode i and no 
jump occurs. In this case, for simplicity, f(·, s(t)) and 
hk(·, s(t)) are denoted by f(i)(·) and hk

(i)(·), respec-
tively. The equivalent Itô equations of Eq. (1) with 
fixed s(t)=i are (Ji and Chizeck, 1992) 
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where Q=x and ,P x   Bk(t) are independent unit 

Wiener processes, and ( ) ( )( ) 2 ( ).i i
k k kQ D h Q   The 

Hamiltonian H (total energy) of the Hamiltonian 
system associated with Eq. (4) is 
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Since H is a function of Q and P, the Itô equa-
tion for H can be derived from Eq. (4) by using the 
Itô differential rule as follows: 
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Introduce transformation from Q and P to Q 

and H. Then, the system is governed by the first 
equation of Eq. (4) and Eq. (6). In the case of light 
damping and weak excitations, the Hamiltonian H in 
Eq. (6) is a slowly varying process while the general-
ized displacement Q in Eq. (4) is a rapidly varying 
process. According to a theorem due to Khasminskii 
(1968), H approaches to a diffusion process as ε→0. 
Since the slowly varying process is essential for de-
scribing the long-term behavior of the system, the 
stochastic averaging method is used to average out 
the rapidly varying process and to yield the follow-
ing averaged Itô equation for a slowly varying pro-
cess H:  
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where the drift coefficient m(i)(H) and diffusion coef-
ficient ( ) ( )i H  are given by (Zhu and Lin, 1991) 
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The region of integration is Ω={q | H(q, 0)≤H}, and 
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For the original jump equation (1), there are l (l 
is the total number of the modes of the original sys-
tem) averaged equations like Eq. (7). In the case of 
small transition rate, the original jump system can be 
approximately substituted by an averaged equation 
of the form of Eq. (7) with the Markov jump process 
as parameter: 
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where m(H, s) and ( , )H s  denote the drift and dif-

fusion coefficients, respectively. The expressions are 
similar to those in Eq. (8) with f (i)(q, p) and σk

(i)(q) 
replaced by f(q, p, s) and σk(q, s), respectively. 
 
 
4  Stationary response 

 
Recall from Eq. (2) that P(s, t+Δt | r, t) repre-

sents the probability that the system takes the mode s 
at time t+Δt under the condition that it has the mode 
r at time t. In order that s(t+Δt)=s, the system either 
remains in the mode s or it jumps to mode s from 
mode r (r=1, 2, …, s−1, s+1, …, l) in the time inter-
val [t, t+Δt]. Based on the averaged equation, 
Eq. (7), the following FPK equation can be deduced 
(see Appendix A for detail): 
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where p(H, s, t) is the probability density of the total 
energy H with the Markov jump process s as a pa-
rameter. The initial condition is 
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The conditional probability density q(H, s, t | 
H′, r, t) in Eq. (11) can be specified according to the 
physical meaning of the real system. In the inde-
pendent jump case, q(H, s, t | H′, r, t) is assumed to 
have the following form (Wu, 2007; Fang et al., 
2012):  

 
( , , | , , ) ( ).q H s t H r t H H                 (14) 

 
Substituting Eq. (14) into Eq. (11) and complet-

ing the integral yields the following FPK equation: 
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The FPK equation (15) does not admit an easy 

solution, analytically or numerically. Fortunately, in 
practical application we are more interested in the 
stationary solution of FPK equation (15). In this 
case, FPK equation (15) is simplified by letting 
∂p/∂t=0. Then, the joint stationary probability densi-
ty p(H, s) is obtained readily from solving Eq. (15) 
using the finite difference method. The stationary 
probability density p(H) can be obtained from p(H, 
s) as follows (see Appendix B for detail): 
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The marginal stationary probability density p(q) 

of the generalized displacement is then obtained as 
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is the stationary joint probability density of the dis-
placement and velocity. 

Note that rigorous analysis of the error in the 
stochastic averaging has not been reported in the 
open literature. Thus, the quantification of the error 

of the proposed method can be made only by com-
paring with direct simulation. 

 
 

5  Numerical example 
 
To demonstrate the validity and accuracy of the 

proposed method, consider a stochastically excited 
Duffing oscillator with independent Markov jump 
process as parameter and governed by the equation: 
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where ω and α are constants, β(s(t)) is the Markov 
jump coefficient of linear damping, h(s(t)) is the 
Markov jump amplitude of external random excita-
tion, and ξ(t) is the Gaussian white noise with zero 
mean and intensity 2D. s(t) is a continuous-time 
Markov jump process with the transition probability 
defined in Eq. (2). s(t) takes discrete values in a giv-
en finite set S={1, 2, …, l}. 

