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Abstract: Based on the explicit finite element (FE) software ANSYS/LS-DYNA, the FE model for a sliding lead rubber bearing
(SLRB) is developed. The design parameters of the laminated steel, including thickness, density, and Young’s modulus, are
modified to greatly enlarge the time step size of the model. Three types of contact relations in ANSYS/LS-DYNA are employed to
analyze all the contact relations existing in the bearing. Then numerical simulations of the compression tests and a series of cor-
relation tests on compression-shear properties for the bearing are conducted, and the numerical results are further verified by
experimental and theoretical ones. Results show that the developed FE model is capable of reproducing the vertical stiffness and
the particular hysteresis behavior of the bearing. The shear stresses of the intermediate rubber layer obtained from the numerical
simulation agree well with the theoretical results. Moreover, it is observed from the numerical simulation that the lead cylinder
undergoes plastic deformation even if no additional lateral load is applied, and an extremely large plastic deformation when a shear
displacement of 115 mm is applied. Furthermore, compared with the implicit analysis, the computational cost of the explicit
analysis is much more acceptable. Therefore, it can be concluded that the proposed modeling method for the SLRB is accurate and
practical.

Key words: Explicit analysis; Sliding lead rubber bearing (SLRB); Time step size; Contact relations; Numerical simulation;
Experimental verification
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1 Introduction structures. In recent decades, seismic isolation tech-

niques have been promoted to improve seismic per-

Since the invention and application of laminated
rubber bearings, the technology has been widely de-
veloped. The basic aim is to extend the natural vibra-
tion period and to increase the damping ratio of
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formance for structures, such as buildings, bridges,
and nuclear power plants, in developed countries. For
example, Warn and Ryan (2012) reviewed the historic
development and research needs of seismic isolation
for buildings. Basu et al. (2014) reviewed recent re-
search and applications of structural control tech-
nology, including passive, semi-active, and active
control systems, and the investigation of their per-
formance in civil engineering across Europe. Medel-
Vera and Ji (2015) provided a systematic review of
the seismic protection systems of nuclear power
plants, and Perotti ef al. (2013) proposed a numerical
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procedure to compute the seismic fragility function of
seismic isolation in nuclear power plants. Meanwhile,
some specialized standards and guidelines were
compiled for engineering designers to follow
(Imbsen, 2007). In China, because of recent severe
earthquakes, more efforts have been devoted to im-
proving structural seismic performance. Pan et al.
(2012) presented an overall review of the representa-
tive applications of seismic isolation and energy dis-
sipation structures in China. As an effective way to
reduce seismic responses of structures, seismic isola-
tion devices have been extensively studied during the
past few decades. For example, Tyler and Robinson
(1984) focused on the mechanical characteristics of
lead rubber bearings that were subjected to high
strains; Hwang et al. (1996) proposed a refined model
for bi-linear hysteretic bearings; Ryan et al. (2004)
studied particular effects of axial load on rubber
bearings by experiment; Abe et al. (2004a; 2004b)
studied the cyclic behavior of three types of laminated
rubber bearings under a multi-axial loading state by
experiment and numerical simulations; Warn et al.
(2007) investigated the influence of lateral displace-
ment on the vertical stiffness of elastomeric and lead-
rubber bearings. The stability of seismic isolation
bearings was studied and a mechanistic model was
proposed for simulating the critical behavior of
bearings (Weisman and Warn, 2012; Han and Warn,
2014). Kelly and Marsico (2013) proposed an ana-
lytical formulation to predict tension buckling in
rubber bearings affected by cavitation. de Mari et al.
(2015) introduced a reduced-order coupled bidirec-
tional numerical model to characterize the mechanical
properties of a novel Roll-N-Cage isolator and ap-
plied that isolator to a benchmark cable-stayed bridge
to assess its seismic mitigation effect. As for numer-
ical simulations of bearings, Takayama et al. (1992)
used the finite element (FE) method to obtain the
load-deformation relationship of laminated rubber
bearings; Ali and Abdel-Ghaffar (1995) elaborated on
the modeling of rubber and lead passive-control
bearings for seismic analyses; Imbimbo and de Luca
(1998) used ABAQUS to investigate the influence of
the shape factor on the stress distribution and stress
concentration of a laminated rubber bearing; Dou-
doumis et al. (2005) performed the quasi-static anal-
ysis of lead rubber bearings by ADINA; Yoshida et
al. (2004) presented a novel constitutive model for

