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Abstract:    In this paper, we present a method for the global optimization of the tooth contact pattern and transmission error of 
spiral bevel and hypoid gears, which includes three optimization objectives, three control parameters, and a complex-constrain 
genetic algorithm solving method. A new set of fundamental equations for pitch cone parameters of hypoid gear drives are es-
tablished, as well as the relationships between pitch cone and curvature parameters. Based on this theory, three control parameters 
are selected to determine the pinion tooth surface. A hypoid gear drive is chosen for case studies. The results verify that the op-
timization methodology can achieve the expected optimization objectives and has good convergence. Correlations between op-
timization objectives and control parameters are discussed. Furthermore, a finite element model of a simplified hypoid gear drive 
system is established and its quasi-static meshing characteristics analyzed. The results again confirm the correctness of the opti-
mization method. The effects of torque load on the contact pattern and transmission error are discussed. The results provide a 
theoretical reference for geometric calculations, quasi-static analysis, and optimal design of spiral bevel and hypoid gears.  
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1  Introduction 
 
Spiral bevel and hypoid gears are critical 

components of many train power systems. They have 
found broad application in helicopter and truck 
transmissions, and reducers for transformation of 
rotation and torque between intersected or crossed 
axes (Litvin and Fuentes, 2004). Because of their 
geometry and manufacturing complexity, hypoid 
gears can be considered to be the most general case of 
gearing. Design and tooth contact analysis (TCA) of 

such gear drives has been a topic of research by many 
scientists.  

Although spiral bevel and hypoid gears have 
been widely used and analyzed, few studies have 
presented a comprehensive optimization method, 
largely due to the complex geometric structure of 
such gears. Litvin et al. (1998; 2002; 2006) and Ar-
gyris et al. (2002) developed the geometry, genera-
tion, and simulation of the meshing and contact of 
spiral bevel gears with a localized bearing contact, 
and proposed an approach called ‘local synthesis’ for 
providing a predesigned parabolic function of trans-
mission error with limited magnitude of maximum 
transmission error. However, their method focused 
only on the characteristics of the mean contact point. 
Vogel et al. (2002) presented a constructive approach 
called ‘ease-off topography’ for the approximation- 
free TCA of hypoid bevel gears. They obtained di-
rectly the characteristics of the paths of contact, the 
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transmission error, and the contact ellipses. Their 
method represents a significant step towards a sys-
tematic optimization. Using this method, Achtmann 
and Bär (2004) optimized bearing ellipses for the 
coast and drive side of hypoid gears.  

Artoni et al. (2008; 2009) developed an ap-
proach to the automatic optimization of the loaded 
tooth contact pattern of spiral bevel and hypoid gears. 
They then proposed an optimization methodology to 
define systematically the optimal ease-off topography 
to minimize simultaneously the loaded transmission 
error (LTE) of hypoid gears. Mermoz et al. (2013) 
presented an optimization process, capable of auto-
matically designing the shape of spiral bevel gear 
flanks, and then developed a methodology to reduce 
the quasi-static transmission error of the spiral bevel 
gears. However, none of these studies meticulously 
studied the combination of tooth contact pattern and 
transmission error. 

Simon (2009a; 2009b; 2013; 2014) analyzed the 
influences of machine settings and tool geometry on 
tooth contact pressure and loaded transmission error, 
and presented a methodology to optimize tooth mod-
ifications in face-hobbed hypoid gears. These sensi-
tivity studies give clues about the improvement of 
gear performance. Guo et al. (2016) presented an 
optimal design method for cutter blade profiles to 
eliminate the tooth edge contact and improve the 
distribution of tooth contact stress for face-hobbed 
spiral bevel gears in the case of heavy load and mis-
alignment. The research introduces a multi-segment 
cutter blade profile with Toprem, Flankrem, and cut-
ter tip to obtain the ideal load and contact stress  
distribution.  

Some optimization methods for spiral bevel and 
hypoid gears have been developed. However, few 
studies have presented multi-objective synthesis op-
timization of tooth contact pattern and transmission 
error, which is a more efficient way to deal with the 
problem. Furthermore, control parameters and their 
effects on the results have seldom been considered. 
Therefore, we present a global optimization method-
ology for the tooth contact pattern and transmission 
error of spiral bevel and hypoid gears. The method-
ology contains three optimization goals, three control 
parameters, and a solving method based on a complex- 
constrain genetic algorithm. The effects of control 
parameters are investigated using case studies. The 

finite element (FE) approach is used to verify the 
results.  