Following the steps in Eqs. (4)–(10), the origi-
nal Eq. (19) can be approximated by the following 
averaged Itô system with the Markov jump process 
as parameter:  
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The associated averaged FPK equation is of the 

form of Eq. (15) with m(H, s) and ( , )H s  given by 

Eq. (21). The stationary probability density p(H, s) 
can be obtained by solving the FPK equation (15) 
with ∂p/∂t=0 numerically. The stationary probability 
densities p(q) and p(q, p) are then determined using 
Eqs. (17) and (18). 
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5.1  Two-mode system 
 

In this case, l=2 and S={1, 2}. Some numerical 
results are obtained as shown in Figs. 1–3 for system 
parameters ω=1.0, α=1.0, D=0.02, β(1)=0.02, β(2)= 
0.04, h(1)=2.0, and h(2)=1.0. Prescribe the transition 
rate λij by a transition matrix Λ=[λij]. Three special 
cases with  
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2 2
,

2 2

 
   

Λ  2

1 1
,

2 2

 
   

Λ  3

2 2

1 1

 
   

Λ  (22) 

 
are considered. The stationary probability density 
p(q) of displacement is shown in Fig. 1. Also plotted 
are the probability densities when the Markov jump 
process is fixed at either s(t)=1 or s(t)=2. Obviously, 
the system operating in the mode s(t)=2 has larger 
damping coefficients and/or smaller amplitude of 
stochastic excitation than that operating in the mode 
s(t)=1. Thus, the probability density p(q) near the 
equilibrium position is higher, which means the sys-
tem spends more time near equilibrium in the mode 
s(t)=2 than that in the mode s(t)=1. The value around 
q=0 will decrease as Λ cycles through Λ=Λ3, Λ=Λ1, 
and Λ=Λ2.  

The lines in Fig. 1 are obtained from solving the 
averaged FPK equation (15) while the dots are ob-
tained by direct simulation of Eq. (19). The joint 
probability densities p(q, p) of the displacement and 
velocity obtained from Eqs. (19) and (15) are shown 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in Figs. 2a and 2b, respectively. It can be seen that 
the analytical results agree well with those from digi-
tal simulation of the original Eq. (19), which  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s(
t)

Fig. 3  Sample of jump process s(t) of 2-mode jump equa-
tion (19) 

Fig. 2  Joint stationary probability densities p(q, p) of the 
displacement and velocity of 2-mode jump equation (19)
with the transition rate Λ=Λ2  
(a) Numerical solution of Eq. (15); (b) Direct simulation of 
original Eq. (19) 

(a) 

(b) 

Fig. 1  Stationary probability density p(q) of displacement 
of 2-mode jump equation (19) with Λ=Λ1, Λ=Λ2, and 
Λ=Λ3 in Eq. (22), and with s(t)=1 and s(t)=2  
The lines are obtained from numerical solution of Eq. (15) 
while the dots are obtained from direct simulation of original 
Eq. (19) 
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demonstrates the validity and accuracy of the pro-
posed method. Finally, a sample of 2-mode inde-
pendent Markov jump process s(t) is shown in 
Fig. 3.  

5.2  Three-mode system 

In this case, l=3 and S={1, 2, 3}. The numerical 
results shown in Figs. 4–6 are for system with pa-
rameters ω=1.0, α=1.0, D=0.02, β(1)=0.01, β(2)= 
0.025, β(3)=0.04, h(1)=2.0, h(2)=1.0, and h(3)=1.0. 
Three special cases with  
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are considered. The stationary probability density 
p(q) of displacement is shown in Fig. 4 for different 
cases. The joint stationary probability densities p(q, 
p) of displacement and velocity are exhibited in 
Figs. 5a and 5b. Again, the analytical results ob-
tained from solving the FPK equation (15) match 
closely with those from digital simulation of the 
original Eq. (19), which indicates that the proposed 
method is very effective for solving the vibration  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

problem of a nonlinear Markov jump system under 
stochastic excitation. Finally, a sample of 3-mode 
jump process s(t) is shown in Fig. 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s(
t)

Fig. 6  Sample of jump process s(t) of 3-mode jump 
system  

(b) 