high damping materials and employed it in the sim-
ulation of high damping rubber bearings; Amin et al.
(2002; 2006a; 2006b) made thorough studies of the
numerical modeling and experimental verification of
high damping rubber bearings; Nguyen and Tassoulas
(2010) analyzed the effects of shear direction on
bearing behavior by ABAQUS; Kalpakidis et al.
(2010) considered the influence of increase of tem-
perature on the mechanical properties of lead rubber
bearings; Wang et al. (2014) used LS-DYNA to re-
alize the analytical simulations of elastomeric bridge
bearings. For all these studies, bearings are discre-
tized into solid elements. However, in the numerical
simulation of seismic isolation structures, rubber
bearings usually are simplified to be special elements
or materials, like COMBIN40 in ANSYS and
*MAT _SPRING in LS-DYNA, which characterize
mainly the compression and shear properties of
bearings. For example, Roussis et al. (2003) pre-
sented an evaluation of the design of a seismic isola-
tion system for a viaduct and an assessment of its
performance in the Duzce earthquake; Domaneschi
(2012) employed the phenomenological Bouc-Wen
model to control in real time the hysteresis of semi-
active control systems in seismic isolated structures;
Gur et al. (2014) compared seismic responses of
buildings isolated using a shape-memory alloy rubber
bearing and a lead rubber bearing; Eréz and
DesRoches (2013) conducted a comparative assess-
ment of a friction pendulum system versus a lead
rubber bearing in typical multi-span bridges.

Most current numerical simulations of bearings
using solid elements are based on implicit FE pro-
grams, in which case iterative calculations usually
encounter convergence problems when bearings un-
dergo large deformations, especially when the hy-
perelastic model for rubber is employed in the FE
model. Besides, effective simulation of the compli-
cated contact relations existing in bearings and the
reduction of the computational cost are two other
challenges. Recently, Ohsaki et al. (2009; 2015) car-
ried out FE analyses for a building frame equipped
with laminated rubber bearings by a parallel FE
analysis software package ADVENTURECIluster
(Miyamura et al., 2015), in which the whole structure
was discretized into solid elements with more than
three million degrees of freedom, and the numerical
results were verified using the test results from a
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full-scale shake-table. Despite all this progress, the
study of fine numerical simulations for rubber bear-
ings and structures is still needed.

In this study, to realize the numerical simulation
of a sliding lead rubber bearing (SLRB) (Xing et al.,
2012), the FE model of the bearing, which is discre-
tized into hexahedral solid elements, is developed
using the explicit FE software ANSYS/LS-DYNA.
Then numerical simulations of the compression tests
and a series of correlation tests on compression-shear
properties for the bearing are conducted, and the re-
sults obtained are validated against experimental and
theoretical results. As a first step for further studies on
seismic isolation bridges equipped with SLRBs, we
aim to present an accurate and practical method for
the modeling of bearings.

2 Configuration and working principle of the
sliding lead rubber bearing

2.1 Configuration

Fig. 1 shows the design drawing of the SLRB. It
consists of two parts in the vertical direction, i.e., the
upper sliding device (Fig. 2a) and the lower lead
rubber bearing (LRB). The sliding device, comprised
of the top connection plate, stainless steel plate, and
baffle, is placed on top of the Teflon plate, which is

Top connection plate

Stainless steel plate

Teflon plate Baffle

Upper fixing

plate Laminated rubbers

Lead core and steels
[ J

Bottom connection plate

Fig. 1 Design drawing of the sliding lead rubber bear-
ing (SLRB)

Fig. 2 Model of the sliding lead rubber bearing
(a) Sliding device and Teflon plate; (b) A specimen

embedded tightly in the upper fixing plate of the LRB.
The diameter of the LRB is 300 mm. The slide limit
between the baffle and the upper fixing plate of the
LRB is 15 mm. The baffle is made up of four steel
blocks, which are bolted to the stainless steel plate
and the top connection plate. Other design parameters
of the SLRB are listed in Table 1, and a specimen of
the SLRB is shown in Fig. 2b.

