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Abstract: This paper presents a bounded adaptive output feedback tracking control approach for flexible-joint robot manipulators 
with parametric uncertainties and bounded torque inputs, from a systematic perspective of different (weak or strong) joint flexi-
bilities. The singular perturbation theory and integral manifold concept are applied to decouple the dynamics of flexible-joint robot 
manipulators into a slow subsystem and a fast subsystem. A class of saturation functions is used to make the control law bounded, 
ensuring the torque control inputs are within the output limitation of the joint actuators. An adaptive control law of the projection 
type is adopted to handle the feed-forward term of the slow sub-controller with parametric uncertainties. Meanwhile, an ap-
proximate differential filter and a high-gain observer are utilized in the slow and fast subsystems, respectively, to estimate the 
unmeasurable states, making the complete closed-loop control with only position measurements of motors and links. Importantly, 
a corrective control scheme is proposed to break through the traditional singular perturbation approach and to make it feasible for 
robot manipulators with strong joint flexibility. Furthermore, an all-round and strict stability analysis of the whole control system 
is given. Finally, simulation results verify the superior dynamic performance of the proposed approach. 
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1  Introduction 
 
For flexible-joint robot manipulators, velocity 

measurements at joints and links are liable to be 
contaminated with external noise, and are frequently 
absent due to cost reduction of system hardware. 
Meanwhile, the joint actuators cannot offer the arbi-
trarily large torque required by the control law due to 
their limited power, and there always exist parametric 
uncertainties of the system model. However, the 

majority of existing control approaches have been 
designed without considering all these actual condi-
tions in one controller (Kiang et al., 2015; Nanos and 
Papadopoulos, 2015; Izadbakhsh, 2016; Ruderman 
and Iwasaki, 2016). 

The output feedback tracking (OFT) control 
approach (Park et al., 2011; Li et al., 2013; Chen and 
Ge, 2015; Tong et al., 2015; Hu et al., 2018), which 
has aroused increasing interest in the tracking control 
area in recent years, provides a possible route towards 
making a closed-loop tracking control system for a 
flexible-joint robot manipulator with only position 
measurements. For general nonlinear systems, an 
adaptive neural output feedback control scheme was 
presented in (Chen and Ge, 2015) to deal with un-
certainties and unknown external disturbances. By 
using the approximate output of the radial basis 
function neural network, the state observer and non-
linear disturbance observer are introduced to estimate 

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) 

ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 

www.jzus.zju.edu.cn; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 
 

* Project supported by the National Natural Science Foundation of 
China (No. 61203337), the Natural Science Foundation of Shanghai 
(No. 17ZR1400100), the Donghua University Distinguished Young 
Professor Program (No. B201309), and the Chen Guang Project 
Supported by Shanghai Municipal Education Commission and 
Shanghai Education Development Foundation (No. 13CG29), China 

 ORCID: Hua-shan LIU, https://orcid.org/0000-0002-8209-4922 
© Zhejiang University and Springer-Verlag GmbH Germany, part of 
Springer Nature 2018 

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/jzus.A1700485&domain=pdf


Liu and Huang / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2018 19(7):557-578 
 

558

unmeasurable states and unknown compound dis-
turbances, respectively. An output feedback dynamic 
surface control scheme was proposed by Tong et al. 
(2015), where a fuzzy adaptive observer is established 
to estimate the unmeasurable states. For robot ma-
nipulators, Park et al. (2011) proposed an adaptive 
output feedback controller for electrically driven 
non-holonomic mobile robots with parametric un-
certainties, where an adaptive observer was used to 
estimate the velocity signals. In (Li et al., 2013) a 
fuzzy adaptive output feedback controller was pre-
sented for a single-link robot manipulator with a 
non-rigid joint, where a fuzzy logic technique is uti-
lized to approximate the unknown nonlinear uncer-
tainties and to estimate the unmeasurable states.  

Especially for flexible-joint robot manipulators, 
Yoo et al. (2008) developed an adaptive observer by 
using self-recurrent wavelet neural networks to esti-
mate the velocity information of both links and joint 
actuators. In (Ulrich et al., 2014), a nonlinear adaptive 
output feedback control approach was suggested for 
space robot manipulators with flexible joints, where a 
direct adaptive control strategy was applied to stabi-
lize the rigid manipulator dynamics, and a simple 
linear control law was used to improve damping of 
vibrations at the joints. Loria and Avila-Becerril 
(2014) designed a tracking controller of the  
proportional-derivative (PD) type plus feedforward, 
where the link velocity measurements were avoided 
by an approximate differentiation method. As an 
extension of Loria and Avila-Becerril (2014), Avila- 
Becerril et al. (2016) used approximate differentiation 
for link velocity measurements and a Luenberger 
observer for motor velocity measurements. It is 
noteworthy that, Loria (2016) established a theoreti-
cal foundation that the use of observers can be obvi-
ated for output-feedback tracking control. 