 
 

2  Defect analysis of tooth contact pattern 
and transmission error 

2.1  Common defects of tooth contact pattern 

The traditional method for computing cutter 
specifications and machine settings for the manufac-
ture of spiral bevel and hypoid gears controls only the 
normal vector and the curvatures of the calculated 
point (Shtipelman, 1978). Therefore, the calculation 
cannot ensure that the whole tooth contact pattern will 
meet expectations. Errors may lead to location, size, 
and shape defects of the tooth contact pattern 
(Shtipelman, 1978). There are numerous kinds of 
control parameters in the traditional method, such as 
the pressure angle, spiral angle, coefficient of contact 
zone length, pitch cone distance of generating gear, 
pitch angle of generating gear, offset, root angle, 
machine root angle, and the local synthesis calcula-
tion process. In addition, the collective and cross 
influences of these parameters are so complicated that 
they can hardly be understood and applied. Hence, 
these parameters are not suitable for the optimal de-
sign of meshing characteristics. 

2.2  Common defects of transmission error 

Unreasonable modification of machine-tool set-
tings of the gear and the pinion will also lead to var-
ious types of transmission error curves (Fig. 1). 
 
 
3  Optimization objectives 
 

Reasonable optimization objectives are very 
important for the optimal design process. Based on 
the economic principle, which means that fewer op-
timization objectives restrict increase in defects, three 
optimization objectives are selected (Fig. 2). The real 
3D contact pattern of the tooth surface is converted to 
the form in the gear axial section, which is helpful for 
subsequent analysis. 

1. Semi-major axis of instantaneous contact el-
lipse l 

The semi-axis l can effectively restrict the con-
tact zone length and prevent the defects of wide, 
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narrow, long, and short contacts. The optimal value of 
l can be selected as  
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where F is the coefficient of contact zone length, bg 
the tooth width of the gear, and βg the mean spiral 
angle of the gear. 

There are innumerable instantaneous contact el-
lipses inside the cycle of meshing, and each of their  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2  Optimization objectives 

(a) Contact pattern of the gear tooth surface; (b) Transmission error curve (Ng is the number of teeth in the gear) 

Fig. 1  Common defects of transmission error 
(a) Both sides bending upwards; (b) One side bending upwards; (c) No intersection; (d) The position of the intersection is too 
low 
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semi-axes is different. Therefore, l can be represented 
as the mean value 

 
1

0 ,

n

k
k

l
l

n




                               (2) 

 
where lk is the optimal value of the semi-major axis of 
the kth contact ellipse and n the number of instanta-
neous contact ellipses inside the cycle of meshing. 

2. Orientation angle of contact path γ 
The orientation angle γ is defined as the angle 

between the contact path and the root cone generatrix 
of the gear. It can prevent the defects of inner opposite 
angular contact, outer opposite angular contact, and 
non-overlapping transmission error curves. For a 
spiral bevel gear drive, the convex and concave sides 
of a pinion tooth are in mesh with the concave and 
convex sides of the gear, respectively. In the case of 
the convex side of the gear, there is no intersection in 
the transmission error curve if γ is less than zero. 
When γ is greater than zero, the overlapping portion 
of the transmission error curve increases with the 
increase of γ, which means that the contact ratio of the 
gear drive increases. Nonetheless, an overlarge γ leads 
to severe inner opposite angular contact and a re-
quirement for extremely high accuracy of assembly of 
the gear drive. In the case of the concave side of the 
gear, the situation is reversed. Hence, the optimal 
value of γ can be chosen as 

 

OPT

[50 , 70 ], for convex side,

[110 ,130 ], for concave side.


 
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         (3) 

 
Thus, γ influences both the contact pattern and 

the transmission error curve. Although γ can restrict 
the defects of non-overlapping transmission error 
curves, it cannot effectively prevent the defect of no 
intersection. The path of contact points can be repre-
sented as its linear fitting line: 
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where Pax and Pay are the x- and y-coordinates of the 

contact point, respectively, and ic  is the ith power 

coefficient of the function of contact path. Hence, γ 

can be represented as 
 

1arctan .c                              (5) 