Table 1 Mechanical parameters of the sliding lead
rubber bearing (SLRB)

Parameter Value
Shear modulus of rubber (MPa) 0.392
Effective diameter (mm) 300
Diameter of the lead core (mm) 60
Thickness of the laminated steel (mm) 1.5
Number of layers of the laminated steel 17
Thickness of the rubber (mm) 3.39
Number of layers of the rubber 18
First shape coefficient 22.12
Second shape coefficient 4.92
Height of the SLRB (mm) 106.5

2.2 Working principle of the sliding lead rubber
bearing

The SLRB integrates the features of sliding
bearings and lead rubber bearings. It can protect
bridges by adapting to deformations caused by tem-
perature, vehicle impacts, and concrete creep under
normal conditions, and has a seismic isolation func-
tion during an earthquake. The working principle of
the SLRB can be summarized as follows (Xing et al.,
2012). When the lower LRB initially generates a tiny
displacement, the shear force is transmitted directly to
the upper sliding device. As the shear displacement
increases, the upper sliding device will work and
glide on the Teflon plate if the shear force of the LRB
exceeds the maximum static friction force of the
Teflon-stainless steel interface. The upper fixing plate
will hit the baffle after the relative sliding displace-
ment of the upper device reaches the design slide
limit, and the LRB begins to show typical bi-linear
hysteretic dissipation characteristics. The above pro-
cedures can be summarized as ‘slide-isolation’;
namely, the upper device slides first and then both the
two parts of the SLRB act as a seismic isolation en-
tirety. During the unloading stage, LRB first recovers
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vertically after reaching the maximum displacement,
and then the next ‘slide-isolation’ circulation starts.

3 Finite element model of the sliding lead
rubber bearing

ANSYS/LS-DYNA is a widely used explicit FE
program package. It contains more than 200 material
models and an advanced contact algorithm, making it
capable of solving complicated problems in material
nonlinearity, geometrical nonlinearity, and contact
nonlinearity. Here, the ANSYS/LS-DYNA code is
used to develop the FE model of the SLRB. The
pre-processing of the model is done using the ANSY'S
Parametric Design Language (APDL) and an exe-
cutable input file of the model is achieved. Then
modifications of material models and contact rela-
tions are required in the file before the file is sub-
mitted to the LS-DYNA processor. The developed FE
model of the SLRB is illustrated in Fig. 3, which
includes 14128 solid hexahedron 8-node elements
(Solid 163) and 17 164 nodes.

(a)

Top connection plate/
i Baffle
Bottom connection plate

Loading plate

~._Laminated rubbers
——and steels

(b)

VW ‘
Top connection {1
plate  Teflon plate

.. Baffle

b Upper fixing plate

~ Laminated rubbers

"
L[N

!
TS IO

Laminated steelf:/ =

Bottom connection plate - Lead core

/

Fig. 3 Finite element model of the sliding lead rubber
bearing

(a) Total analytical model; (b) Semi-model of the sliding
lead rubber bearing

Obvious differences can be found between the
original configuration of the SLRB and the FE model.
Besides, certain design parameters of the materials
need to be modified to enable the implementation of
the analysis.

3.1 Simplification and modification for the finite
element model

1. In dynamic explicit FE analyses, reduced in-
tegral elements are usually preferred to achieve rea-
sonable runtime which, however, may cause unde-
sired hourglass models in some cases, especially in
the case of poor mesh or when subjected to concen-
trated forces. To avoid this problem, both rubber
layers and steel shims are modeled by full integration
S/R solid elements (defined by the keyword
*ELEMENT SOLID) in this study.

2. In the manufacturing process of the SLRB,
rubbers and steels are glued together by vulcaniza-
tion. Adjacent steels are connected tightly by bolt. All
of these relations are assumed to be fully bonded and
simulated by common nodes in the FE model of the
SLRB.

3. As illustrated in Figs. 1 and 2a, part of the
Teflon plate is embedded in the upper fixing plate,
while in the FE model, the Teflon plate is modified to
be on the top of the upper fixing plate for conven-
ience. The stainless steel is removed in the FE model
and the top connection plate slides directly on the
Teflon plate. In addition, the outside rubber covering
of the lower LRB is neglected due to the computa-
tional cost since its thickness is very small.

3.2 Time step size of the finite element model

One major difference between the configuration
and the FE model of the SLRB is the thickness of the
laminated steels. As listed in Table 1, their actual
thickness is 1.5 mm and it is smaller than that of the
rubber, while in the FE model, the thickness of the
laminated steels is magnified several times and it is
larger than that of the rubber (Fig. 3b).

In explicit FE analyses, the computational cost
of a project is negatively correlated with the time step
size (Af) in each cycle, and At is obtained by taking
the minimum value over all elements (Hallquist,
2014):

At = a~min{Atel,Atez,...,Ate’,...,Ate”}, (D)

where n is the number of elements and Az, is the

critical time step size (CTSS) of the ith element. The
scale factor a is typically set to a value of 0.90 for
stability reasons.
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For beam and truss elements, the CTSS is given
by

At, =

L @
C

where L is the length of the element and ¢ the wave
speed of relative materials satisfying

c= E, 3)
e,

with £ Young’s modulus and p the density.

