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Abstract:    A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltonian 
systems to fractional Gaussian noise (fGn) with the Hurst index 1/2<H<1 is proposed. The averaged stochastic differential equa-
tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less than 
that of the original system. The stationary probability density and statistics of the original system are obtained approximately from 
solving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It is 
shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original 
system agree well, and the computational time for the former results is less than that for the latter ones. 
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1  Introduction 
 

Compared with Gaussian white noise, the formal 
derivative of classical Brownian motion, which has 
delta correlation, fractional Gaussian noise (fGn) has 
strong temporal correlation. Thus, the response of a 
dynamical system to Gaussian white noise is a dif-
fusive Markov process while the response of a dy-
namical system to fGn is not Markov process. fGn 
can be mathematical model of many natural, engi-
neering, and social phenomena. In fact, fractional 
Brownian motion (fBm) and fGn have already been 
applied as models in physics (Zunino et al., 2008; 
Sliusarenko et al., 2010), finance (Ni et al., 2009; Gu 

et al., 2016), and biology (Kou and Xie, 2004; Li and 
Ai, 2012). 

The calculus and the stochastic differential 
equations (SDEs) with respect to fBm are quite 
complicated and still in development (Biagini et al., 
2008; Mishura, 2008). Since the response of a dy-
namical system to fGn is a non-Markov process and 
the Fokker-Planck-Kolmogorov equation cannot be 
applied to obtain the probability and statistics of the 
response, the study of a dynamical system (especially 
a nonlinear system) driven by fGn is very difficult and 
challenging. So far, the exact sample solution has 
been obtained only for the Ornstein-Uhlenbeck sys-
tem excited by fGn (Cheridito et al., 2003; Kaarakka 
and Salminen, 2011). Therefore, it is necessary to 
develop some asymptotic or approximate analytical 
methods for predicting the response of nonlinear 
dynamical systems to fGn. 

The stochastic averaging method, especially the 
stochastic averaging method for quasi Hamiltonian 
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systems, is a powerful approximate analytical method 
in nonlinear stochastic dynamics. It has already been 
applied to solve a series of problems in mechanics, 
physics, chemistry, and biology (Zhu et al., 1997; 
2002; Deng and Zhu, 2012). So far, the stochastic 
averaging method has been developed for Gaussian 
white noise, Poisson white noise, wide-band station-
ary noise, narrow-band bounded noise, harmonic 
functions, and any combination of them (Zhu et al., 
1997; Huang et al., 2002; Deng and Zhu, 2007; Zeng 
and Zhu, 2011; Jia and Zhu, 2014). Recently, the limit 
theorem for SDE with respect to fBm and the sto-
chastic averaging principle have been established (Xu 
et al., 2014a; 2014b). Thus, it is possible to develop a 
stochastic averaging method of quasi Hamiltonian 
systems excited by fGn. In fact, the stochastic aver-
aging method for quasi non-integrable Hamiltonian 
systems excited by fGn has been successfully devel-
oped (Deng and Zhu, 2016). 

In this paper, a stochastic averaging method for 
quasi partially integrable Hamiltonian systems ex-
cited by fGn is developed. First, the definition, cor-
relation function, spectral density, pathwise integral, 
and differential rule for fBm and fGn are briefly in-
troduced. Then, the averaged fractional SDEs for 
quasi partially integrable and non-resonant Hamilto-
nian systems excited by fGn are derived. Furthermore, 
two systems excited by fGn are studied by using the 
proposed stochastic averaging method, and the sta-
tionary probability densities and statistics are calcu-
lated and compared with those from simulation of 
original systems to verify the proposed stochastic 
averaging method. 

 
 

2  Some preliminaries 

2.1  fBm and fGn 

The fBm BH(t) is a fractional integral with re-
spect to standard Brownian motion B(t). However, the 
fractional integral has different definitions, which 
result in different properties of fBm BH(t) (Sithi and 
Lim, 1995; Kou and Xie, 2004). In this paper, the 
Weyl type of fractional integral is used, which leads 
to fBm BH(t) with a stationary increment. 