 
3. Intersection ordinate of the transmission error 

curve δ 
The intersection ordinate δ can effectively re-

strain the shape of the transmission error curve and 
prevent the defects of bending upwards, non- 
overlapping, no intersection, left-right asymmetry, 
and low position of intersection. Note that δ should be 
negative, and its absolute value must be as small as 
possible so that the real transmission ratio can get 
close enough to the theoretical value i=Ng/Np (Ng and 
Np are the numbers of teeth of the gear and the pinion, 
respectively). Nonetheless, an extremely small abso-
lute value of δ will lead to the emergence of the defect 
of bending upwards. Hence, the optimal value of δ 
can be chosen as 
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It is difficult to obtain the analytical expression 

of the transmission error curve, and therefore it can be 
represented as its polynomial function: 
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where ic  is the ith power coefficient of the function 

of transmission error curve. 
Hence, δ can be represented as 
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4  Control parameters 

 
The gear machine-tool settings are considered as 

known so that the gear surface Sg is already deter-
mined. Therefore, the expected contact pattern and 
transmission error depend entirely on the pinion  
surface Sp. In other words, the conditions of meshing 
and contact are determined by the pinion cutting  
parameters. A spiral gear drive is a special case of a 
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hypoid gear drive, in which the offset E=0. Therefore, 
we focus on the study of a hypoid gear drive. 

4.1  Pitch cone parameters of a hypoid gear drive 

The geometrical relationships of the pitch cone 
parameters of a hypoid gear drive are illustrated in 
Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, the offset E and the shaft angle Σ are 

regarded as given. Assume that in the rectangular 
coordinate system σOp={Op; x, y, z}, the coordinates  

(Px, Py, Pz) of the pitch point P are known. The unit 
axial vector of the pinion ap is in the x-y plane, and 
the unit axial vector of the gear ag is parallel to the x-y 
plane and y-axis. Then all the other pitch cone pa-
rameters can be represented as follows: 
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The longitudinal shape of the tooth in the pitch 

plane is the curve of the intersection of the tooth 
surface (Fig. 4). The longitudinal shapes of the gear 
and the pinion are tangent at the pitch point P, which 
is the origin of the rectangular coordinate system 
σP={P; x, y, z}. The x-axis is in the pitch plane and 
tangent to the longitudinal shape. The z-axis is per-
pendicular to the pitch plane and along the line 
crossing both axes of the gear and the pinion. The 
mean spiral angles βg and βp are formed by the x-axis 
and the generatrix of the pitch cones of the gear and 
the pinion, respectively, which pass through P. 

The relationship between the mean spiral angles 
and the offset angle ξ (Fig. 4) can be represented as 
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The unit axial vectors ap and ag are represented 

in σP as 
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Fig. 3  Geometrical relationships of pitch cone parame-
ters of a hypoid gear drive 
ag and ap are the unit axial vectors of the gear and the pinion, 
respectively; Hg and Hp are the pitch cone apexes of the gear 
and the pinion, respectively; Og and Op are the ideal inter-
sections of the gear and the pinion, respectively; P is the 
pitch point of the hypoid gear drive; Px, Py, and Pz are the x-, 
y-, and z-coordinates of the pitch point, respectively; rg and 
rp are the pitch circle radii of the gear and the pinion, re-
spectively; Rg and Rp are the pitch cone distances of the gear 
and the pinion, respectively; g and p are the pitch angles of 
the gear and the pinion, respectively;  is the offset angle of 
the hypoid gear drive;  is the shaft angle of the hypoid gear 
drive; g and p are the offset angles of the gear and the 
pinion, respectively; E is the offset 
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Assume that the angular velocity vector of the 

gear is ωg=ωgag. Therefore, the angular velocity 
vector of the pinion is ωp=−(Ng/Np)ωgap. The velocity 
vg is represented by  
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Similarly, the velocity vp is represented as 
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The relative velocity of point P of the pinion 

with respect to the gear is represented by  
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The pressure angle is formed by n (the unit 
common normal vector of the gear and the pinion 
tooth surfaces in the y-z plane (Fig. 4)) and the pitch 
plane. Hence, n can be calculated as 
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According to the equation of meshing vpgn=0, 
the following equation can be obtained: 
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Plugging Eq. (24) into Eq. (17), and after for-

mula transformation, βg and βp can be calculated as 
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Two other critical pitch cone parameters, i.e., 

limit pressure angle αL and limit curvature radius rL, 
can be calculated, respectively (Shtipelman, 1978; 
Zeng, 1989): 
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Above all, if the coordinates (Px, Py, Pz) of the 

pitch point P are given, all the other pitch cone pa-
rameters can be obtained. In other words, three  