The influence of these three parameters (L, E,
and p) on the CTSS of solid elements is similar to that
on the CTSS of beam elements, meaning that the
CTSS has positive correlation with the size and den-
sity of elements, and a negative one with Young’s
modulus (Hallquist, 2014).

According to Egs. (1)—(3), the time step size At
of the SLRB model is determined primarily by an
element of the laminated steels in the case of no
modifications, and the CTSS of the element is much
smaller than others’ since the Young’s modulus of
steels is the largest and the thickness of the laminated
steels is the smallest. In this case, the computational
cost will be out of control.

Under these circumstances, it is necessary to
activate the in-built mass scaling (or density scaling)
technique supplied by ANSYS/LS-DYNA to enlarge
the CTSS of certain elements. However, as shown in
Egs. (2) and (3), the CTSS is proportional to the
square root of the density, in which case CTSS will be
magnified by approximately 10 times when magni-
fying the density of beam elements by 100. None-
theless, it will be more efficient by magnifying the
length of elements since Af, is proportional to the
length of elements.

On the other hand, taking circular LRBs as an
example, the vertical stiffness can be calculated by
Eq. (4) (SAC, 2006), and the horizontal bi-linear
mechanical properties can be defined by Egs. (5)—(8)
(Sugita et al., 1994):

451Gd;
&= l6nt: ’ @

K, =65K,, (5)

K=" (©)

u
F=4Gy+Agq, (N
0, = qu()’ (®)

where K, is the vertical stiffness, G is the shear
modulus of rubber, d. is the diameter of the laminated
steel, n is the number of rubber layers, 7. is the
thickness of the rubber layers, K, and Ky are the pre-
and post-yield stiffnesses, respectively, 4Ar and 4, are
the cross sectional areas of the rubber and the lead
core, respectively, y is the shear strain of rubber, F is
the resilience of the bearing, ¢ is the cross section
shear stress of the lead core which is a function of the
shear strain y, g is the shear stress of the lead core
when the shear strain of it is zero, Qq is the charac-
teristic strength of the bearing, and u represents the
target displacement of the bearing.

According to Egs. (4)—(8), the vertical stiffness
and the horizontal mechanical properties of LRBs are
theoretically irrelevant to the thickness, Young’s
modulus, and density of the laminated steels. There-
fore, the mass scaling technology and the modifica-
tions of the thickness, as well as Young’s modulus, of
steels are all employed to magnify the CTSS of lam-
inated steels to a considerable degree. The thickness
of the laminated steels is modified from 1.5 mm to
8 mm, the Young’s modulus of steel is modified from
210 GPa to be the same as that of lead, i.e.,
16.46 GPa, and the density will be magnified auto-
matically by the software. All of these modifications
will inevitably lead to errors. However, as verified
above, these errors are practically negligible since the
mechanical properties of rubber bearings are deter-
mined mostly by the design parameters of the rubber
rather than those of the steel.

In the FE model, other constitutive parameters
are set to be normal ones. The steel material has a
Poisson’s ratio of 0.30, and is assumed a bi-linear
elastoplastic constitutive law with 10% strain hard-
ening ratio and a von Mises yield criterion with
0,235 MPa (*MAT_PLASTIC_KINEMATIC). The
lead core is assumed to have a Young’s modulus of
16.46 GPa, a Poisson’s ratio of 0.44, and ideal elas-
toplastic constitutive law with its yield stress 16 MPa
(*MAT_PLASTIC KINEMATIC). For the rubber
layers, a hyperelastic material law, Mooney-Riviln
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model (*MAT MOONEYRIVLIN RUBBER), is
employed, and three material constants in this model
are set as C;=0.1633 MPa, C,=0.03267 MPa, and
Poisson’s ratio 0.4999. The Teflon plate is assumed to
be an elastic material (*MAT_ELASTIC) with a
Young’s modulus of 300 MPa and a Poisson’s ratio of
0.4.

With all the aforementioned modifications for
the FE model of the SLRB, the time step size At of the
model is increased from 2.4x107 s to 3.5x10°° S,
which means that the computation time is reduced by
about 93.1% and the computational cost is signifi-
cantly reduced.