The Weyl type of fBm BH(t) is defined as 
(Mandelbrot and van Ness, 1968) 
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where t and s indicate the time; the Hurst index is 
1/2<H<1; BH(0)=0; the coefficient CH in the original 
definition was given by Mandelbrot and van Ness 
(1968): 
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where Γ represents gamma function. Usually, it is 
more convenient to use the symbol BH(t) to denote 
unit fBm, and then the coefficient CH becomes  
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Some strict proofs of the normalized coefficient CH in 
Eq. (3) are given by Mishura (2008). 

As a rigorous definition, the unit fBm with Hurst 
index 0<H<1 is defined as a centered Gaussian pro-
cess with the following properties:  

 

( 0) 0,HB t                                                     (4a) 
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22 2

[ ( ) ( )]

1
     ( ), , 0.

2

H H

HH H

E B t B s

t s t s t s    
         (4c) 

 
The increment BH(t)−BH(s) is a stationary Gaussian 
process with the following mean and covariance:  
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22[( ( ) ( )) ] , , 0.

HH HE B t B s t s t s           (5b) 

 
Eq. (5b) leads to the useful formulas: 
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Mandelbrot and van Ness (1968) also introduced 
fGn to model fractional random noise. A unit fGn 
WH(t) is defined as the formal derivative process of 
unit fBm, i.e., 

 

0
( ) ( )d or ( ) d ( ) d .

tH H H HB t W s s W s B t t      (7) 

 
The following auto-correlation function of fGn was 
given by Papoulis (1991): 
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When H=1/2, the auto-correlation function R(τ) in 
Eq. (8) is equal to the Dirac delta function δ(τ), the 
auto-correlation function of Gaussian white noise. 

In this paper, only the fGn with the Hurst index 
1/2<H<1 is considered. The power spectral density 
(PSD) S(ω) of fGn for 1/2<H<1 can be obtained from 
the correlation function in Eq. (8) by using the  
Wiener-Khintchine relation as follows: 
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Figs. 1a and 1b respectively show the comparison of 
Eqs. (8) and (9) with the simulated results. The sim-
ulation results are obtained using Eqs. (1) and (7). It is 
seen that the auto-correlation function in Eq. (8) and 
the PSD in Eq. (9) are acceptable.  

2.2  Pathwise integrals with respect to fBm and 
differential rule 

There are several definitions of fractional inte-
gral with respect to fBm (Biagini et al., 2008; 
Mishura, 2008). The most natural and simple one is a 
pathwise integral, which is defined as 
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where ti−1≤ti′≤ti. The pathwise integrals can be clas-
sified into three different types, depending on the 
value of ti′. The first type is the symmetric pathwise 
integral when ti′=(ti−1+ti)/2: 
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where ( )d ( )Hf s B s   denotes the symmetric path-

wise integral. When H=1/2, Eq. (11) is the Stratono-
vich integral.  

The second type is the forward pathwise integral 
when ti′=ti−1: 
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where ( )d ( )Hf s B s  denotes the forward pathwise 

integral. Eq. (12) reduces to the Itô integral when 
H=1/2.  

The third type is the backward pathwise integral 
when ti′=ti: 
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This third type of pathwise integral is seldom used but 
the first and second types of pathwise integral are 
used widely in theoretical and practical studies. The 
fractional SDEs corresponding to these two integrals 
can be established. For instance, the SDE associated 
with the forward pathwise integral is of the form:  

 

d ( ) ( , )d ( , )d ( ),HX t X t t X t B t              (14) 

 
which means that it is necessary to use the forward 
pathwise integral to perform further mathematical 
operation on Eq. (14), where α(X, t) and β(X, t) are 
measurable processes. The stochastic process X(t)  
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produced by the SDE (Eq. (14)) is referred to as the 
fractional forward process (Biagini et al., 2008).  