From a review of previous studies, bounded 
control strategies are always necessary to handle the 
saturation problem of control input (Zhang and Liu, 
2012, 2013; Caverly et al., 2014a, 2014b, 2016). For a 
two-degree-of-freedom (2DOF) manipulator with 
flexible links, an observer-based bounded tracking 
controller is proposed by Zhang and Liu (2012), 
where a non-linear observer of the partial-differential-  
equation type is designed using boundary measure-
ments to estimate the positions and velocities of links. 
By the same authors, an adaptive bounded controller 

is presented in (Zhang and Liu, 2013) to regulate joint 
position and suppress elastic vibration with compen-
sating parametric uncertainties. For robot manipula-
tors with flexible joints, Caverly et al. (2014a, 2014b, 
2016) developed a series of bounded controllers con-
sidering modeling uncertainties. The control law 
presented in (Caverly et al., 2016) is composed of a 
bounded proportional term and a Hammerstein 
strictly positive real angular rate term, while the con-
trollers in (Caverly et al., 2014a, 2014b) are of the PD 
type involving different saturation functions. All the 
proposed controllers in (Caverly et al., 2014a, 2014b, 
2016) succeed in disallowing actuator saturation by 
guaranteeing that the applied torque is less than a 
specified maximum value. 

Motivated by the first saturated OFT controller 
proposed by Loria and Nijmeijer (1998), Liu et al. 
(2011) presented a generalized saturated OFT ap-
proach by using singular perturbation techniques, 
where a class of saturation functions was invoked in 
the control law, and linear and nonlinear filters were 
optionally involved to estimate the unmeasurable 
states. López-Araujo et al. (2013) proposed a satu-
rated OFT adaptive scheme for the global position 
stabilization of robot manipulators with bounded 
inputs, which imposed no saturation-avoidance re-
striction on the control gains. With respect to the 
existing saturated OFT controllers for robot manipu-
lators, almost all the controllers are designed for robot 
manipulators with rigid joints and links, and few are 
designed for those with flexible joints. 

Singularly perturbed modeling and control have 
been extensively studied for flexible-joint robot ma-
nipulators since they were first proved to be feasible 
in (Spong, 1987), due to the intuitive dynamic analy-
sis and simple decoupling process. Its fundamental 
principle is decoupling the complex flexible-joint 
robotic model into two low-order subsystems, then 
designing the corresponding sub-controller and ana-
lyzing the dynamics for each subsystem. Because of 
the inherent limitation of such a method, the applica-
ble precondition of it is that the joint flexibility must 
be weak enough, i.e. the stiffness of each flexible joint 
must be large enough, but in actual situations such a 
precondition is sometimes not satisfied. To make the 
singularly perturbed approach adaptable, it is possible 
to make flexibility compensation in the control 
scheme (Spong, 1987; Spong et al., 1987; Khorasani, 
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1992; Al-Ashoor et al., 1993; Liu et al., 2008; Yu and 
Chen, 2015). Spong (1987) and Spong et al. (1987) 
proposed a corrective controller devised to compen-
sate for the flexibility of the system, based on the 
reduced flexible model, which would embody the 
effects of the joint flexibility, by singular perturbation 
theory and the concept of the integral manifold. This 
flexibility compensation thinking exerted an important 
effect on subsequent related studies (Khorasani, 1992; 
Al-Ashoor et al., 1993; Liu et al., 2008; Yu and Chen, 
2015). It is often applied with adaptive or robust 
techniques for robotic systems with strong flexibility 
in (Khorasani, 1992; Al-Ashoor et al., 1993), espe-
cially for those free-floating space robot manipulators 
in (Liu et al., 2008; Yu and Chen, 2015). 

The main contribution of this work is that we 
propose a generalized bounded adaptive OFT (BA-  
OFT) control approach for flexible-joint robot ma-
nipulators with parametric uncertainties and bounded 
torque inputs. As far as we know, this is the first time 
that the bounded OFT control problem has been sys-
tematically addressed in the frame of singular per-
turbation theory, for flexible-joint robot manipulators 
considering different joint flexibility. Importantly, a 
corrective control-based scheme is proposed to re-
move the restriction that the traditional singular per-
turbation approach only applies to robot manipulators 
with weak joint flexibility thus making it also appli-
cable to those with strong joint flexibility. As a sec-
ond contribution, the bound of both (slow and fast) 
sub-controllers and composite controllers is assured 
by a class of smooth saturation functions and an 
adaptive control law of projection type that is also 
used to handle the parametric uncertainties. As a third 
contribution, an approximate differential filter and a 
high gain observer are applied to achieve OFT control 
and to guarantee the whole closed-loop control with 
only position measurements of motors and links. In 
addition, comprehensive and strict stability analysis 
of both the subsystems and the whole composite 
control system is given. 

 
 

2  Dynamics of flexible-joint manipulators 
 

The simplified dynamics of n  DOF flexible- 
joint robot manipulators can be written as (Spong et 
al., 1987; Ge, 1996): 

( ) ( , ) ( ) ( ),   M q q C q q q G q K θ q           (1) 

( ) ,  Jθ K θ q u                          (2) 

( ), Z K θ q                                 (3) 
 

where nq  and θ n denote the angular dis-

placements of the links and the motor shafts, respec-

tively, ( )M q n n  is the symmetric positive- 

definite inertia matrix, ( , ) n nC q q   is the centripetal- 

Coriolis matrix, ( )G q n  is the gravity vector, 

K n n  is a diagonal positive-definite matrix rep-

resenting the joint stiffness coefficient, J n n  is 

the inertia matrix of the motors, Z n  is the elastic 

torque vector at joints, and T
1 2[ , , ] n

nu u u u    is 

the control input vector of the motors. 
Assuming that all the stiffness coefficients ki 

(i=1, 2, …, n) are of the same order of magnitude, 
they are written as multiples of a single large param-
eter k, namely, 

 

,kK K                               (4) 
 

where K=diag{k1, k2, …, kn}, 1 2diag{ , , , }.nk k kK      

Without loss of generality, we order .K I  
The following properties will be utilized in the 

following control design and stability analysis (Ge, 
1996; Zergeroglu et al., 2000). 