3.3 Contact relations in the finite element model

In the SLRB, the stainless steel plate is supposed
to slide on the Teflon plate, and the baffle is used to
control the displacement of the sliding device. The
lead core is hooped tightly by its surrounding rubbers
and steels. All of these interactions are simulated by
*CONTACT series in ANSYS/LS-DYNA. The
common keyword *CONTACT AUTOMATIC
SURFACE TO SURFACE SMOOTH is used to
simulate the possible contact between the upper fix-
ing plate and the baffle, in which the friction coeffi-
cient is set to be 0.04. However, this keyword cannot
simulate the sliding contact between the Teflon plate
and the top connection plate very well, because the
mesh grid of the slave elements will block the hori-
zontal displacement of the intrusive master nodes.
Instead, the keyword *CONTACT ONE WAY
AUTOMATIC SURFACE TO SURFACE SMOOTH
is employed to simulate the interactions since it does
not check whether the master nodes penetrate into the
slave mesh grid, and the friction coefficient in this
keyword is set as 0.055. In addition, to simulate the
actual loading conditions of the SLRB, a loading plate
is placed on the top of the bearing. The size of the
loading plate is 1000 mmx1000 mm>200 mm, and
the material of the plate is steel with Young’s modu-
lus 210 GPa and Poisson’s ratio 0.3 (*MAT
ELASTIC). The contact between the loading plate
and the bearing is also analyzed by the keyword
*CONTACT AUTOMATIC SURFACE TO
SURFACE SMOOTH with a friction coefficient of
0.4. Besides, the contact caused by an interference fit
between the lead core and its surrounding items, in-
cluding laminated rubbers, steels, bottom connection

plate, and upper fixing plate, can be well simulated by
the keyword *CONTACT TIED SURFACE TO
SURFACE SMOOTH, and the friction coefficient is
also set to be 0.4.

4 Loading equipment and procedures

As illustrated in Fig. 2b, a specimen of the SLRB
was developed based on the parameters in Table 1.
The vertical compression and nonlinear shear per-
formances of the bearing were experimentally inves-
tigated. The tests were carried out on a large
press-shear machine (PSM) (Fig. 4) in Huazhong
University of Science and Technology, Wuhan,
China.

Fig. 4 Loading equipment

In the compression tests, the bearing was loaded
three times, in which the pressure increased from
0 MPa to the maximum pressure and then decreased
to 0 MPa. The effective section area of the bearing
was 70686 mm’, the vertical design pressure was
10 MPa (SAC, 2006), and the corresponding vertical
loading force Py was 707 kN. The third load data were
analyzed and the vertical stiffness K, was calculated
by

K, =(h-R)/(Y,=Y), ®

where P;=0.7Py, P,=1.3P are the smaller and larger
loading forces, respectively, and Y; and Y, are the
corresponding vertical displacements.

In the compression shear tests, a series of cor-
relation tests on the shear properties were designed to
examine the influence of different conditions. In the
shear strain correlation tests, the vertical pressure of
5 MPa was applied linearly and kept constant until the
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end of the tests. Sinusoidal shear displacements with
the peak values of 30, 50, 80, 100, and 120 mm were
applied respectively to the bottom connection plate.
In the compression pressure correlation tests, the
vertical pressures were 2.8, 5, 10, and 12 MPa, re-
spectively, and the peak value of the shear displace-
ment was 50 mm. The loading frequency of all the
shear displacements was 0.1 Hz.

5 Numerical simulation and analysis of results
5.1 Numerical simulation

Based on the FE model of the SLRB, numerical
simulations of the compression and compression
shear tests discussed above have been conducted. To
accurately simulate the boundary condition of the
bearing, the displacements along the x- and y-
directions of the top and side surfaces of the loading
plate, as well as the displacements along the y- and
z-directions of the bottom connection plate, were
constrained for all the tests. It is necessary to point out
that all materials in the FE model are rate-
independent, which was also made in other research
(Ali and Abdel-Ghaffar, 1995; Doudoumis et al.,
2005; Weisman and Warn, 2012; Ohsaki et al., 2015),
meaning that the rate-dependent effect of materials is
neglected in this study. Besides, the computational
cost of the explicit analysis is directly relevant to the
load duration (Hallquist, 2014). Therefore, the ex-
perimental loading frequency of 0.1 Hz was modified
to be 1 Hz in numerical simulations to reduce the
runtime of the explicit analyses by about 90% without
causing theoretical errors.