In this paper, the SDEs associated with sym-
metric and forward pathwise integrals are used. The 
difference between these two types of SDEs can be 
simplified as 
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When H=1/2, the right hand side of Eq. (15) indicates 
the Wong-Zakai correction terms. When H>1/2, these 
terms will vanish since they are of higher orders  
infinite-smaller than dt. Therefore, the following 
symmetric fractional SDE is equal to Eq. (14): 
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Suppose X(t) is governed by Eq. (14) and 

Y(t)=f(X(t), t). The differential rule for a fractional 
SDE established by Biagini et al. (2008) is of the 
form: 
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The differential rule can be extended to the n- 
dimensional case. Assume that X(t) is governed  
by the following n-dimensional forward fractional 
SDE: 
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vector of m independent unit fBm and the Hurst in-
dexes are H1, H2, …, Hm>1/2. Then, the forward 
fractional SDE for Y(t)=f(X(t)) is 
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where fX=[∂f/∂x1, ∂f/∂x2, …, ∂f/∂xn]

T. 
 
 

3  Stochastic averaging 
 
Consider a quasi Hamiltonian system governed 

by the following equations:  
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where Qi and Pi are the generalized displacements and 

momenta, respectively; =(Q, P) is the Hamilto-

nian with continuous partial derivatives; ε is a small 
parameter; ε2Hcij=ε

2Hcij(Q, P) are functions repre-
senting coefficients of quasi linear damping; εHfik= 
εHfik(Q, P) are functions representing amplitudes of 

excitation; ( )H
kW t  are the independent unit fGns with 

the Hurst index 1/2<H<1.  
According to Section 2, Eq. (20) can be modeled 

as the following fractional SDEs in the sense of a 
symmetric pathwise integral: 

Fig. 1  Comparison of auto-correlation function R(τ) (a) 
and PSD S(ω) (b) of fGn WH(t) with the simulated results 
(▼ ◆ indicate simulated results) 
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Due to the vanishing difference between sym-

metric and forward pathwise differentials (Eq. (15)), 
SDEs (Eq. (21)) are equivalent to the following for-
ward pathwise SDEs: 
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A Hamiltonian system of n degrees of freedom 

(DOFs) can be classified according to the number of 
independent first integrals (conservative quantities or 

motion constants) 1(q, p), 2(q, p), …, r(q, p), 

which are in involution (Tabor, 1989). q=[q1, q2, …, 
qn]

T, p=[p1, p2, …, pn]
T. The Hamiltonian system is 

called non-integrable if r=1, integrable (or completely 
integrable) if r=n, and partially integrable if 1<r<n. 
Suppose that the Hamiltonian system with Hamilto-

nian  associated with Eq. (22) is partially integrable. 

That is, the Hamiltonian system has r (1<r<n) inde-

pendent first integrals 1, 2, …, r which are in 

involution. Specifically, the Hamiltonian is assumed 
to be of the form: 
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where q1=[q1, q2, …, qr−1]

T, p1=[p1, p2, …, pr−1]
T, 

q2=[qr, qr+1, …, qn]
T, p2=[pr, pr+1, …, pm]T ;η and r 

are the r independent first integrals in involution. 
Eq. (23) indicates that the partially integrable Ham-
iltonian system consists of an integrable part and a 

non-integrable part. For the integrable part, action- 
angle variables Iη and θη can be introduced. Thus, 
Eq. (23) can be rewritten as 
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where I=[I1, I2, …, Ir−1]

T. The integrable part of a 
partially integrable Hamiltonian system could be 
resonant and non-resonant, just as for integrable 
Hamiltonian system (Zhu et al., 1997). Here only the 
non-resonant case is considered. 