Fig. 4  Spiral angle and pressure angle of the hypoid gear 
drive 
n is the unit normal vector of contact point of the gear and 
the pinion; rP is the curvature radius of tooth trace at the 
pitch point; vg and vp are the velocity vectors of point P of the 
gear and the pinion, respectively; vpg is the relative velocity 
vector of point P of the pinion with respect to the gear;  is 
the pressure angle; g and p are the angular velocity vectors 
of the gear and the pinion, respectively; ag and ap are the unit 
axial vectors of the gear and the pinion, respectively; Hg and 
Hp are the pitch cone apexes of the gear and the pinion, 
respectively; Rg and Rp are the pitch cone distances of the 
gear and the pinion, respectively; g and p are the pitch 
angles of the gear and the pinion, respectively;  is the offset 
angle of the hypoid gear drive; P is the pitch point of the 
hypoid gear drive; βg and βp are mean spiral angles formed 
by the x-axis and the generatrix of the pitch cones of the 
gear and the pinion, respectively 
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independent parameters can uniquely and exactly 
determine all the other pitch cone parameters of a 
hypoid gear drive. In addition, with E, Σ, Np, and Ng, 
there are only seven independent pitch cone param-
eters of a hypoid gear drive. 

4.2  Relative curvatures of a hypoid gear drive 

There is a linear contact between conjugate tooth 
surfaces of the gear and the pinion of the theoretical 
hypoid gear drive, and the contact line with point P is 
illustrated in Fig. 5. Having a linear contact, the 
conjugate tooth surfaces of the gear and the pinion 
envelope each other by their relative movement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the rectangular coordinate system σP, the x- 

and z-axises (or t) are defined as the directions of the 
tooth trace and tooth depth, respectively (Fig. 5). The 
relative curvatures of the gear and the pinion at point 
P can be represented as 
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where Ag and Ap are the principal curvatures of tooth 
trace of the gear and the pinion, Bg and Bp are the 
principal curvatures of tooth depth of the gear and the 

pinion, Cg and Cp are the geodesic torsions of tooth 
trace of the gear and the pinion, respectively, ΔA is 
the relative principal curvature of tooth trace of the 
gear and the pinion, ΔB is the relative principal cur-
vature of tooth depth of the gear and the pinion, and 
ΔC is the relative geodesic torsion of the tooth trace of 
the gear and the pinion. 

It is clear from Fig. 5 that the contact line can be 
defined by angle φ between its tangent line and the 
relative velocity vector vpg in the tangent plane. For 
the linear contact (Zeng, 1989; Wu, 2009), the rela-
tive curvatures of conjugate surfaces satisfy: 
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If the curvature radius of the gear at the contact 

point rp and the relative geodesic torsion of tooth trace 
Cg are known, φ can be calculated as follows 
(Shtipelman, 1978; Zeng, 1989): 
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Fig. 5  Instantaneous contact line of the theoretical hy-
poid gear drive 
t is the unit vector of tooth depth;  is the orientation angle of 
the instantaneous contact line; P is the pitch point of the 
hypoid gear drive; n is the unit normal vector of contact 
point of the gear and the pinion;  is the pressure angle; vpg is 
the relative velocity vector of point P of the pinion with 
respect to the gear 
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Eqs. (28)–(34) show the relationships between pitch 
cone parameters and curvature parameters of a hypoid 
gear drive. We conclude that the curvature parameters 
Ag, Bg, Cg, Ap, Bp, and Cp can be converted into pitch 
cone parameters φ and ΔB. Under the precondition of 
knowing all the pitch cone parameters, there are six 
equations and three unknowns, and therefore there are 
only three independent curvature parameters of a 
hypoid gear drive. 

4.3  Determination of pinion tooth surface 

Machine-tool settings, including machine-tool 
adjustment parameters and the cutter blade profile, 
determine the tooth surface. Adjustment parameters 
are related to the pitch cone parameters while the 
cutter blade profile is related to curvature parameters. 
The influence of the cutter blade profile has been 
studied by many researchers, and is not discussed in 
this study, so curvature parameters of the generating 
gear are taken as given.  

A pinion combines with a gear and a generating 
gear to form a theoretical hypoid gear drive. In the 
case of pinion and gear, all seven independent pitch  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cone parameters (E, Σ, Np, Ng, βp, rg, and rL) and three 
independent curvature parameters (Ag, Bg, and Cg) are 
known. Hence, the values of βp, Γp, Rp, Ap, Bp, and Cp 
can be obtained from Eqs. (9)–(34). In the case of 
pinion and generating gear, all six independent cur-
vature parameters (Ag, Bg, Cg, Ap, Bp, and Cp) are 
known, and can be converted into the two pitch cone 
parameters φ and ΔB. In regular calculations of the 
machine parameters, Np and Σ are known. Therefore, 
the only uncertain pitch cone parameters are E and Ng, 
which can be determined accurately by φ and ΔB, and 
be obtained by the iterative method. This is the main 
principle for calculating the machine-tool settings of a 
hypoid gear drive. 