Property 1    M(q) is a symmetric and positive- 

definite inertia matrix; for an arbitrary vector ,nx   

it satisfies the following inequality 
 

2 2T
1 2( ) ,m m x x M q x x                (5) 

 

where m1
 
and m2 are known positive bounded con-

stants, and ║x║ denotes the Euclidean norm of the 
vector x. 

Property 2    For an arbitrary vector x n , 
there exists  

 
T[ ( ) 2 ( , )] 0. x M q C q q x                    (6) 

 

Property 3    Eq. (1) can be expressed in a linear 
parameterization form 

 

 ( ) ( , ) ( ) ( , , ) ,  M q q C q q q G q Y q q q P           (7) 
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where P r  is the vector of robot parameters, 

( , , )Y q q q n r    is the corresponding matrix of 

known functions and its first two derivatives are 

bounded for an arbitrary vector .nq   We assume 

that each parameter is bounded as 
 

,i i ip p p                                 (8) 

 

where ip  denotes the ith component of P, ip   

and ip   are the ith components of rP   and 

,rP   respectively, which are defined as 

 
T T

1 2 1 2[ , , , ] , [ , , , ] .r rp p p p p p P P       (9) 

 

Property 4    For any arbitrary vector ,nx   

the time derivative of the inertia matrix and the  
centripetal-Coriolis matrix are upper bounded in the 
following manner: 

 

m c( ) , ( , ) ,  M x x C x x x            (10) 

 
where ζm and ζc are positive constants, and ║X║ de-
notes L2 norm of matrix X. 

To facilitate the expressions, we use M, C, and G 
to replace M(q), ( , ),C q q  and G(q), respectively.  

 
 
3  System modeling 

 
As the traditional singular perturbation approach 

can only be used in robotic systems with weak joint 
flexibility, in this section robot manipulators with 
weak flexibility and strong flexibility at joints are 
discussed separately. Specifically, for robot manipu-
lators with strong joint flexibility, a corrective control 
law is designed and added into the controller, which 
makes the traditional singular perturbation approach 
qualified to handle plants of such a kind. For both 
cases, the full-order nonlinear system described by 
Eqs. (1)–(3) is decoupled into a slow subsystem and a 
fast subsystem in the form of singularly perturbed 
systems. 

3.1  Robot manipulators with weak joint flexibility 
 
Multiplying both sides of Eq. (1) by M−1

 and 
substituting Eq. (3) into it, we obtain: 

 

1 2 1 ,  q a q a G A Z                       (11) 
 

where a1=−M−1C, a2=−M−1, and A1=M−1. 
We define the perturbation parameter μ=1/k, then 

substitute Eqs. (2) and (11) into Eq. (3), to obtain: 
 

1 2 2 2 ,     Z a q a G B u A Z             (12) 
 

where A2=−M−1−J−1 and B2=J−1. 
Eqs. (11) and (12) compose the singularly per-

turbed model of the robot manipulators with weak 
joint flexibility in the traditional form, where q is 
taken as the slow variable and Z as the fast variable. 
The full-order model (Eqs. (11) and (12)) represents a 
highly complex nonlinear system that is extremely 
difficult to analyze or to directly design the control 
laws for Al-Ashoor et al. (1993). 

Note that, when μ→0, i.e. k→∞, we have θ→q, 
and the control torque u becomes the slow control law 
us and we get the slow subsystem from Eqs. (1)–(3): 

 

s( ) .   M J q Cq G u                    (13) 

 
Eq. (13) indicates the rigid part of the flexible- 

joint robot manipulators. It is essentially equivalent to 
the model of rigid robots, so the sub-controller design 
for the slow subsystem can refer to those methods for 
such robots. 

Since the flexibility at joints may produce in-
creasing oscillations, and even lead to system insta-
bility, it is non-negligible in the system modeling. 
Here, to describe the joint flexibility, the fast sub-
system is introduced using the concept of the integral 
manifold. 

For system Eqs. (11) and (12), an integral man-
ifold is defined as 

 
( , , , ),Z h q q u                        (14) 

( , , , ),Z h q q u                         (15) 

 
where the function ( , , , )h q q u   is assumed to be 

sufficiently continuously differentiable in all of its 
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arguments in (Spong et al., 1987). For convenience, 
( , , , )h q q u   is written as h for short. 

Expanding u and Z in power series, respectively 
(Spong, 1987; Spong et al., 1987), 

 
2

0 1 2 ,n
n        Z h h h h         (16) 

2
0 1 2 ,n

n       u u u u u          (17) 
 

where h0 represents the desired elastic torque, u0 
indicates the slow control law, namely us. ui and hi 
(i=0, 1, …, n), represent the corresponding terms of 
the power series expansion of u and Z, respectively. 

Setting μ=0 in Eqs. (16) and (17), and then sub-
stituting them and Eq. (14) into Eq. (12), we obtain: 

 

0 1 2 2 0 2 0.     h a q a G B u A h            (18) 
 

The elastic torque error is defined as  
 

0 . η h Z                                (19) 
 

From Eqs. (12) and (18), we get the fast  
subsystem 

 
1 1 1

f( ) ,      η J M η J u              (20) 
 

where the fast control law uf 
is defined as 

 
2

f 1 2 .n
n      u u u u       (21) 

 

It is typical that almost all of the previous liter-
ature (Spong, 1987; Spong et al., 1987; Khosravi and 
Taghirad, 2014) focus on Eq. (20) to design the fast 
control laws, and thus it is necessary to calculate η 
and η  to obtain uf. Here we change the form of the 

fast system Eq. (20) by substituting Eq. (19) into it. 
 