Fig. 5  Joint probability density p(q, p) of the displace-
ment and momentum of 3-mode jump equation (19) with 
transition rate Λ=Λ2 
(a) Numerical solution of Eq. (15); (b) Direct simulation of 
original Eq. (19) 

(a) 

Fig. 4  Stationary probability density p(q) of displacement 
of 3-mode jump equation (19) with Λ=Λ1, Λ=Λ2, and 
Λ=Λ3 in Eq. (23), and with s(t)=1, s(t)=2, and s(t)=3  
The lines are obtained from numerical solution of Eq. (15) 
while the dots are obtained from the direct simulation of 
original Eq. (19) 
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6  Conclusions 
 
Study of Markov jump systems is of practical 

significance because of their wide applications in 
industry and economy. In this paper, an approximate 
method for predicting the stationary response of sto-
chastically excited nonlinear systems with continuous-
time Markov jump has been proposed. In the case of 
small transition rate, the original system was reduced 
to one governed by a 1D averaged Itô equation with 
the Markov jump process as parameter using the 
stochastic averaging method. The FPK equation 
governing the probability density of the total energy 
has been derived. One example has been worked out 
in detail. The comparison of the analytical results 
obtained using the proposed method with those from 
digital simulation of the original system indicates 
that the proposed method is feasible and effective for 
solving the random vibration problem of a nonlinear 
Markov jump system. 

Note that the proposed method has the potential 
to be extended to the Multi-DOF Markov jump sys-
tems. However, in the case of Multi-DOF system, 
the solution of the FPK equation is more difficult to 
obtain, even for a stationary solution. It will be the 
topic of our future research.  
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Appendix A 
 

Without jump, the transition probability density 
p(H, s, t+Δt | H′, s, t) satisfies the following FPK 
equation: 
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For a short time interval, FPK equation (A1) 

can be rewritten as 
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where δ(H−H′)=p(H, s, t | H′, s, t). This equation will 
be used in the following steps.  

Recall from Eq. (2) that P(s, t+Δt | r, t) denotes 
the probability that the system takes the mode s at 
time t+Δt given that it has the mode r at t. In order 
that s(t+Δt)=s, the system either remains in the mode 
s or it jumps from mode r (r=1, 2, …, s−1, s+1, …, l) 

to mode s in the interval [t, t+Δt]. Hence, the follow-
ing equation is obtained (Wu, 2007; Fang et al., 
2012):  
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  (A3) 

 
In Eq. (A3), the first term in the right hand side 

denotes the probability density where the system 
stays in mode s in time interval t . The second term 
represents the probability density where the system 
jumps to mode s from mode r. q(H, s, t+Δt | H′, r, t) 
is the transition probability density of H for system 
jumping from mode r at time t to mode s at time 
t+Δt. Then, using Eqs. (2) and (3), Eq. (A3) can be 
rewritten as 
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                  (A4) 
 
Substituting Eq. (A2) into Eq. (A4) yields 
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Dividing both sides of Eq. (A5) by Δt and let-
ting Δt→0 lead to the following FPK equation: 
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Appendix B 
 

According to the probability theorem, the prob-
ability distribution P(H) of H satisfies 
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where p(H | s) is the conditional probability density 
of H when s is known to be a particular value. P(s) is 
the probability distribution of the Markov process 
s(t) when s(t)=s. From Eq. (B1), one obtains 
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On the other hand, the joint probability density 

p(H, s) satisfies 
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Substituting Eq. (B3) into Eq. (B2) leads to 
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中文概要 
 

题 目：随机激励下连续时间马尔科夫跳变非线性系统

的平稳响应研究 

目 的：提出一种预测随机激励下连续时间马尔科夫跳

变非线性系统的平稳响应的近似方法。 

创新点：1. 得到了含有马尔科夫跳变参数的关于能量的

平均 Itô 方程；2. 建立了含有马尔科夫跳变参数

的平均 Itô 方程相应的 FPK 方程。 

方 法：1. 将一个随机激励的马尔科夫跳变非线性系统

由状态方程转化为等价的 Itô 方程，并根据 Itô

微分法则给出哈密顿量（系统总能量）的 Itô 方

程；2. 通过随机平均法，得到关于系统能量的

平均 Itô 方程；3. 推导并求解相应的 FPK 方程。 

结 论：1. 跳变规律对马尔科夫跳变非线性系统随机响

应具有重要影响；2. 理论结果与数字模拟结果

吻合验证了理论方法的准确性。 

关键词：非线性系统；连续时间马尔科夫跳变；随机激

励；随机平均 

 
 
 


