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Abstract: Optimizing the operation of coal-fired power plants to reduce nitrogen oxide (NOx) emissions requires accurate mod-
eling of the NOx emission process. The careful selection of input parameters not only forms the basis of accurate modeling, but can 
also be used to reduce the complexity of the model. The present study employs the least squares support vector machine-supervised 
learning method to model NOx emissions based on historical real time data obtained from a 1000-MW once-through boiler. The 
initial input parameters are determined by expert knowledge and operational experience, while the final input parameters are 
obtained by sensitivity analysis, where the variation in model accuracy for a given set of data is analyzed as one or several input 
parameters are successively omitted from the calculations, while retaining all other parameters. Here, model accuracy is evaluated 
according to the mean relative error (MRE). This process reduces the parameters required for NOx emission modeling from an 
initial number of 33 to 7, while the corresponding MRE is reduced from 3.09% to 2.23%. Moreover, a correlation of 0.9566 
between predicted and measured values was obtained by applying the model with just these seven input parameters to a validation 
dataset. As such, the proposed method for selecting input parameters serves as a reference for related studies. 
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1  Introduction 
 

Coal-fired power plants represent a major 
component of electrical power generation, accounting 
for 41.3% of the world’s electricity in 2013 (IEA, 
2015). However, coal is not a clean resource, and its 
combustion introduces numerous undesirable air 
pollutants into the ambient surroundings. One of the 
most significant pollutants affecting the global at-

mosphere is the nitrogen oxides (NOx), which result 
in damage to the environment, producing effects such 
as acid rain, photochemical smog, greenhouse effects, 
and the depletion of stratospheric ozone (Liu et al., 
2011; Tang et al., 2012). These conditions not only 
represent severe threats to human health, but also lead 
to economic loss (Wei et al., 2007). Owing to the 
negative impact of NOx, various technologies in-
cluding selective catalytic reduction (SCR) (Wang et 
al., 2005; Xu et al., 2014; Xiang et al., 2015), selec-
tive non-catalytic reduction (SNCR) (Modlinski, 
2015), over-fire air (Fan et al., 2010; Li et al., 2013; 
Kuang et al., 2014), and low-NOx burners (Zhou et 
al., 2014, 2015, 2017), have been developed to con-
trol NOx emissions. Among these technologies, the 
optimization of power-plant operating parameters 
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offers substantial potential for reducing the NOx 
emissions of coal-fired power plants based on the 
premise that optimized operation minimizes NOx 
emissions. Moreover, optimized operation parameters 
are more time and cost efficient and easier to imple-
ment than other technologies (Wei et al., 2013). 

The operating parameter optimization approach 
must first establish a model that accurately describes 
the relationship between NOx emission and the oper-
ating parameters. Modeling NOx emissions includes 
two main steps: the selection of the modeling ap-
proach, and the selection of the input parameters. In 
recent years, modeling approaches, such as principle 
component analysis (PCA), partial least squares 
(PLS), artificial neural network (ANN), support 
vector machine (SVM), and least squares support 
vector machine (LSSVM), have been intensively 
studied. Khajehsharifi et al. (2017) used PCA to pre-
dict the proportions of three pyrimidine bases in-
cluding uracil, cytosine, and thymine when mixed 
together. Junhom et al. (2017) applied PLS regression 
combined with Fourier transform infrared (FTIR) 
microspectroscopy to predict the resistance to hepa-
tocellular carcinoma. Hattori and Otsuka (2013) em-
ployed PLS regression based on the use of datasets, 
integrating both the near-infrared (NIR) spectra and 
the physical properties of granules to predict the 
process parameters of tablet compression, such as the 
displacements of upper and lower punches. PCA and 
PLS are used to make regression models, but they are 
especially suitable for linear modeling, or weak non-
linear modeling (Thissen et al., 2004; Malegori et al., 
2017). The combustion process is a highly nonlinear 
and strong coupling process, so PCA and PLS are not 
suitable for modeling NOx, whereas ANN, SVM, and 
LSSVM are well suited to nonlinear modeling. A 
back-propagation neural network (BPNN) was used 
to model the unburned carbon in bottom ash of a 
210 MW coal-fired boiler, and a genetic algorithm 
(GA) was used to find the optimum operating pa-
rameters to reduce the unburned carbon in bottom ash 
(Ilamathi et al., 2013; Yin et al., 2017). A multilayer 
perceptron (MLP) was used to establish a NOx model 
for a tangentially coal-fired boiler (Zhou et al., 2004). 
A globally enhanced general regression neural net-
work (GE-GRNN) was developed to model multiple 
objectives of boilers including coal mass flow rate, 
NOx, and loss on ignition (Song et al., 2017). A cas-