1 1 1
f( ) ,       Z J M Z J u             (22) 

 

where f
u

 
represents the new fast control law based 

on the reshaped fast system Eq. (22) from Eq. (20), 
and the relationship with uf is 

 
1 1

f f 0 0( ) .      u u Jh J J M h        (23) 
 

Different from the commonly used model 
Eq. (20), the reshaped model Eq. (22) is actually a fast 

subsystem with a feedforward compensation. η and η  
are not involved in the model expression, which 
makes the design of the fast control law more feasible 
in engineering realization, i.e., the design of the fast 
sub-controller becomes a typical tracking issue to 
enable Z to track h0, thus the existing tracking ap-
proaches for the rigid robot manipulators can be used 
here to design the fast control law. 

Hence, for robot manipulators with weak joint 
flexibility, the dynamics is decoupled into a slow 
subsystem Eq. (13) and a fast subsystem Eqs. (22) and 
(23). 

3.2  Robot manipulators with strong joint flexibility 

As is known, for robot manipulators with strong 
joint flexibility, the traditional singular perturbation 
approach cannot be used directly in modeling the 
system. In this study, we use the integral manifold 
concept to design a corrective control law to artifi-
cially enhance the rigidity of the system and com-
pensate for the deviations caused by joint flexibility. 

Using the integral manifold defined by Eq. (14), 
the singularly perturbed model Eqs. (11) and (12) can 
be rewritten as 

 

1 2 1 ,  q a q a G A h                            (24) 

1 2 2 2 .     h a q a G B u A h             (25) 

 
Substituting Eqs. (14)–(17) into Eq. (12), we can 

obtain: 
 

2
0 1 2

2
2 0 1 2 1

2
2 2 0 1 2

( )

( )

( ).

n
n

n
n

n
n

   

  

  

    

      

      

h h h h

A h h h h a q

a G B u u u u

    
 

 
 

(26) 
 
In respect to the same powers of μ on both sides 

of Eq. (26), we have 
 

0
1 2 2 0 2 0: 0 ,     a q a G A h B u           (27) 

1
0 2 1 2 1: ,h A h B u                       (28) 

2
1 2 2 2 2: ,h A h B u                      (29) 

 

and in general  
 

1 2 2: .h A h B un
n n n                     (30) 
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Accordingly, from Eqs. (27)–(30), we have: 
 

1
0 2 1 2 2 0( ),  h A a q a G B u                (31) 

1
1 2 0 2 1( ), h A h B u                            (32) 

1
2 2 1 2 2( ), h A h B u                           (33) 

 
and in general 

 
1

2 1 2( ).n n n


 h A h B u                     (34) 

 
Noting that the perturbation parameter μ is a 

small constant, by neglecting the terms of high order 
in Eqs. (16) and (17), we have 

 

0 1, Z h h                                 (35) 
def

0 1 s ,  u u u u                          (36) 

 
where u1 is the corrective control law, and su  is the 

corrected slow control law.  
Substituting Eqs. (31), (32), (35), and (36) into 

Eq. (11), we get the corrected slow subsystem: 
 

1
1 2 1 2 1 2 2 0

1
1 2 0 2 1

1 1
1 1 2 1 2 1 2 2

1 1
1 2 2 0 1 2 0 2 1

( )

( )

( ) ( )

( ).









 

 

    

 

   

  

q a q a G A A a q a G B u

A A h B u

a A A a q a A A a G

A A B u A A h B u

  





   (37) 

 
On the other side, from Eqs. (17) and (36), the 

corrected fast control law can be obtained as 
 

2
f 2 .n

n    u u u               (38) 

 
As for that for robot manipulators with weak 

joint flexibility, the corrected fast subsystem can be 
presented as  

 
1 1 1

f( ) ,       Z J M Z J u          (39) 

 

where f
u
 
is the new corrected fast control law: 

 
1 1

f 1 f 0 0( ) .        u u u J h J J M h   (40) 

 
Hence, for robot manipulators with strong joint 

flexibility, the dynamics is decoupled into a slow 
subsystem Eq. (37) and a fast subsystem Eqs. (39) and 
(40). 

 
 

4  Controller design 
 
In this section, the control goal is first given, 

then a class of saturation functions that will be used in 
the bounded control is presented, and in the following 
part, corresponding to Section 3, taking the paramet-
ric uncertainties into consideration, bounded adaptive 
controllers for robot manipulators with weak flexi-
bility and strong flexibility at joints are designed 
separately. Finally, an approximate differential filter 
and a high-gain observer are introduced to change the 
proposed full-state feedback controllers into OFT 
controllers. 

4.1  Control goal 

The control objective is to design a controller 
with bounded torque inputs and only position meas-
urements of both motors and links, which will guar-

antee that the link displacements q n  will con-

verge asymptotically to the desired link displace-

ments dq n , where qd is assumed to be twice dif-

ferentiable. qd and its first two derivatives are 
bounded for all t>0: 

 

d d d d d dM M M
, , ,  q q q q q q        (41) 

 
where xM denotes the maximum value of variable x.  