Applying the differential rule for fBm in Eq. (19), 

the following SDEs for Iη, Θη, and r can be derived 

from Eq. (22): 
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Now, the system is governed by Eq. (25), the last 

n−r+1 equations for Qi and the last n−r equations for 

Pi in Eq. (22). Iη and r are slowly varying processes 

while Θ1, Θ2, …, Θr−1, Qr, Qr+1, …, Qn, Pr+1, Pr+2, …, 
Pn are rapidly varying processes. Thus, the averaging 
principle (Xu et al., 2014a; 2014b) can be applied to 
obtain the following averaged fractional SDEs for Iη 

and r:  
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where ( , ),rm I H  ( , ),r rm I H  ( , ),k r I H  and 

( , )rk r I H  can be obtained from the coefficients in 

Eq. (25) through time averaging. Thus, in the sense of 
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probability and mean square, Iη and r in the original 

system Eq. (22) could be approximated by Iη and r 

in the averaged SDEs (Eq. (26)). Since the 2(r−1)- 
dimensional integrable sub-Hamiltonian system is 
ergodic on a (r−1)-dimensional torus and 2(n−r+1)- 
dimensional non-integrable sub-Hamiltonian system 
is ergodic on a [2(n−r)+1]-dimensional isoenergetic 
surface, the time averaging can be replaced by space 
averaging (Zhu et al., 2002). The coefficients in av-
eraged Eq. (28) can then be obtained as follows: 
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and 
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  (28) 

 

The stationary probability density p(I, r) can 

be obtained from the simulation of Eq. (26). Then the 
stationary probability density p(q, p) can be obtained 

from p(I, r) as follows (Zhu et al., 2002): 
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    (29) 

 

The marginal stationary probability density and sta-

tistics can be obtained from p(I, r) and p(q, p) by 

integration. Note that the averaged Eq. (26) is much 
simpler than the original Eq. (22). The dimension of 
the former is less than a half of that of the latter, and 

Eq. (26) contains only slowly varying processing r 

and I. Thus, the computer time for simulating Eq. (26) 
is much less than that for Eq. (22). 

To verify the validity of the proposed stochastic 
averaging method, two examples are worked out as 
follows. 

 
 

4  Example 1 
 
Consider a 4-DOF quasi partially integrable 

Hamiltonian system subject to fGn excitation. The 
equations of the system are of the form: 
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where 

 32 2 2 2
3 4 3 3 4 4( , ) 6.U Q Q k Q Q                (31) 
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ωj, αij, and k are positive constants; ( )H
kW t  are unit 

fGns with the Hurst index 1/2<H<1; 2Dk are intensi-
ties of excitations; αij and Dk are assumed of the order 
of ε2H. Eq. (30) can be recast into the form of Eq. (22). 

The Hamiltonian  associated with system Eq. (30) is 

 

1 2 3 1 1 2 2 3 ,I I      H H H H H     (32) 

where 
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As U(q3, q4) is not separable, system Eq. (30) is a 

quasi partially integrable Hamiltonian system with 

three independent first integrals I1, I2, and 3. Sup-

pose that it is non-resonant. The following averaged 
fractional SDEs can be obtained:  
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The averaged drift and diffusion coefficients and 

T(3) are  
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The stationary probability density p(I1, I2, 3) 

can be obtained from the simulation of Eq. (34). The 
stationary joint probability density p(q1, q2, p1, p2) can 

be obtained from p(I1, I2, 3) using Eq. (29) and the 

stationary marginal probability densities p(q1, q2), 

p(q1, q3) and other statistics, such as 2
1[ ],E Q  2

2[ ],E Q  
2
3[ ],E Q  and 2

4[ ],E Q  can then be calculated from p(q1, 

q2, p1, p2) as follows: 
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(36) 
 

Figs. 2–5 show some numerical results for the 

stationary probability densities p(I1), p(I2), p(3), p(I1, 

I2), p(I1, 3), mean values E[I1], E[I2], E[3], and 

mean square values 2
1[ ],E I  2

2[ ],E I  2
3[ ]E H  of action 

variables and sub-Hamiltonian simulated from SDE 
Eq. (34) and the original system Eq. (30), respectively. 
The probability densities p(q1), p(q2), p(q3), p(q4), 

p(q1, q2), p(q1, q3) and mean square values 2
1[ ],E Q  

2
2[ ],E Q  2

3[ ],E Q  2
4[ ]E Q  of displacements calculated 

by using Eq. (36) are shown in Figs. 6–8 (p.712). It is 
seen from these figures that the results simulated from 
the averaged SDE Eq. (34) agree well with those from 
the original system Eq. (30).  
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Fig. 2  Contours of stationary probability density p(I1, I2) and p(I1, 3) of system Eq. (30) 