caded fuzzy neural network (CFNN) was employed to 
predict the break size of loss-of-coolant accidents 
(LOCAs) in nuclear power plants (Choi et al., 2017). 
The combination of an ANN and a particle swarm 
algorithm (PSO) was presented to model the 
dew-point pressure in retrograded condensate gas 
reservoirs (Ahmadi et al., 2014c). In short, the ANN 
has many variants and is widely used in modeling, but 
ANN models have difficulty obtaining a stable solu-
tion and are prone to over-fitting (Smrekar et al., 
2013; Zhang and Liu, 2017). Using an SVM based on 
structural risk minimization, it is impossible to be-
come trapped in local minima, and SVM has better 
generation than ANN (Ahmadi et al., 2014a; Ahmadi 
MH et al., 2015). Zhou et al. (2012) applied SVM to 
model NOx emissions from coal-fired utility boilers 
and compared an SVM model with BPNN and GRNN 
models, and the results showed that the SVM model 
was better. As a development of the standard SVM, 
LSSVM replaces the traditional quadratic program-
ming in SVM with linear least squares criteria for the 
loss function. As a result, LSSVM not only inherits 
the advantages of SVM, including a unique solution 
and substantial generalization ability, but also dra-
matically reduces the training time, by solving a 
group of linear equations instead of a quadratic pro-
gramming problem (Laurain et al., 2015). Owing to 
the advantages of LSSVM, it has been extensively 
applied in many fields requiring modeling, such as 
thermal power generation (Gu et al., 2011; Samui et 
al., 2015), petroleum engineering (Ahmadi and Ebadi, 
2014; Ahmadi et al., 2014b, 2014d, 2015a, 2015b; 
Ahmadi, 2015), and chemical engineering (Ahmadi 
and Bahadori, 2015b; Ahmadi et al., 2015c, 2015d). 
Therefore, LSSVM was used in the present study. 

The proper selection of input parameters can be 
expected to have a crucial influence on modeling 
results. If an inappropriate input parameter that has 
only a slight or even negative effect on the modeling 
outcome is selected, it not only increases the model’s 
complexity, but also reduces its accuracy. Therefore, 
the present study focused predominantly on the se-
lection of input parameters. The LSSVM models were 
trained using historical operational data obtained 
from a 1000-MW ultra-supercritical once-through 
boiler with opposed swirling burners. The initial op-
erating parameters were selected based on expert 
knowledge and previous experience. However, the 
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final set of input parameters was determined by sen-
sitivity analysis to provide a trade-off between the 
model’s complexity associated with the number of 
input parameters and the desired accuracy of the 
prediction. The sensitivity analysis process reduced 
the parameters from an initial number of 33 to 7. The 
accuracy of the developed model was then verified 
using the remaining historical operational data. The 
LSSVM model based on the final seven input pa-
rameters gave sufficiently accurate predictions of 
NOx emission from the modeled boiler.  

In this paper, we first present a brief review of 
LSSVM. Then, we describe the development process 
for the NOx emissions model. At last, we focus on the 
selection of input parameters.  

 
 

2  Review of LSSVM 
 
LSSVM was first proposed by Suykens and 

Vandewalle (1999) and has been described in detail 
elsewhere (Suykens et al., 2002). The LSSVM algo-
rithm for nonlinear function estimation is reviewed 
briefly as follows. 