In brief, the control goal can be expressed as 
 

(0) , lim ( ) ,n

t
t


  e e 0                       (42) 

 

where e(t)=qd−q is the tracking error of the link posi-
tion and is written as e for short. 

4.2  A class of saturation functions 

To make the torque inputs bounded, a class of 
saturation functions to be applied in the control law is 
defined as follows (Liu and Zhu, 2009, Liu et al., 
2011): 

 
T

1 1 2 2Sat( , ) [sat( , ), sat( , ), , sat( , )] ,n nx x x  x Δ   

(43) 
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where x=[x1, x2, …, xn]
T, Δ=diag{σ1, σ2, …, σn} is the 

saturation factor matrix used to change the ap-
proaching behaviour to the saturation bound and 
which can also be applied as fine-tuning parameters 
of the controllers, σi ≥1, i=1, 2, …, n. In addition, we 
use σm and σM to represent the minimum and the 
maximum values of σi, respectively. Some useful 
properties of the saturation function are as follows: 

(i) sat(xi, σi) is a monotone increasing function in 

the real domain, i.e. 
sat( , )

0i i

i

x

x





, .ix   

(ii) sat(xi, σi)xi ≥0, if and only if xi=0 and sat(xi, 
σi)=0, sat(xi, σi)xi=0, .ix   

(iii) |sat(xi, σi)|≤p, Sat( , ) ,n px Δ  ,ix   

,nx   where p is a positive constant. 

(iv) σM║x║≥α1║Sat(x, Δ)║, ,n x   where 

α1>0 is small enough. 
(v) Sat(x, Δ) is continuously differentiable and 

satisfies M

Sat( , )
,     

x Δ

Δ x
 ,n x   where β>0 

is large enough, and λM(X) stands for the largest ei-
genvalue of matrix X. 

(vi) There always exists a large enough constant 
α2>0, for all xΘη, σm║x║≤α2║Sat(x, Δ)║is satisfied, 

where { : },n x   x   η>0 is arbitrarily 

large. 
(vii) For all xΘη, there exists γ1>0 small enough 

and γ2>0 large enough to satisfy 
2

1 Sat( , ) x Δ  

2

20
1

sat( , )d Sat( , ) .
i

n x

i i i i
i

x x  


  x Δ  

4.3  Bounded adaptive controller for robot ma-
nipulators with weak joint flexibility 

Note that unbounded robot controllers usually 
show severe oscillations with large torque inputs at the 
joints, especially when there is a non-zero tracking 
error at the initial moment or/and external torque dis-
turbances. To handle this issue for flexible-joint ma-
nipulators, the saturation functions mentioned in Sec-
tion 4.2 are used to make the control law bounded.  

4.3.1  Slow control law 

The design of the slow control law is based on 
the slow subsystem Eq. (13), which indicates the rigid 
part of the flexible-joint robot manipulators, so the 

controller design can refer to the control methods for 
rigid robot manipulators. 

Considering the problems of toque input satura-
tion and parametric uncertainties, motivated by Liu et 
al. (2011), a generalized bounded adaptive slow con-
trol law is given as  

 

s d d

P D

ˆ ˆˆ ˆ( )

Sat( , ) Sat( , ),

   

 e e

u M J q Cq G

K e K K e K 

 


        (44) 

 

where
1 2P P P Pdiag{ , , , }

n

n nK K K  K  
 
and D K  

1 2D D Ddiag{ , , , }
n

n nK K K    
 
are the diagonal ma-

trices of proportional and derivative gains, respec-

tively. 
1 2

diag{ , , , }
n

n n
e e ek k k  eK    is the satura-

tion factor matrix of the link position error, 

1 2
diag{ , , , }

n

n n
e e ek k k  eK      is the saturation 

factor matrix of the link velocity error, and 

P D, 0,
i i

K K   , 1,
i ie ek k   i=1, 2, …, n. ˆ ,M  ˆ ,C  ˆ ,G  

and Ĵ  indicate the estimated values of M, C, G, and J, 

respectively. 

Defining ˆ , P P P  from Eq. (1) and Property 3, 

we can obtain: 
 

d d 1 d d d d( , , , ) ( ),    Mq Cq G Y q q q q P K θ q      (45) 

2 ( , , ) ,   Mq Cq G Z Y q q q P               (46) 

d d 1 d d
ˆ ˆˆ ˆ( , , , ) ,  Mq Cq G Y q q q q P              (47) 

 
where θd is the desired position of the mo-

tor, 1 d d 2( , , , ), ( , , ) r nY q q q q Y q q q       are matrices of 

knowns, and P̂  is the time-varying estimation of P. 
To facilitate the expressions, Y1 and Y2 are used to 

replace 1 d d( , , , )Y q q q q    and 2 ( , , )Y q q q  , respectively. 

To estimate the unknown feed-forward term 

d d
ˆ ˆˆ ˆ( )  M J q Cq G   in Eq. (44), an adaptive control 

law of the projection type is given as (Hong and Yao, 
2007)  

 

0

0 0

0

ˆ, if and ( ) 0,

ˆ ˆproj( ) , if and ( ) 0,

, otherwise,

i i i

i i i

p p

p p

 
   



Ω

P Ω Ω

Ω


0

0    (48) 
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where (Ω0)i and ˆ ip  denote the ith components of Ω0 
and ˆ ,P  respectively, and the auxiliary term Ω0 r is 

designated as 

 
1 T

0 1( ) ( Sat( , )),  eΩ Γ Y e e K            (49) 

 
where Γ n n  is a constant diagonal matrix, and ε 
is a positive constant which represents the adaptive 
weighting coefficient.  