5.2 Compression test

According to the loading procedure of the ex-
periment, vertical forces of 0.7P; and 1.3P, were
applied on the top surface of the loading plate, and the
distribution of the vertical displacement is shown in
Fig. 5. The vertical displacement is larger along the
+z-axis with the largest displacements being 0.556 mm
(Fig. 5a) and 1.068 mm (Fig. 5b), from which the
vertical stiffness of the SLRB can be calculated as
follows:

_(13-0.7)x707

. kN/mm = 828.5 kN/mm. (10)
1.068 - 0.556

The percentage error between the numerical re-
sult 828.5 kN/mm and the experimental result
862 kN/mm (Xing et al., 2012) is 3.9%. In the nu-
merical simulation, it is observed that K, is affected
directly by the Poisson’s ratio of rubber. In this study,
the Poisson’s ratio of rubber was 0.4999, and the
corresponding bulk modulus of rubber was

_ E N G
__0392MPa _ 1.96 GPa,
1-2x%x0.4999

which is consistent with existing findings on the bulk
modulus of rubbers (Constantinou et al., 1992).

( a) NODAL SOLUTION

uz (RVG)

SMN =-.556228

SMX =.554E-03

I
-.556228 —.432499 -.30877 -.18504 -.061311

—.454364 —.370634 —.246505 -.12317¢ .554E-03

(b) NODAL SOLUTION
Uz (2VG)

SMN =-1.068
SMx =.001038

T
-1.068 —.830558
-.943357

~.592959
-.71175% -.47416

—.35536 -.117762
-.236561 .001038

Fig. 5 Vertical displacement (mm) of the sliding lead
rubber bearing model: 0.7P, (a) and 1.3P, (b)

5.3 Compression-shear test
5.3.1 Compression

1. Rubber layer

Fig. 6 illustrates the first principal stress of the
intermediate rubber layer under a vertical pressure of
5 MPa. It is observed that the first principal stress
ranges from —4.934 MPa to —3.238 MPa. The second
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and third principal stress distributions of the inter-
mediate rubber layer are almost the same as the first
one and they are not shown here. These results indi-
cate that the laminated rubber layers are in a tri-axial
compression state, and this is the reason for the large
vertical stiffness of bearings.

ELEMENT SOLUTION
s1 (NOAVG)
SUN =-4.934
SMX =-3.238

-3.427 -3.238

e
-4.557 4369 -4.18 -3.992

-4.934 -4.745 -3.803 -3.613

Fig. 6 First principal stress of the intermediate rubber
layer

2. Lead

Fig. 7 shows the stress and strain state of the lead
when the vertical pressure of 5 MPa was applied to
the bearing. Obviously, the lead is bulging outward
with the largest displacement along the x-axis of
0.011 mm. The largest von Mises stress within the
lead is 13.85 MPa. It should be noted that both ends of
the lead have already undergone plastic deformation
even if no additional lateral load was applied, and the
effective plastic strain was defined by

7 = jo %(épl Y (6" )de, (12)

where & is the effective plastic strain rate (Hallquist,
2014) and the maximum value of Eq. (12) is 1.8x107*.

5.3.2 Compression shear

1. Comparison of hysteresis curves

(1) Shear strain correlation

Due to the inaccuracy of the test facilities, the
actual peak values of the shear displacement were 29,
48, 77, 95, and 115 mm, respectively, which are all
somewhat smaller than the design values. Fig. 8
shows the hysteresis curves of the SLRB. It indicates
that both the experimental result and the numerical
result show the particular ‘slide-isolation’ property as

introduced in Section 2. Thus, the modeling method
for the SLRB in this study is capable of reproducing
the hysteresis properties of the SLRB very well, in-
cluding the pre-yield stiffness, post-yield stiffness,
sliding force, and maximum restoring force, which
demonstrates the accuracy of the developed FE model
of the SLRB. However, there still exist some errors in
the unloading yield shear force, which result mainly
from all the modifications of the SLRB model and the
assumptions of material models, including ideal
elastoplastic model for lead and the Mooney-Rivlin

(a) NODAL SOLUTION
(AVG)

SMN =-.0111
SMX =.0105
x
-

o
-.0111 -.0087 -.0063 -.0039 -.0015 .0009 .0033 .0057 .0081 .0105

ELEMENT SOLUTION

(b) - SEQV (NOAVG)
SMN =4.17
SMX =13.85
x
N -
4.17  5.25 6.32 7.4 8.48  9.55 10.63 11.7 12.78 13.85
ELEMENT SOLUTION
(c) EPPLEQV  (NOAVG)
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Fig. 7 States of the lead at the vertical pressure of 5 MPa
(a) Displacement (mm) along x-axis; (b) von Mises stress
(MPa); (c) Effective plastic strain
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Fig. 8 Hysteresis curves with different shear strains

model for rubber, and both of them are set as
rate-independent.