Given a training set {xi, yi}, i=1, 2, …, N, where 
n

i x   for n inputs, ,iy   and N is the number of 

samples, the regression formula in the primal weight 
space is 

 

 T ( ) ,b y ω x                            (1) 

 
where ω is a weight vector, and b represents a bias 
term, both of which require a solution; φ(·) maps the 
input parameters into a high dimensional feature 
space, which may even be infinite. The optimization 
problem for Eq. (1) when applying LSSVM can be 
transformed into the following form, according to the 
structural risk minimization: 
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where C is a regularization parameter that seeks a 
trade-off between model complexity and estimation 
accuracy (Ahmadi and Bahadori, 2015a), and ei is the 
regression error. The solution is subject to the equal-
ity constraints:  

T ( ) , 1,  2, , .i i iy b e i N   ω x           (3) 

 
Considering the special structure of the opti-

mization problem, the following Lagrangian is  
constructed: 
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where αi is the Lagrange multiplier. Because Eq. (4) 
satisfies the Karushe-Kuhne-Tucker conditions 
(Fletcher, 1987; Zhang et al., 2015), the difference 
equation of Eq. (4) is expressed with respect to ω, b, 
ei, and αi, respectively, and the conditions for opti-
mality are given by  
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After ω and ei are eliminated, the following solution 
is obtained: 
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where y=[y1; y2; …; yN], 1v=[1; 1; …; 1], α=[α1; α2; …; 
αN], I denotes the identity matrix, and Ω is expressed 
as 
 

T( ) ( ) ( , ),    , 1,  2, , .ij i j i jK i j N    x x x x    (7) 

 
Here, K(xi, xj) is the kernel function, which satisfies 
Mercer’s conditions (Suykens et al., 2001). There-
fore, the resulting LSSVM model for nonlinear func-
tion estimation becomes 
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3  Development of a NOx emission model 

3.1  Brief description of the boiler 

The ultra-supercritical once-through boiler used 
in the present study has a large furnace with a cross 
section of 15.56 m×33.97 m and a height of 69.7 m. 
Fig. 1 shows a schematic of the boiler. It is equipped 
with six medium-speed mills, here defined as mills A, 
B, C, D, E, and F, where, under the rated load, five are 
placed into operation and one is held in reserve. Each 
mill is employed to supply pulverized coal to eight 
swirling burners in a layer. Taking the front wall as an 
example, three layers of swirling burners are includ-
ed, which, from bottom to top, are denoted as layers 
A, B, and C, respectively. Two side air ports (SAPs) 
are fixed over the upper swirling burners, one near the 
left wall and the other near the right wall. Similar to 
the arrangement of the swirling burners, eight after air 
ports (AAPs) are arranged in a layer at the top. Both 
the SAPs and AAPs are swirling air ports. The ar-
rangement of these nozzles in the rear wall is equiv-
alent to that in the front wall, and the swirling burners 
are denoted, from bottom to top, as layers F, E, and D, 
respectively.  

3.2  Selection of initial input parameters 

The initial input parameters required for the 
development of a NOx emission model using LSSVM 
were determined by expert knowledge and operation 
experience. This approach differs from the applica-
tion of first principles in which the input parameters 
are restricted by the equations describing the mecha-
nism, because not all possible parameters are essen-
tial. Here, NOx emission is the only objective of the 
model. Because NOx is produced mainly by the reac-
tion of oxygen with nitrogen and its compounds, NOx 
generation predominantly depends on coal and air 
supplies, so coal and air related parameters were se-
lected as the initial input parameters, in addition to a 
minor number of other parameters. The impact of 
these considerations on initial parameter selection is 
discussed in greater detail as follows. 

1. Coal. The quality and quantity of coal are the 
main factors affecting NOx emission. For the quality,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the carbon (Cad), hydrogen (Had), oxygen (Oad), ni-
trogen (Nad), sulfur (Sad), moisture content (Mt), ash 
(Aad), volatile matter (Vad) concentrations, along with 
the low heat value (Qnet,ar), were taken as inputs. Mt 
and Qnet,ar are analyzed based on as-received basis, 
while the others are based on air dried basis. Similar 
inputs have been chosen previously (Wu et al., 2009). 
Note that all these values are averages because the 
pulverized coal provided by the mills may exhibit 
some variability. For the quantity, the coal feeding 
rates of the six mills, defined as mca, mcb, mcc, mcd, 
mce, and mcf, were selected as inputs (Lv et al., 2015). 