By Eqs. (5), (7), and (8), and property (iii) of 
saturation function, the bound of the slow sub- 
controller is assured by satisfying 

 

 s 1 d P DM M
sup sup( ) ,

i i i ii iu p K K p   Y J q                                      

(50) 

 
where 1i

Y  and Ji denote the ith rows of Y1 and J, re-

spectively. si
u denotes the diagonal element in the ith 

row of us.  

4.3.2  Fast control law 

Recalling Eqs. (22) and (23), we order 
 

f 0 p v

1 1
0

[ Sat( , ) Sat( , )]

( ) ,



 

   

 
η ηu J h k η K k η K

J J M h


 

   (51) 

 

where p
n nk   and vk n n  are constant diagonal 

matrices of control gains. ηK n n  and n nηK    

are constant diagonal matrices representing the satu-
ration factors. 

Substituting Eq. (51) into Eq. (23), we get the 
fast control law as 

 

f P DSat( , ) Sat( , ),  η ηu K η K K η K          (52) 

 
where P p , K J k  D v ; K J k  P D, 0;

i i
K K    ,

i
k  

1,
i

k   i=1, 2, …, n. 

Remark 1    Controller Eq. (51) is a combination 

of a feed-forward term 1 1
0 0( )J J M h J h      and 

a PD term  p vSat( , ) Sat , ,    η ηJ k η K k η K   

where the feed-forward term is to track the target 

elastic torque and the PD term is used to eliminate the 
tracking errors. As presented by Eq. (52), the fast 
control law is a controller in PD form and there are no 

0h  and η  involved, which simplifies the implemen-

tation of the fast control law.  
By property (iii), the bound of the fast control 

input is assured with satisfying 
 

 f P Dsup sup( ) ,
i i i

u K K p                (53) 

 

where f ,
i

u  P ,
i

K   and Di
K   denote the diagonal ele-

ment in the ith row of uf, P ,K  and D
K , respectively. 

According to Eqs. (50) and (53), the bounds of 
slow control input us and fast control input uf 

are both 
guaranteed when applying the projection-type pa-
rameter adaptation and saturation functions, i.e. the 
bound of the composite control input u=us+uf is 
achieved. 

4.4  Bounded adaptive controller for robot ma-
nipulators with strong joint flexibility 

The traditional singular perturbation approach is 
only applicable to robot manipulators whose joint 
stiffness is large enough, i.e., the flexibility of the 
joint is weak enough. For robot manipulators with 
strong joint flexibility, to make the traditional singu-
lar perturbation approach feasible, a bounded adap-
tive scheme with corrective control is proposed in this 
section. 

Consider the general form of dynamics for rigid 
robot manipulators 

 

r r r r ,  M q C q G u                        (54) 

 
where Mr, Cr, Gr, and ur are equivalent to M, C, G, 
and u as defined in Section 2. Eq. (54) can also be 
rewritten as  

 
1 1

r r r r r r .
    q M C q C G M u              (55) 

 
To compensate the joint stiffness artificially for 

robot manipulators with strong joint flexibility, the 
expression of the corrected slow subsystem Eq. (37) 
should be as close as possible to the form of Eq. (11). 
In this sense, the corrective control law is designed as 
Eq. (40) to eliminate the related term of μ in Eq. (37). 
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1
1 2 0 0. u B h Jh                                (56) 

 
Substituting Eq. (56) into Eq. (37), the corrected 

slow subsystem is simplified as 

 
1 1 1

1 1 2 1 2 1 2 2 1 2 2 0( ) ( ) .      q a A A a q a A A a G A A B u   

(57) 
 
From Eqs. (44) and (56), the corrected slow 

control law for robot manipulators with strong joint 
flexibility is designed as 

 

s s 1 d d

P D 0

ˆ ˆˆ ˆ( )

Sat( , ) Sat( , ) .





     

  e e

u u u M J q Cq G

K e K K e K Jh

 


  (58) 

 
By Eqs. (3), (5), (7), (8), and (47) and property 

(iii) of the saturation function, the bound of the cor-
rected slow controller is assured with satisfying 

 

s 1 1M

P D

sup( )

sup( ) ,
i i i

i i

i i iu p p

K K p

 

 

Y J Y
         (59) 

 

where 1
i

Y  denotes the ith row of 1Y , and si
u  denotes 

the diagonal element in the ith row of s.u   

Similarly, for robot manipulators with strong 
joint flexibility, we order  

 

f 0 p v

1 1
0

[2 Sat( , ) Sat( , )]

( ) ,



 

   

 
η ηu J h k η K k η K

J J M h


 

  (60) 

 

where p
n nk   and v

n nk   are constant diagonal 

matrices of control gains. n nηK   and n nηK  
 

are constant diagonal matrices representing the satu-
ration factors. 