In theory, βp, Γp, Rp, Ap, Bp, and Cp can all be 
chosen as control parameters for optimal design. 
However, the first three relate to the wheel body ra-
ther than the tooth profile. Therefore, in this study, Ap, 
Bp, and Cp are selected as control parameters. This 
complies with the principle that meshing characteris-
tics are determined mainly by the curvatures of the 
tooth surfaces. The iterative method for calculating 
pinion machine-tool settings is summarized in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 6  Iterative method for calculating pinion machine-tool settings 

 

Input geometric parameters: Np, Σ, βp, Γp, Rp, α, Ag, Bg, 
Cg, Ap, Bp, Cp; input iteration parameters: ε, k=0

Calculate: ∆A, ∆B, ∆C, φ, rM

Select initial values: Ek, Ng
k

Iteratively calculate the pitch point coordinates: Px, Py, Pz
k k k

Iteratively calculate: 

Ek, Ng
k

k=k+1

N

Y

Calculate: uk, rM, φk, ∆Bkk

Np, Σ, βp, Γp, Rp, Ng, E
k determine a hypoid geark

Calculate pitch parameters: Rg, Γg, βg, ξ
kk k k

Output results: Ek, Ng, Rg, Γg, βg, ξ
k, etc.k k k k

φ−φk

φ <ε
∆B−∆Bk

∆B
<ε&
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5  Optimization algorithm 

5.1  Optimization goal equation 

There are three optimization objectives: lOPT, 
γOPT, and δOPT. Obviously, to achieve the overall 
optimization goal, l, γ, and δ should reach their target 
values respectively. Therefore, the global optimiza-
tion equation is set up as follows: 

 

  OPT

OPT

OPT OPT

OPT OPT

min , , max ,

max , max , .

l l
f l

l

    
  

           
      

  

    
 

 

(35) 
 

The equation f(l, γ, δ)=3ε indicates that the 
overall optimization goal has been obtained. 

5.2  Feasible region of contact point 

The position of the contact point M should be in 
the range of the tooth surfaces of the gear and the 
pinion. Otherwise, the contact point M is false, as well 
as its corresponding transmission error curve. A false 
contact point M would reduce the precision of the 
calculation of l, γ, and δ; hence, should be avoided. 

The tooth surfaces of the gear and the pinion are 
the feasible region of the contact point M (Fig. 7). 
Assuming the areas of the tooth surfaces of the gear 
and the pinion are ΔSg and ΔSp, respectively, in axial 
planes of the gear and the pinion, the relation for a 
real contact point M is 

 
top toe root heel
g g g g g

top toe root heel
p p p p p

,

,

S S S S S

S S S S S

        

        

         (36) 

 

where ΔStop is the area of triangle delimited by contact 
point M and top line, ΔStoe the area of triangle delim-
ited by contact point M and toe line, ΔSroot the area of 
triangle delimited by contact point M and root line, 
and ΔSheel the area of triangle delimited by contact 
point M and heel line. 

If the contact point is out of the range of the gear 
tooth surface, then the relation is 

 
top toe root heel
g g g g g.S S S S S                  (37) 

Similarly, if the contact point is out of the range 
of the pinion tooth surface, the relation is 

 
top toe root heel
p p p p p.S S S S S                  (38) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3  Solution of optimization equation 

In this study, a complex-constrain genetic algo-
rithm is used to solve the above global optimization 
equation of tooth contact pattern and transmission 
error. A genetic algorithm (Zhuo and Zhou, 2015; 
Zhang et al., 2016) is a search heuristic that imitates 
the process of natural selection. Genetic algorithms 
generate solutions to optimization problems using 
techniques of inheritance, mutation, selection, and 
crossover. However, the new individuals generated by 
a genetic algorithm have a certain randomness, which 

Fig. 7  Feasible region of contact point 
(a) Real contact point; (b) False contact point 
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may exceed the feasible region. To compensate for 
this limitation, a complex method is used to constrain 
the new individuals. The concrete procedure of this 
method is shown in Fig. 8. 
 