2. Air. Coal-fired power plants generally employ 
two components of air divided according to their 
function, namely, primary air and secondary air. With 
regard to the impact of primary air on NOx generation, 
the primary air flow rates of the six mills namely mpa, 
mpb, mpc, mpd, mpe, and mpf were taken as inputs. 
One stream, denoted as over-fire air, is separated from 
the secondary air for the express purpose of control-
ling NOx generation. The over-fire air is employed in 
the SAPs and AAPs in an ultra-supercritical opposed 
swirling boiler. The air from the forced draught fans is 
distributed right and left via main air ducts to each 
bellow. Valves on the main air duct are responsible 
for adjusting the air flow by adjusting the pressure, 
which indicates that two valves are responsible for 
regulating the air flow for each bellow. Then, the air 

Fig. 1  Schematic of the 1000-MW ultra-supercritical 
once-through boiler 
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out of the bellows passes through the swirling burn-
ers, AAPs, and SAPs, and into the furnace. Note that 
each AAP and SAP layer on the same side shares a 
bellow. Although the ports are adjustable, they are 
almost fixed in the operation, because frequent ad-
justment shortens their life. Therefore, the valve 
openings on the main air ducts were selected as the 
input parameters reflecting the impact of secondary 
air and over-fire air on NOx emissions. Here, the av-
erage value of the two valve openings leading to each 
bellow or the air flow in each layer was regarded as a 
single parameter; thus, Va, Vb, Vc, Vd, Ve, and Vf de-
noted valves regulating each layer of secondary air, 
and Vof and Vor represented valves regulating over-fire 
air in the front and rear walls, respectively. In addi-
tion, the total air flow rate, defined as mta, from all 
branches was taken as an input parameter. Valve 
openings for secondary air and over-fire air, and the 
total air flow rate, have been employed previously 
(Lv et al., 2013).  

3. Other factors. Owing to an absence of data 
reflecting the temperature distribution inside a fur-
nace, which is very difficult to measure directly, the 
furnace outlet temperature (T) was selected as an 
input parameter. In addition, because changes in the 
working conditions are known to result from changes 
in the boiler load, the boiler load (Ld) was included as 
an initial input parameter. Finally, the oxygen (O2) 
content in the flue gas output from the furnace, which 
reflects the reduction or oxidation properties within 
the furnace, was also regarded as an input parameter. 
These parameters have also been applied in NOx 
models elsewhere (Li et al., 2013; Lv et al., 2013). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above analysis introduced 33 input param-
eters, and the initial input and output parameters for 
the LSSVM model are shown in Fig. 2. The final set 
of input parameters obtained after sensitivity analysis 
will be discussed in Section 4. 

3.3  Data acquisition and selection 

Currently, nearly all existing power plants are 
equipped with distributed control system (DCS). All 
the operational data employed in the present study, 
except the coal quality, were acquired from the DCS 
due to its numerous advantages, such as rapid collec-
tion and reduced interference with power plant oper-
ation compared to hot-state experiments. With respect 
to coal quality, no real-time data were obtainable 
owing to the unavailability of an online analyzer. 
However, the results of manual analysis, which could 
be used to perform the modeling, were recorded. Note 
that a time delay exists between NOx emission and the 
input parameters which results mainly from the 
measuring device. In general, according to experi-
ence, the value of NOx in the DCS is later by about 
40–60 s than the actual value, and in the present 
study, the delay was taken as 50 s. Therefore, to en-
sure the authenticity of the model, the value of NOx 
was collected 50 s after the input parameters. 

At a sampling frequency of 1 min−1, 21 315 op-
erational data points were acquired over about 15 
consecutive days of operation during which the boiler 
load varied from about 400 to 1000 MW. After the 
elimination of severe fluctuations in the boiler load, 
1500 operational data points representative of 25 h of 
boiler operation were finally selected for training  
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Fig. 2  Initial input and output parameters of the NOx emission model 
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purposes. However, not all of the data could be used 
to develop a NOx emission model, because some data 
are erroneous as the result of either faulty sensors or 
human error. These erroneous data must be identified 
and removed at the beginning of data selection, oth-
erwise the prediction accuracy of the resulting model 
will be compromised. In addition, those data points 
that represent a physically improbable trend should be 
omitted. For example, NOx emission will increase 
substantially as the oxygen content increases in the 
flue gas, and trends running counter to this are most 
likely erroneous. Data collected under unsteady con-
ditions including boiler startup and shutdown ad-
versely affect the LSSVM training process, and 
should also be omitted. 

After preprocessing, 1117 operational data 
points were selected for model training and valida-
tion. The ranges of the input parameters are listed in 
Table 1. From the total, 800 rows of data were used as 
LSSVM training data, and the remainder for the final 
validation of the developed model to verify its po-
tential usefulness in real-life applications. 