From Eqs. (40) and (60), we get the corrected 
fast control law as 

 

f P DSat( , ) Sat( , ),  η ηu K η K K η K          (61) 

 

where P p , K J k  D v ; K J k  P D, 0;
i i

K K    

, 1,
i i

k k    i=1, 2, …, n; P ,
i

K   D ,
i

K   ,
i

k  and 
i

k  re-

spectively denote the diagonal elements in the ith row 

of P ,K  D ,K  ,ηK  and .ηK   

Correspondingly, the bound of the corrected fast 
control input is guaranteed by satisfying 

 

 f P Dsup sup( ) ,
i i i

u K K p                (62) 

 

where f ,
i

u  P ,
i

K   
 

and Di
K   

 
denote the diagonal  

elements in the ith row of f ,u  P ,K  and D,K  

respectively. 
Finally, the overall control law u consists of a 

corrected slow control law su  (with the corrective 

control law u1 inside) designed for the corrected slow 
subsystem, and a corrected fast control law fu

 
de-

signed for the corrected fast subsystem. Thus, the 
bounded composite controller for robot manipulators 
with strong joint flexibility is given as u  

s f s f f .   u u u u u  

Remark 2    Importantly, the corrective control 
approach proposed in this study is conceived over the 
power series expansion of the whole composite con-
trol law u, and is different from that presented in 
(Spong et al., 1987; Spong, 1987), which was 
achieved by the power series expansion of the original 
slow control law us. In our work, the corrective con-
trol law u1 is proposed as a compensatory term to the 
original slow control law for the rigid part of a robot 
manipulator with strong joint flexibility. From a dif-
ferent point of view, since the fast control law essen-
tially acts only on the joints, the corrective control law 
u1 can also be regarded as part of the original fast 
control law uf that is taken out to damp out the elastic 
oscillation at the joints, while the rest of the original 
fast control law is dedicated to accomplishing basic 
tracking control. 

Remark 3    By comparing the corrective control 
law designed by us with the flexibility compensator 
proposed by Liu et al. (2008), it can be found that both 
of them are derived from the deformation of the 
original fast control law Eq. (21). The flexibility 
compensator is actually the proportional term of a PD 
controller with torque feedback, while the remaining 
differential term acts as the fast control law, which 
restricts the fast controller to a pure differential con-
troller with respect to torque feedback, and seriously 
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affects its usability and flexibility. Furthermore, the 
controller with such a flexibility compensator as 
proposed by Liu et al. (2008) is unbounded. 

4.5  State estimation 

As is known, one of the disadvantages in for-
mulating the dynamic model for control design pur-
poses is that any proposed full-state feedback con-
troller will require additional sensors for implemen-
tation. The inclusion of additional sensors to measure 
the velocity signals will certainly add to the cost and 
physical complexity of the robotic systems. Moreover, 
velocity measurement devices are usually contami-
nated with noise that cannot be easily filtered away. 
To solve these problems, two state estimation ap-
proaches are introduced to ensure closed-loop control 
with only position measurements of both motors and 
links, so as to achieve OFT control for flexible-joint 
robot manipulators. In the slow subsystem, approxi-
mate differential filters are used in the sub-controllers 
Eqs. (44) and (58) to estimate the velocities of links, 
while in the fast subsystem, a set of high-gain ob-
servers are applied in the sub-controllers Eqs. (52) 
and (62) to eliminate the need for measuring the ve-
locities of both motors and links. 

4.5.1  Approximate differential filter 

Note that, in the slow subsystem of a robot ma-
nipulator with either weak or strong joint flexibility, 
only states of links are involved. In this section, an 
approximate differential filter is introduced to be used 
in the slow subsystem to generate a pseudo velocity 
tracking error from the position feedback of links, and 
to guarantee the closed-loop control of a slow sub-
system without velocity measurements of links (Liu 
et al., 2010, 2011, 2016; Kelly et al., 1994).  

The filter is given as 

 

( ), ξ U e ξ                                  (63) 

 
which is made up of two implementable parts: 

 
,r Uξ                                         (64) 

, ξ Ue r                                    (65) 

 
where r n  is an auxiliary variable, and e and ξ are 
respectively the input and output of the approximate 

differential filter. 1 2diag{ , , , }U n n
n      is 

the filtering gain, μi>0, i=1, 2, …, n. 
The asymptotically stability of the slow subsys-

tem with approximate differential filter is analyzed in 
Section 5. 

Remark 4    As shown, the link velocity error ė 
can be replaced by a pseudo signal ξ generated by an 
approximate differential filter, which is actually a 
simple linear filter that contains only the position 
information of links. The approximate differential 
filter is applied in this study in the slow subsystems of 
robot manipulators with either weak or strong joint 
flexibility to estimate the link velocities, whereas 
similar filters in (Kelly et al., 1994; Liu et al., 2008) 
are utilized in the fast subsystem to estimate the ve-
locity signals for motors and/or links. 

4.5.2  High-gain observer 

As presented by Eqs. (3) and (19), the derivative 
of elastic torque error η  involved in the fast control 

laws Eqs. (52) and (61) can be calculated through the 

link velocity q  and motor velocity ,θ  i.e. in the 

full-state feedback control, velocity measurements of 
both links and motors are necessary. Here, motivated 
by Khalil and Praly (2014) and Khalil and Grizzle 
(1996), a high-gain observer is introduced to generate 
pseudo signals to surrogate the link velocity error ė 
and motor velocity error ėm, guaranteeing the 
closed-loop control of fast subsystem with only posi-
tion measurements of links and motors. 