 
6  Case studies and discussion 

6.1  Case studies 

To verify the feasibility of the above optimiza-
tion method of tooth contact pattern and transmission 
error, as well as to analyze the effect of each control 
parameter on the optimization goal, a hypoid gear 
drive is chosen for the case studies. Its basic geomet-
ric parameters are listed in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gear convex surface and pinion concave surface 
are the main working tooth surfaces of a hypoid gear  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Basic geometric parameters of the hypoid gear drive

Geometrical parameter 
Description 

Pinion Gear 

Number of teeth 9 35 

Hand of spiral Left-hand Right-hand

Module (mm) 4.899 4.899 

Shaft angle (°) 90 90 

Offset (mm) 44.45 44.45 

Heel pitch circle diameter (mm) 64.913 171.45 

Pitch angle (°) 13.695 72.863 

Tooth width (mm) 38.41 26.92 

Mean spiral angle (°) 50 15.63 

Calculate all the other pinion machine-tool settings:

Rg, Γg, βg, ξ
k, etc.  (k=1, 2, ..., m)  k kk

Input gear surface function: Sg;
Input geometric parameters of pinion and its generating gear:

Np, Σ, βp, Γp, Rp, α, Ag, Bg, Cg, Ap, Bp, Cp;
Input iteration parameters: lOPT, γOPT, δOPT, ε, m

Analyze the feasible region of all the contact points 
and delete all the false contact points

Obtain (contact pattern)k and 

(transmission error curve)k (k=1, 2, ..., m)

Calculate eigenvalues of (contact pattern)k and 

(transmission error curve)k: lk, γk, δk (k=1, 2, ..., m)

Calculate the global optimization equation (k=1, 2, ..., m): 

fk(l, γ, δ)=max                     +max                       +max           
lk−lOPT

lOPT
, ε

γk−γOPT

γOPT
, ε

δk−δOPT

δOPT
, ε

Calculate population fitness: maximum, 
average, relative fitness, etc.

min{f1(l1, γ1, δ1), f2(l2, γ2, δ2), ..., fm(lm, γm, δm)}=3ε

Output results: contact pattern 
and transmission error curve

Y

N

Selection, crossover, and 
mutation processings

Constraint processing of the worst 

individual by the complex method: 

XL=XC+c(XL−XC)

Iteratively calculate: Ek, Ng (k=1, 2, ..., m)k

Calculate the pinion tooth surfaces: Sp (k=1, 2, ..., m)k

Virtually assemble Sg and Sp, and process TCAk (k=1, 2, ..., m)k

Generate initial vector population of control parameters:

Xk=[Ap, Bp, Cp]
T (k=1, 2, ..., m)k k k

Fig. 8  Solution procedure of the optimization equation of tooth contact pattern and transmission error 
c is the coefficient; m is the number of population of iterative computation; XC, XL, and Xk are the mean, worst individual, and 
the kth values of vector population, respectively; ε is the computation precision 
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drive; therefore, we choose them as the case studies 
and the optimization processes of their contact pattern 
and transmission error curves are as shown in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The optimization goals are lOPT=4 mm, γOPT= 
60, and δOPT=−5×10−5 rad, and the computation 
precision is ε=0.001 (Fig. 9). The iterative processing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Optimization processes for the tooth contact patterns and transmission error curves of the gear convex and the 
pinion concave faces 
(a) Initial value of tooth contact pattern; (b) Initial value of transmission error curve; (c) Intermediate value of tooth contact 
pattern; (d) Intermediate value of transmission error curve; (e) Result value of tooth contact pattern; (f) Result value of trans-
mission error curve 

P
er

pe
nd

ic
ul

ar
 to

 r
oo

t c
on

e 
ge

ne
ra

tr
ix

 y
(m

m
)

T
ra

ns
m

is
si

on
 e

rr
or

 ∆
ψ

(×
10

5
ra

d)

P
er

pe
nd

ic
ul

ar
 to

 r
oo

t c
on

e 
ge

ne
ra

tr
ix

 y
(m

m
)

T
ra

ns
m

is
si

on
 e

rr
or

 ∆
ψ

(×
10

5
ra

d)

P
er

pe
nd

ic
ul

ar
 to

 r
oo

t c
on

e 
ge

ne
ra

tr
ix

 y
(m

m
)

T
ra

ns
m

is
si

on
 e

rr
or

 ∆
ψ

(×
10

5
ra

d)