3.4  Model development 

The NOx emissions model was built using the 
LSSVM-supervised learning method. The Gaussian 
radial basis function (RBF) defined in Eq. (9) was 
used as a kernel function in the LSSVM model. The 
kernel parameter σ and the regularization parameter C 
have a direct impact on the generalization ability and 
regression accuracy of the model, and both serve as 
kernel tuning parameters. Here, a PSO algorithm 
(Kennedy and Eberhart, 1995; Eberhart et al., 2001; 
Khajehzadeh et al., 2011; Rezaei et al., 2016) was 
adopted to determine the optimal combination, in 
which leave-one-out cross-validation was employed 
as the fitness function. 

 

 2( , ) exp ,i iK x x x x                    (9) 

 

where σ is the kernel parameter and denotes the kernel 
width (Wang and Zhang, 2011). 

 
 

4  Results and discussion 
 
Sensitivity analysis was performed to determine 

the contribution made to the output by each initially 
selected input parameter. Input parameters with a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
small contribution typically increase the model com-
plexity, and can be excluded in accordance with the 
constraint associated with the desired model accura-
cy. This process was expected to significantly reduce 
the number of input parameters required for the 
LSSVM model. 

Table 1  Range of variation in input parameters 

Input variable Variation range 

Coal characteristic  

Cad (%) (in weight) [53.8, 57.3] 

Had (%) (in weight) [3.8, 4.0] 

Oad (%) (in weight) [20.3, 26.5] 

Nad (%) (in weight) [0.98, 1.04] 

Sad (%) (in weight) [0.25, 0.75] 

Mt (%) [22.3, 25.6] 

Aad (%) [3.4, 6.6] 

Vad (%) [40.0, 42.5] 

Qnet,ar (MJ/kg) [19.4, 20.8] 

Coal feeding rate (t/h)  

mca [52.6, 80.6] 

mcb  [0, 79.8] 

mcc  [0, 78.4] 

mcd [0, 79.0] 

mce  [47.4, 79.8] 

mcf  [53.8, 57.3] 

Primary air flow rate (t/h)  

mpa [127.8, 155.8] 

mpb [10.2, 146.1] 

mpc [0, 163.2] 

mpd [0, 158.6] 

mpe [113.6, 145.8] 

mpf [113.4, 140.0] 

Secondary air valve opening (%)  

Va [79.2, 98.6] 

Vb [0, 97.0] 

Vc [0, 95.6] 

Vd [78.1, 98.4] 

Ve [76.5, 99.2] 

Vf [0, 98.7] 

Over-fire air valve opening (%)  

Vof [0, 49.1] 

Vor [0, 48.1] 

Other factors  

Ld (MW) [397.6, 993.9] 

mta (t/h) [1685.1, 3306.4] 

O2 content (%) (in volume) [0.95, 4.58] 

T (°C) [310.2, 365.0] 

NOx emission (mg/m3) [139.2, 371.5] 
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The input parameters were again divided into 
three types: coal, air, and other factors. Here, the 
variation in model accuracy for a given set of data was 
analyzed as one or several input parameters were 
successively omitted from the calculations, while 
including all other parameters. Clearly, for accurate 
comparison, only the input parameters were varied, 
and all data associated with model training and vali-
dation had to remain unchanged for each set of input 
parameters. All parameters and settings employed in 
model training also had to remain unchanged for each 
set of input parameters. In addition, the outputs of all 
LSSVM models had to be compared according to an 
identical standard. Here, the mean relative error 
(MRE) was used to evaluate model performance, 
defined as  

 

1

ˆ1
MRE 100%,

N
i i

i i

y y

N y


                  (10) 

 
where yi and ˆiy  are the actual measured NOx emis-

sions and the corresponding predicted value, respec-
tively. In addition, each of the MRE values obtained 
was subjected to an averaging process involving ten 
repetitive computations to weaken the influence of 
randomness. As a result, the average value when 
using all initial input parameters was 3.09%, which 
was regarded as the base case with respect to the 
following analysis. Finally, in the following subsec-
tions, one or more input parameters were omitted and 
compared to the base case to observe the influence of 
individual parameters on NOx generation. Input pa-
rameters successively omitted and defined as cases 
were used to prove whether coupling existed among 
parameters. 