(2) Vertical pressure correlation

After applying the shear displacement of 50 mm
under different vertical pressures (2.8, 5, 10, and
12 MPa) to the bearing, the comparison of hysteresis
curves from experiment with those from simulation is
illustrated in Fig. 9. It is noted that the vertical pres-
sure has a relatively large effect on the hysteresis
curve of the SLRB. In Figs. 9a and 9b, both experi-
mental and numerical results indicate that the work-
ing principal of the SLRB is ‘slide-isolation’. How-
ever, as shown in Fig. 9¢c, with the increase of vertical
pressure, the working principal changes from ‘slide-
isolation’ to ‘isolation-slide’, which means that the
upper sliding device and the lower LRB first act as a
seismic isolation entirety and then the upper device
begins to slide when the shear force is larger than the
maximum static force. After the friction force has
exceeded the largest restoring force of LRB under the
vertical pressure of 12 MPa, the upper sliding device
loses functionality and the hysteresis curve can
characterize only the shear performance of the lower
LRB (Fig. 9d). In sum, hysteresis curves from nu-
merical simulation are consistent with the experi-
mental ones.

2. Comparison of the deformed shapes

Fig. 10 shows the deformation of the SLRB in
experiment and numerical simulation. In Fig. 10a, the
top plate of the bearing is fixed, and the bottom plate
is dragged by the compression shear test machine
along one direction without undesired rotation. The
laminated rubbers undergo obvious large shear de-
formation. It is noted that the deformed shapes in the
numerical simulation are very consistent with those in

Force (kN)

Force (kN)

Force (kN)

Force (kN)

40

Simulation
Experiment

Displacement (mm)

—— Simulation
fffff Experiment

Displacement (mm)

—— Simulation . \7, -
fffff Experiment ”

-40 -20 0 20 40
Displacement (mm)

(a) 2.8 MPa; (b) 5 MPa; (¢) 10 MPa; (d) 12 MPa

371

Fig. 9 Hysteresis curves at different vertical pressures
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experiment. In addition, as illustrated in Fig. 10b, the
laminated steels generate almost no shear displace-
ment even if their thickness has been magnified sev-
eral times. In other words, changing the thickness of
the laminated steels has almost no influence on the
distribution of shear displacement.

(b)

Fig. 10 Deformed shapes of the sliding lead rubber
bearing: experiment (a) and numerical simulation (b)

3. Verification of shear stress

To assess the accuracy of the stress states, the
shear stresses of the intermediate rubber layer at the
shear displacements of 29, 48, 77, 95, and 115 mm are
compared with the theoretical results respectively
(Table 2).

In Table 2, the shear strain y, the theoretical
shear stress 7, and the error Q are decided respectively
by Egs. (13)—(15):

D—1

L7 13

/4 " (13)

=Gy, (14)

0=9="7 (15)
T

where D is the shear displacement of the bearing, /
(/=15 mm in this study) is the interval between the
baffle and the upper fixing plate, H; is the total
thickness of the rubbers, G represents the shear
modulus, and o, is the shear stress of the rubbers
obtained from numerical simulations. Taking the
shear displacements of 48 and 115 mm as examples,

the shear stress distribution of the intermediate rubber
layer is plotted in Fig. 11. For simplicity, o, is de-
termined by picking the most widespread value. As
circled in Fig. 11, it is 0.2114 MPa for 48 mm and
0.6284 MPa for 115 mm.

As listed in Table 2, the errors between the the-
oretical and numerical results are very small and the
largest one is 2.18%, which again verifies the accu-
racy of the modeling method of the SLRB.

4. State of the lead

Fig. 12 shows the deformed shape of the lead
core, as well as the distribution of the von Mises stress
and plastic strain, subjected to the maximum shear
displacement of 115 mm and vertical pressure of
5 MPa. In Fig. 12a, a significant stretching of the lead
is observed, not only in shear but also in elongation.
From the distribution of the von Mises stress, the
stress has reached the yielding stress of 16 MPa over
the whole height of the core. Moreover, the lead core
has undergone a large plastic deformation with the
minimum and maximum effective plastic strains be-
ing 1.267 and 3.505.