(a) Simulated from the averaged fractional SDE Eq. (34); (b) Simulated from original system Eq. (30). The parameters are 
α10=α20=0.05, α30=α40=0.01, α13=α14=α23=α24=0.01, α31=α32=α41=α42=0.02, α11=α22=α33=0, α44=α34=α43=0, α12=α21=0.01, ω1

2=3, 
ω2

2=4, ω3
2=5, ω4

2=6, D1=D2=D3=D4=0.04, k=3, and H=0.75 
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Fig. 3  Stationary probability density p(I1) (a), p(I2) (b), and p(3) (c) calculated from the averaged SDE Eq. (34) and 
from the original system Eq. (30), respectively (the parameters are the same as those in Fig. 2) 
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Fig. 4  Mean values E[I1], E[I2], and E[3] simulated from the averaged fractional SDE Eq. (34) and the original system 
Eq. (30), respectively (the parameters are the same as those in Fig. 2) 
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 Fig. 7  Stationary probability densities p(q1), p(q3) (a), and p(q2), p(q4) (b) simulated from the averaged fractional SDE 

Eq. (34) and the original system Eq. (30), respectively (the parameters are the same as those in Fig. 2) 
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Fig. 6  Contours of stationary probability densities p(q1, q2) and p(q1, q3) of system Eq. (30) 
(a) Simulated from the averaged fractional SDE Eq. (34); (b) Simulated from the original system Eq. (30). The parameters are the 
same as those in Fig. 2 

Fig. 5  Mean square values E[I1
2], E[I2

2] (a), and E[3
2] (b) simulated from the averaged Eq. (34) and the original system 

Eq. (30), respectively (the parameters are the same as those in Fig. 2) 
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For 10 000 samples, the simulation time of the 

original system Eq. (30) is 81.452 s on the i5-2400 
CPU @ 3.10 GHz computer, while it takes 34.625 s to 
simulate SDE Eq. (34). 

 
 

5  Example 2 
 
Consider the following 3-DOF quasi Hamilto-

nian system: 
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where 

   3 32 2 2 2 2 2 2 2
2 2 3 3 2 2 3 3

2 3( , ) + .
2 4

Q Q b Q Q
U Q Q

    
   (38) 

 

αij and b>0 are constants; ( )H
kW t  are unit fGns with 

the Hurst index 1/2<H<1. The Hamiltonian associ-

ated with system Eq. (37) is 
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System Eq. (37) is a quasi partially integrable Ham-
iltonian system if αij and Dk are of the order of ε2H. 
The averaged fractional SDEs are of the form: 
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where the drift and diffusion coefficients can be ob-
tained as follows: 
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where 
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p(I1, 2) is directly simulated from the original sys-

tem Eq. (37) and averaged fractional SDE Eq. (41), 

respectively. E[I1], E[2] and 2
1[ ],E I 2

2[ ]E H  can  

be obtained by integration. The joint stationary  
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the original system Eq. (30), respectively (the parameters 
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probability density of generalized displacements and 

momenta is calculated from p(I1, 2) as follows: 

 

2 2 2
1 1 1 1 1

2 2
2 2 3 2 3

1 2
( )/(2 ),

2
( )/2 ( )

( , )
( , ) .