4.1  Effects of coal-related input parameters 

Fig. 3 shows the effect of coal quality on NOx 
emission. The MRE was not improved by the omis-
sion of any parameter related to coal quality. In fact, 
the MRE decreased with the omission of all coal 
quality parameters from the initial 33 input parame-
ters (Case 1). This indicates that the coal quality has 
no effect on NOx emission. Coal characteristics have a 
substantial impact on NOx emission in theory. How-
ever, in practice, mixed coal is as close as possible to 
the designed coal quality under normal conditions, 

such that the coal quality remains roughly unchanged, 
as shown in Table 1. This greatly limits the effect of 
coal quality on NOx emission in LSSVM models. 

Fig. 4 shows the effects of coal feeding rate on 
NOx emission for each of the six mills. The MRE was 
reduced when each of these input parameters was 
omitted separately, and the removal of all six simul-
taneously reduced the MRE to 2.96%. This indicates 
that these six parameters had no effect on the NOx 
emissions model and could be removed from the 
initial 33 input parameters. The generation of NOx is a 
very complex nonlinear coupling process, and the 
feeding rate has little effect on NOx production if the 
combustion is good, i.e. if it has a proper ratio of 
secondary air, a good furnace outlet oxygen concen-
tration, and a suitable furnace temperature. For ex-
ample, NOx emission was equivalently 200 mg/m3 
under both 953-MW and 654-MW loads, although the  
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coal feeding rates were different. The 953-MW load 
involved a feeding rate of about 61 t/h for each of the 
six mills, while in the case of the 654-MW load the 
upper mill in the rear wall was out of service, the 
feeding rate of the upper mill in the front wall was 
46 t/h, and those of the lower and medium mills in the 
front and rear walls were each about 61 t/h. In addi-
tion, in Case 2, in which the coal feeding rates of all 
six mills from Case 1 were removed, the MRE was 
reduced further to 2.92%. 

According to the results, all of the coal-related 
parameters could be removed from input parameters. 

4.2  Effects of air related input parameters 

Fig. 5 presents the MRE variation with the pri-
mary air flow omitted. Comparison with Fig. 4 indi-
cates that the impact of the primary air flow of each 
mill was mostly consistent with that of the coal 
feeding rate. The MRE became smaller compared to 
the base case when the primary air flows of the six 
mills were removed from the initial 33 input param-
eters. This is because the primary air flow was cal-
culated according to an appropriate coal to air ratio 
based on a given coal feeding rate. Moreover, on the 
basis of Case 2, the MRE decreased from 2.92% to 
2.35% with the removal of the primary air flows of all 
mills (Case 3). This not only reduces the MRE by as 
much as 0.57 percentage points, but also reduces the 
input parameters by six, which substantiates the ef-
fectiveness of the sensitivity analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

When the valve regulating each secondary air 
layer was omitted from the input parameters, the 

resulting MRE values were shown in Fig. 6a. All 
MREs in the six cases were smaller than that of the 
base case, indicating that any individual level of 
secondary air omitted had no effect on NOx genera-
tion. Then, the influences of any two, three, and up to 
six valve parameters on NOx generation were evalu-
ated to obtain the appropriate number. The resulting 
MRE values are given in Figs. 6b, 6c, and 6d, re-
spectively, for the cases where two, three, and four 
valves of the six secondary air layers were omitted. 
Compared to the base case, the MRE was reduced 
under some conditions in Figs. 6b and 6c, while in 
Fig. 6d, all of the MREs are greater. This indicates 
that half of the valve parameters should be retained, 
including the combinations Vf, Va, and Vb; Vf, Va, and 
Vc; Vf, Va, and Vd; Vf, Vb, and Vc; Vf, Vb, and Vd; Vf, Vb, 
and Ve; Vf, Vc, and Vd; Vf, Vc, and Ve. To determine 
which three valve parameters should be retained, on 
the basis of Case 3, each of these eight combinations 
was omitted individually. The results (Fig. 7) show 
that the MRE of only one combination, Vf, Vb, and Vc, 
was much lower than that of Case 3. Therefore, the 
three parameters Vf, Vb, and Vc were retained. Case 4 
was defined based on the omission of Ve, Va, and Vd 
from Case 3. The MRE was 2.24% (Fig. 7). 