5. Vertical stress state of rubbers

Fig. 13 shows the distribution of vertical stress
within rubbers with the shear displacement of
115 mm. It is observed that the largest tensile stress is
2.03 MPa at the left bottom margin and the right top
margin of the bearing, even if the compression pres-
sure of 5 MPa is applied. The reason for the largest
tensile stress at the right top margin is as follows. As
shown in Fig. 14, the top connection plate has been
separated from the Teflon plate when the bearing
undergoes a large shear displacement. This is because
the right bottom part of the bearing pulls its upper
part, which is also the reason for the tensile stress
showing at the right top margin. Through the analysis
of vertical stress state of rubbers, it is proposed that
the coherence of the steel-rubber interface should be
strong enough to sustain possible tensile stress in
practical situations, especially when a major earthquake

Table 2 Comparison of the shear stresses of rubbers

Shear displacement (mm) Shear strain, y (%) Theoretical shear stress, r (MPa) Actual shear stress, o,, (MPa) Error, Q (%)

29 22.90
48 54.10
77 101.60
95 131.10
115 163.90

0.08994
0.2120
0.3983
0.5139
0.6424

0.09007 0.15
0.2114 —-0.28
0.3944 —-0.98
0.5121 —-0.35
0.6284 —2.18
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Fig. 11 Shear stresses (MPa) in the intermediate rubber
layer

(a) Shear displacement of 48 mmy; (b) Shear displacement of
115 mm

-.6192 -.6146 -.6l -.6054 -.6008 -. 5962

occurs. Besides, more attention should be paid to dust-
proofing measures in bearings since the top connection
plate may get separated from the Teflon plate.

Finally, it is noteworthy that the elapsed time of
the shear correlation test in this study is 266 min. In
another study, the same numerical test, conducted by
implicit algorithm in ANSY'S with the same computer
(CPU: Intel Core 3.2 GHz (i5), RAM: 8.0 GB), takes
more than two days. Therefore, the modeling method
of the SLRB based on the explicit finite program
ANASYS/LS-DYNA has better performance in con-
trolling the computational cost of the numerical sim-
ulation of bearings.

6 Conclusions

In this paper, the FE model of the SLRB by the
explicit FE software ANSYS/LS-DYNA has been

NODAL SOLUTION
UX (RVG)

(@)

SMN =15.6
SMX =114.994

L.

I B
15.6  26.643 37.687 48.731 59.775 70.819 81.862 92.906 103.95 114.5%4

ELEMENT SOLUTION
(b) SEQV (NORVG)

DMX =114.994
SMN =9.575

SMX =15.997

[~

o _ —
9.575 10.288 11.002 11.716 12.429 13.143 13.856 14.57 15.284 15.997

ELEMENT SOLUTION
EPPLEQV  (NORVG)
DMX =114.594

SMN =1.267

SMX =3.505

()

L

I I
1.267 1.516 1.764 2.013 2.262 2.51

2.759% 3.007 3.256 3.505

Fig. 12 States of the lead at the shear displacement of
115 mm

(a) Displacement (mm) along x-axis; (b) von Mises stress
(MPa); (c) Effective plastic strain

developed. Numerical simulations of the compression
tests and a series of correlation tests on compres-
sion-shear properties for the bearing were conducted.
Numerical results have been evaluated by both ex-
perimental and theoretical studies. Major conclusions
are summarized as follows:

1. The time step size, At, in each cycle of the
SLRB model has been increased from 2.4x107" s to
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X
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Fig. 13 Vertical stress (MPa) of rubbers

NODAL SOLUTION
Uz (AVG)
SN =-1.9

Fig. 14 Vertical displacement (mm) of the SLRB’s top
part

3.5x107% s by proper modification of the design pa-
rameters of laminated steels, including the density,
Young’s modulus, and the thickness. These modifi-
cations were shown to have only minor influences on
the mechanical properties of the bearing.

2. All contact relations existing in the SLRB can
be well analyzed by three types of contact relations in
ANSYS/LS-DYNA.

3. The modeling method for the SLRB by the
explicit FE program is capable of reproducing the
vertical stiffness and particular hysteresis behaviors
of the SLRB. Besides, the shear stress of the inter-
mediate rubber layer obtained from numerical simu-
lations is very consistent with theoretical results.

4. In the numerical simulation, it is observed that
both ends of the lead core have already generated
plastic deformation even if no additional lateral load
is applied. Moreover, the lead core generated an ex-
tremely large plastic deformation when a shear dis-
placement of 115 mm was applied, with the minimum
and maximum effective plastic strains being 1.267
and 3.505, respectively.

5. Note that the explicit algorithm runs more ef-
ficiently than the implicit algorithm in the numerical
simulation of the SLRB.
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