Zhuo et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(5):377-392 388

has achieved the expected optimization goal and has 
good convergence. This indicates that the optimiza-
tion objectives, the control parameters, and the opti-
mization algorithm are well matched. Finally, the 
optimized 3D path of the contact points and contact 
ellipses are shown in Fig. 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2  Correlations between optimization objectives 
and control parameters 

From the above optimization processes, as well 
as case studies of a gear concave surface and a pinion 

convex surface (not shown here due to space con-
straints), the following relationships between the 
three optimal objectives (l, γ, δ) and the three control 
parameters (Ap, Bp, Cp) can be obtained: 

1. Ap is related mainly to l, and l generally in-
creases with the increase of |Ap|. 

2. Bp is related mainly to γ, and γ generally de-
creases with the increase of |Bp|. 

3. Cp is related mainly to δ, and δ generally in-
creases with the increase of |Cp|. 

The above shows the effect of only a single 
control parameter on a single optimization objective. 
However, the relationship between the three control 
parameters and the three optimization objectives is 
nonlinear. The interactive influences among the con-
trol parameters are so complicated that a numerical 
iteration method is needed to solve the optimization 
equation. 

 
 

7  Finite element analysis 

7.1  Model of the drive system 

The application of finite element analysis (FEA) 
to analyze the contact characteristics of spiral and 
hypoid bevel gears has become an important research 
direction in recent years. To verify the above optimal 
results, the finite element model (FEM) of a simpli-
fied hypoid gear drive system has been established 
and its quasi-static meshing characteristics analyzed 
with FEM software ABAQUS (Fig. 11). 

7.2  Contact pattern 

Fig. 12 shows the effect of torque load Tg on the 
contact pattern of the gear convex face. There is a 
good agreement between the FEM loaded contact 
pattern and the above mathematical optimization 
result (Tg=0) when Tg is small, which verifies the 
correctness of the optimization method. With the 
increase of Tg, the area of the instantaneous contact 
region and the length of the contact path increase, 
while γ decreases. This illustrates that the torque load 
is a very important factor in determining the actual 
contact pattern. With the increase of Tg, the contact 
region expands to the tooth heel and hardly expands 
to the tooth toe. Therefore, in practical application, to 
make full use of the bearing capacity of the whole 
tooth face, the mounting position of the gear drive  

Fig. 10  Optimized 3D path of contact points and contact 
ellipses 
(a) Contact pattern of the gear drive; (b) Contact pattern of 
the gear tooth surface. ng and np are the unit normal vectors 
of contact point of the gear and the pinion, respectively; tg 
and tp are the unit vectors of tooth depth of the gear and the 
pinion, respectively; g and p are the angular velocity 
vectors of the gear and the pinion, respectively; Og and Op 
are the ideal intersections of the gear and the pinion, 
respectively 

(b) 

Gear root cone

ωg

ωp

Op

Og

tp

tg

Pinion root 
cone

tp np tg ng 

Pinion concave 
tooth surface

np=ng Gear convex 
tooth surface

Space path of 
contact points

Instantaneous 
contact ellipse
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should reach the lightly loaded contact region near the 
tooth toe; then with the increase of load, the contact 
region would naturally expand to the tooth heel. 
These analysis results are consistent with those in 
Shtipelman (1978) and Zeng (1989). 

7.3  Transmission error 

Fig. 13 shows the effect of torque load Tg on the 
transmission error of the gear drive. The maximum  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
value of the loaded transmission error is lower than 
|δOPT| when Tg is small, which again confirms the 
correctness of the optimization method. 

Fig. 11  Finite element model of the simplified hypoid 
gear drive system 
(a) Gear; (b) Pinion; (c) Drive system. Tg and Tp are the 
torque loads of the gear and input torque of the pinion, 
respectively; ωg and ωp are the angular velocities of the gear 
and the pinion, respectively 

Fig. 12  Loaded contact pattern of the gear convex face 
(a) Tg=100 Nm; (b) Tg=200 Nm; (c) Tg=400 Nm 
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Unlike the theoretical transmission error curve, 
the loaded transmission error curve is continuous, and 
its oscillation period is 2π/Ng (Fig. 13a). When Tg is 
small, the meshing state of the gear drive is single or 
double teeth-meshing. Therefore, there are two fluc-
tuation areas of the curve in a cycle, which represent 
the motion transition from single to double teeth- 
meshing and double to single teeth-meshing, respec-
tively. The oscillation amplitude of the curve in-
creases with the increase of Tg. This can be explained 
by the increasing deformation of the components of 
the drive system with the increase of Tg. If Tg rises 
further, at Tg=400 Nm, the meshing state becomes 
double or three teeth-meshing. In this case, though the 
maximum of the transmission error has increased 
(larger than |δOPT|=5×10−5 rad), the motion transition 
has become smoother and the curve does not contain 
obvious fluctuation areas. This may be because the 
actual contact ratio of the gear drive increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The instantaneous transmission ratio Δi= 
Δψp/Δψg fluctuates up and down near the theoretical 
value (Fig. 13b). The oscillation amplitude of Δi 
changes little when Tg is small. However, if Tg rises 
further, the amplitude increases with the increase of 
Tg, which means that the stability of the gear drive 
transmission decreases. This could be due to the in-
crease in loaded deformations of the gear drive and 
the shafts. 