Fig. 8 presents the effect of over-fire air on NOx 
emission. Relative to the base case, the MRE in-
creased without the valve regulating over-fire air in 
the rear wall, and decreased without it in the front 
wall. Therefore, in Case 5, which removes the valve 
regulating over-fire air in the front wall and retains 
the valve in the rear wall on the basis of Case 4, the 
MRE decreased to 2.2%, indicating the over-fire air in 
the rear wall had a significant impact on NOx emis-
sion. In operation, valve regulation of the over-fire air 
flow in the front and rear walls was nearly equivalent 
over time. However, a furnace arch was located over 
the AAP in the rear wall (Fig. 1). This furnace arch 
increased the residence time of the pulverized coal in 
the furnace, thereby strengthening the mixing of the 
flue gas. This increased the role of over-fire air in the 
rear wall in NOx generation, particularly for a boiler 
employing swirling flame burners. In contrast, be-
cause the flue gas directly entered the horizontal flue 
gas duct after passing through the over-fire air zone in 
the front wall, the furnace arch had almost no effect 
on the flue gas from the front wall. This contributed to 
its reduced role in NOx generation. 
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Fig. 6  Effects of only the valves regulating secondary air layers on MRE for model predictions of NOx emission 
(a) One valve parameter omitted; (b) Two valve parameters omitted; (c) Three valve parameters omitted; (d) Four valve param-
eters omitted 
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valves regulating secondary air layers for model predic-
tions of NOx emission on the basis of Case 3 
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Finally, when the total air flow was omitted, 
based on the base case, the MRE decreased to 2.94%, 
while based on Case 5 (herein denoted as Case 6) the 
MRE increased slightly from 2.20% for Case 5 to 
2.23%. This means that the total air flow was coupled 
with other parameters. However, since the increase 
was very slight, it indicated that the effect of the total 
air flow on NOx emission was negligible. Therefore, 
the total air flow could be removed from the initial 
input parameters. 

In this subsection, regarding the air-related input 
parameters, four valve parameters were retained, 
three of which regulate the secondary air, and one of 
which regulates the over-fire air in the rear wall. 

4.3  Effects of other input parameters 

Fig. 9 shows the variation in MRE in the absence 
of each of the input parameters reflecting boiler load, 
furnace outlet oxygen concentration, and furnace 
outlet temperature. The furnace outlet oxygen con-
centration had the greatest impact on the NOx emis-
sion model among all other parameters considered. 
With the omission of furnace outlet oxygen concen-
tration, the MRE increased 17.6% relative to that with 
all parameters included. The fact that nearly all types 
of NOx, including fuel NOx, thermal NOx, and prompt 
NOx, are produced by the oxidation of nitrogen or 
nitrogen compounds indicates the importance of ox-
ygen. A reduced furnace outlet oxygen concentration 
means that less oxygen is available for the oxidation 
of nitrogen, reduction of NOx is enhanced in the 
fuel-rich zone, and thus NOx formation is reduced 
(Hill and Smoot, 2000). In addition, of all the pa-
rameters considered, other than the furnace outlet 
oxygen concentration, the furnace outlet temperature 
had the greatest impact on NOx emission. NOx pro-
duction is highly influenced by temperature, particu-
larly thermal NOx. Thermal NOx makes the largest 
contribution to NOx emission after fuel NOx, ac-
counting for 15%–25% of the total, and its formation 
rate increases exponentially with increasing furnace 
temperature (Choi and Kim, 2009). For a furnace 
temperature in excess of 1500 °C, the rate of thermal 
NOx formation increases by a factor of 6–7 for a 
temperature increase of 100 °C (Cen et al., 2003). 
Therefore, both the furnace outlet oxygen concentra-
tion and temperature must be retained as inputs to the 
model. 

Finally, when only the boiler load was omitted 
from the input parameters, the MRE decreased. 
However, if it is omitted on the basis of Case 5, de-
noted as Case 7, the MRE increased from 2.2% to 
2.58%, as seen in Fig. 10, where the MRE values of 
all cases including the base case through Case 7 are 
compared. This indicates that the boiler load was 
coupled with some omitted parameters. To determine 
the parameters related to the boiler load, the parame-
ters omitted in Cases 1 to 6 were separately omitted 
together with the boiler load. We found that, except 
for the primary air flow, all the parameters were re-
lated to the boiler load, particularly the secondary air. 
Therefore, the correlated influence requires retaining 
the boiler load, along with the furnace outlet oxygen 
concentration and furnace outlet temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4.4  Final input parameters of LSSVM model 