2π ( ) I p q

p p U q q

p I
p

T   

   

q p

H

H
H

        (44) 

 

Then, p(q1, q2), p(q1, q3) and 2
1[ ],E Q  2

2[ ],E Q  2
3[ ]E Q  

can be calculated from Eq. (44) by integration. Some 

numerical results for p(I1, 2), p(I1), p(2), E[I1], 

E[2], and 2
1[ ],E I 2

2[ ]E H  are shown in Figs. 9–12, 

and those for p(q1, q2), p(q2, q3), p(q1), p(q2), p(q3), 

and 2
1[ ],E Q  2

2[ ],E Q  2
3[ ]E Q  are shown in Figs. 13–15. 

It is seen that the error between the results calculated 
from averaged fractional SDEs and those from orig-
inal system is acceptable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

For 10 000 samples, the simulation time of the 
original system Eq. (37) is 61.984 s on the i5-2400 
CPU @ 3.10 GHz computer, while simulation of SDE 
Eq. (41) requires 23.341 s. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Contours of stationary probability density p(I1, 2) 

of system Eq. (37) 
(a) Simulated from the averaged fractional SDE Eq. (41); (b) 
Simulated from the original system Eq. (37). The parameters 
are α10=α20=α30=−0.08, α12=α13=0.01, α21=α31=0.02, α11=α22= 
α33=0.01, α23=α32=0.04, ω1=1.414, ω2=1, ω3=1.732, b=1, D1= 
0.005, D2=0.01, D3=0.015, and H=0.75 
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6  Conclusions 
 
The response of a dynamical system to fGn is not 

a Markov process and the classical diffusion process 
theory cannot be applied to predict the response. That 
makes the study of nonlinear dynamics with fGn 
excitation very difficult. In this paper, a stochastic  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
averaging method for predicting the response of quasi 
partially integrable and non-resonant Hamiltonian 
systems to fGn with 1/2<H<1 has been proposed. The 
prominent advantage of this method is that the di-
mension of the averaged fractional SDEs is less than a 
half of that of the original system and the averaged 
fractional SDEs involve only slowly varying pro-
cesses. Thus, the computation time for simulating 

Fig. 13  Contours of stationary probability densities p(q1, q2) and p(q2, q3) of system Eq. (37) 
(a) Simulated from the averaged fractional SDE Eq. (41); (b) Simulated from the original system Eq. (37). The parameters are the 
same as those in Fig. 9 
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averaged fractional SDEs is much less than that for 
original system. The results of two examples have 
shown that the probability density and statistics of 
first integrals simulated from averaged fractional 
SDEs and those from the original system agree well 
while the error between probability density and the 
statistics of displacements calculated from averaged 
fractional SDEs and those from the original system is 
acceptable. Therefore, the proposed stochastic aver-
aging method is quite promising.  
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中文概要 
 

题 目：分数阶高斯噪声激励下拟部分可积哈密顿系统的

随机平均法 

目 的：提出预测分数阶高斯噪声激励下拟部分可积非共

振哈密顿系统的稳态响应的方法。 

创新点：现有文献中，对于分数阶高斯噪声激励下动态系

统响应的研究，多为单自由度或二自由度线性系

统，而本文的方法针对的是多自由度强非线性系

统，可预测分数阶高斯噪声激励下的多自由度强

非线性系统的稳态响应。 

方 法：1. 根据分数阶布朗运动的顺式积分原理及其随机

微分规则，将分数阶高斯噪声激励下的多自由度

强非线性系统模型化为分数阶高斯噪声激励下

的拟部分可积哈密顿系统。2. 运用随机平均原理

进行降维，得到维数更低的分数阶随机微分方程

组，由此，原系统可被这组方程近似代替。3. 运

用数值方法求解分数阶随机微分方程组，得到原

系统的近似稳态响应。 

结 论：1. 从平均后的分数阶随机微分方程组模拟得到的

近似稳态响应与原系统方程模拟得到的稳态响

应吻合度较高，说明了此方法的有效性。2. 模拟

平均后的分数阶随机微分方程组的时间比模拟

原系统方程的时间短很多，说明此方法效率高。 

关键词：分数布朗运动；分数高斯噪声；拟部分可积哈密

顿系统；随机平均法；稳态响应 

 
 
 