 
 

8  Conclusions 
 
A global optimization methodology for tooth 

contact pattern and transmission error of spiral bevel 
and hypoid gears has been presented, which includes 
three optimization objectives (l, γ, and δ), three con-
trol parameters (Ap, Bp, and Cp), and the complex- 
constrain genetic algorithm solving method. A hypoid 
gear drive was chosen for case studies. The results 
have verified that the methodology can obtain the 
expected optimization objectives and has good con-
vergence. Furthermore, the FEM of a simplified hy-
poid gear drive system was established and its quasi- 
static meshing characteristics analyzed. The results 
confirm the correctness of the optimization method. 
The major innovative aspects of this paper are as 
follows: 

1. Three optimization objectives (l, γ, and δ) 
were selected to restrict most of the common defects, 
and the optimal values and the method for calculating 
the optimization objectives were presented. 

2. A new set of fundamental equations for pitch 
cone parameters of a hypoid gear drive were estab-
lished, as well as the relationships between pitch cone 
parameters and curvature parameters. 

3. Three control parameters (Ap, Bp, and Cp) were 
selected to determine the pinion tooth surface, and an 
iterative method for calculating pinion machine-tool 
settings was presented. 

4. A global optimization equation was estab-
lished, and a complex-constrain genetic algorithm 
method for solving the optimization equation was 
presented. 

5. Case studies of a hypoid gear drive indicated 
that the optimization objectives, the control parame-
ters, and the optimization algorithm were well 
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Fig. 13  Loaded transmission error curve (a) and in-
stantaneous transmission ratio (b) of the gear drive 



Zhuo et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(5):377-392 391

matched, and correlations between the optimization 
objectives and the control parameters were discussed. 

6. An FEM of the hypoid gear drive system was 
established and its quasi-static meshing characteris-
tics were analyzed. The results verified the correct-
ness of the optimization method. 

7. With the increase of Tg, the area of the contact 
region and the length of the contact path increased, γ 
decreased, and the contact region expanded to the 
tooth heel and hardly to the tooth toe. 

8. With the increase of Tg, the oscillation am-
plitude of the transmission error and instantaneous 
transmission ratio increased, as well as the actual 
contact ratio. 
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中文概要 
 

题 目：一种螺旋锥齿轮齿面接触区和传动误差的全局优

化方法 

目 的：传统的齿面接触分析技术存在调整参数繁多、控

制目标不明确和不包含传动误差优化等缺陷。本



Zhuo et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(5):377-392 392

文旨在提出一种齿面接触区和传动误差的全局

优化设计方法，以得到满足齿轮传动性能要求的

小轮产形轮节锥参数及机床调整参数。 

创新点：1. 提出了新的确定各节锥参数之间几何关系的计

算公式，并建立了节锥参数与曲率参数的相关公

式；2. 提出以齿面接触区长半轴、接触线方向角

和传动误差曲线交点纵坐标为优化目标，以齿面

法曲率和短程挠率为控制参数，以复合形法约束

处理的遗传算法为求解途径的齿面接触特性全

局优化设计方法。 

方 法：1. 分析常见齿面接触区和传动误差曲线的缺陷及

其原因（图 1）；2. 提出全局优化目标（图 2），

进行节锥参数和曲率参数分析，从而确定控制参

数（图 3~6），建立优化方程并进行求解算法分析

（图 7和 8），然后进行实例计算分析（图 9和 10）；

3. 建立齿轮副传动系统有限元分析模型，验证优

化方法的正确性（图 11~13）。 

结 论：1.优化设计的实例分析表明，优化目标、控制参

数和优化算法具有良好的匹配性；2. 通过优化目

标与控制参数的相关性分析，得出了控制参数的

影响特征；3. 通过有限元分析验证，优化设计结

果达到了预期的齿轮传动性能指标。 
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