According to the analysis presented in Sections 
4.1–4.3, the number of the final input parameters was 
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reduced to seven (Fig. 11), including the valves reg-
ulating the F, B, and C layers of secondary air, the 
valve regulating the over-fire air flow in the rear wall, 
the boiler load, the furnace outlet oxygen concentra-
tion, and the furnace outlet temperature. The NOx 
emission model developed with the seven input pa-
rameters was applied to the 317 rows of validation 
data. The prediction results are shown in Fig. 12. The 
MRE was 2.23% and the correlation between the 
predicted and measured values was 0.9566. Com-
pared to other NOx emission models developed using 
LSSVM with variable numbers of the input parame-
ters listed in Table 2, higher accuracy was achieved, 
and fewer input parameters were employed. 
 

 
5  Conclusions 

 
Recently, the optimization of operating param-

eters has been extensively studied with the aim of 
reducing the NOx emissions of coal-fired power 
plants. However, this approach cannot be applied in 
the absence of an accurate NOx emission model to 
establish the relationship between input parameters 
and the output objective. As such, accurate selection 
of significant input parameters is the crucial compo-
nent of any NOx emission model. In this paper, the 
LSSVM-supervised learning method was used to 
build a NOx emission model based on data obtained 
from a 1000-MW ultra-supercritical once-through 
boiler with swirling burners. The initial 33 input pa-
rameters were selected according to expert knowledge 
and operation experience. Sensitivity analysis, which 
seeks a trade-off between the accuracy and the com-
plexity of a model, was employed to determine the 
most significant input parameters affecting NOx 
emission, and the final seven input parameters were 
obtained: the boiler load, the furnace outlet oxygen 
concentration, the furnace outlet temperature, the 
valves regulating the upper and middle secondary air 
layers in the front wall and the lower secondary air 
layer in the rear wall, and the valve regulating the 
over-fire air flow in the rear wall. The MRE of the 
NOx emission model developed with these seven 
input parameters decreased to 2.23% from the value 
of 3.09% obtained with all 33 input parameters. In 
addition, when modeling the NOx emission using the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

final seven input parameters, a correlation of 0.9566 
was obtained between the model predictions and the 
measured values in the validation dataset. Therefore, 
the proposed approach for selecting significant input 
parameters provides a useful reference for the future 
modeling of other optimized systems in addition to 
coal-fired power plants. 

Fig. 11  Final input and output parameters for the NOx 
emission model 
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Fig. 12  Comparison between actual measured and pre-
dicted NOx emission values for the validation dataset 

Table 2  Comparison between the current study and 
several previous studies 

Study 
Number of input 

parameters 
MRE (%) 

Lv et al., 2013 27 7.5 

Lv et al., 2015 19 9.02 

Ahmed et al., 2015 43 5.88 

Current study 7 2.23 
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中文概要 
 

题 目：基于七个运行参数建立煤粉锅炉 NOx排放模型 

目 的：采用最小二乘支持向量机建立煤粉锅炉 NOx排放

模型，即建立输入参数与 NOx之间的关系。合理

选择输入参数不仅会降低模型的复杂度，而且会

提高模型的精度。为此，本文探讨各输入参数对

模型的影响，并最终保留合适数量的输入参数建

立 NOx排放模型。 

创新点：1. 采用最小二乘支持向量机建立 NOx排放模型；

2. 通过敏感性分析确定模型的最终输入参数。 

方 法：1. 根据专家知识及运行经验确定 NOx排放模型的

初始输入参数（图 2）；2. 根据锅炉的运行历史数

据，采用最小二乘支持向量机建立NOx排放模型；

3. 采用敏感性分析方法确定NOx排放模型的最终

输入参数（图 11），并用其进行建模以验证模型

的有效性。 

结 论：1. 采用最小二乘支持向量机建立的 1000 MW 超

超临界前后墙对冲锅炉 NOx排放模型，可靠性和

精度较高；2. 经过敏感性分析，NOx排放模型的

输入参数由初始的 33 个降为 7 个，模型的复杂度

降低且精度提高。 

关键词：氮氧化物；煤粉锅炉；最小二乘支持向量机；输

入参数；敏感性分析 

 
 
 
 