Defining em=θd−θ, we have  
 

m de θ θ   .                              (66) 

 
Through Eq. (45), the desired position, velocity 

and acceleration signals of the motors can be ex-
pressed as 

 
1

d 1 d , θ K Y P q                        (67) 
1

d 1 d , θ K Y P q                          (68) 
1

d 1 d . θ K Y P q                           (69) 

 
From Eqs. (3), (45), and (46), we have 
 

1 .  Me Ce Y P Z                     (70) 
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Similarly, from Eqs. (2), (3), and (70), we can 
obtain:  

 

m d .  Je Z Jθ u                     (71) 

 

Order T T T 2
1 m[ , ] ,n x e e   T T T 2

2 m[ , ] ,n x e e    

and T T T 4
1 2[ , ] ,n x x x   from Eqs. (70) and (71), the 

state error equation of flexible-joint robot manipula-
tors can be written as  

 

1 2

1
1

2 1
d

,

( )
( , ) .

( )
f








         

x x

M Y P Z Ce
x x u

J Jθ u Z




 

     (72) 

 
To implement closed-loop control of the whole 

system of robot manipulators with either weak or 
strong joint flexibility by using only position meas-
urements of both links and motors, a high-gain ob-
server is introduced below to be applied in the fast 
subsystem as in (Khalil and Praly, 2014): 

 

1 2 1 1 1

2 2 1 1

ˆ ˆ ˆ( ),

ˆ ˆ( ),

   


 

x x y x x

x y x x



                      (73) 

 
where 1x̂  and 2x̂  are the approximations of x1 and x2, 

respectively. 1 2,y y n  denote the gains of the ob-

server and are both positive definite diagonal constant 
matrices.  

Subsequently, the actual velocity signals of links 

and motors q  and θ  in the fast subsystem can be 

observed as 
 

T T T T T T
d d 2

ˆˆ ˆ[ , ] [ , ] , q θ q θ x
                   (74) 

 

where q̂  and θ̂


 are the approximations of q  and ,θ  

respectively. 
Remark 5    By using the high-gain observer in 

the fast subsystem, the full-state feedback tracking 
control laws Eqs. (52) and (61) become OFT control 
laws for systems of flexible-joint robot manipulators, 
with only position measurements of links and motors. 
When the observational results of velocities of links 
and motors are obtained, then the estimated derivative 

of elastic torque error can be calculated through 
Eqs. (3) and (19). Importantly, in respect to the gains 
of the observer, they severely impact the convergence 
rate of observation error. Sometimes they can be 
selected large enough to get good convergence, but 
that inevitably results in sharp oscillations of torque 
control input in the existing unbounded controllers. 
With the saturation function contained in the pro-
posed control laws Eqs. (52) and (61), that issue is 
resolved. 

4.6  Full expressions of the controllers 

As discussed previously, in the high-gain ob-
server, we order η=Zd – Z in place of Eq. (19), where 

Zd n is the elastic torque vector at joints, and is 
equal to h0 in Eq. (19). Then from Eq. (74) we have 

 

d d d

d d 2

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ) ,

η Z Z K θ q K θ q

K θ θ K q q Kx

=

=

    

   

   
  

        (75) 

 

where   2 .n n  K K K   

Considering state estimators, expressions of fast 
control laws for robot manipulators with weak and 
strong joint flexibilities can be updated by substitut-
ing Eq. (75) into Eqs. (52) and (61), respectively. 

According to the theoretical approaches above, 
the full controller, including control law, adaptation 
law, and state estimator for a robot manipulator with 
weak joint flexibility can be written as 

 

s d d

P D

ˆ ˆˆ ˆ( )

Sat( , ) Sat( , ),

   
 e ξ

u M J q Cq G

K e K K ξ K

 
          (76) 

f P D 2
ˆSat( , ) Sat( , ),

  ηu K η K K Kx K         (77) 

 

where 
1 2

diag{ , , , }
n

n n
ξ ξ ξk k k  ξK    is the satura-

tion factor matrix of the pseudo signal, and 1,
iξ

k   

i=1, 2, …, n. 
The full controller for robot manipulators with 

strong joint flexibility is given as 
 

s s 1

d d

P D 0

ˆ ˆˆ ˆ( )

Sat( , ) Sat( , ) ,





 

   

  e ξ

u u u

M J q Cq G

K e K K ξ K Jh

 


    (78) 
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f P D 2ˆSat( , ) Sat( , ).  η ηu K η K K Kx K               (79) 

 
For both controllers, the common adaptation law 
adopted is presented by Eqs. (48) and (49).  

The block diagrams of the proposed controllers 
are shown in Fig. 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Stability analysis 
 

Considering the control systems of robot ma-
nipulators with weak joint flexibility and those with 
strong joint flexibility, the major difference is that the 
constant matrix of the joint stiffness is different, and 
the corrective control law u1 for flexibility compen-
sation (in robot manipulators with strong joint flexi-
bility) is derived from the original fast controller uf of 
the robot manipulators with weak joint flexibility. It 
follows that the stability analyses of the control sys-
tems of robot manipulators with weak joint flexibility 
and those with strong joint flexibility can both be 
made in the same way, and thus to avoid repetition, 

only the stability proof of the former is presented in 
this study. 

The stability of the whole control system is 
comprehensively analyzed by the following five 
steps. 
Step 1: Stability analysis of the slow subsystem 

Theorem 1    Considering the dynamics of the 
slow subsystem described by Eq. (13) with the pro-
posed sub-controller Eq. (44), and given a desired 
trajectory qd defined by Eq. (41), if the control pa-
rameters satisfy:  

 
2λm(KP)>λM(KD), 

 
and 

P1 1 m
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2
1 m m D

2 2
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min ,

( ( ))

2 ( )
,

2 ( )

i

ie

E

Km

m k
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  
     

           

 

J

J

K

K

 

 
where E  is defined in Eq. (A12), then there is as-

ymptotic convergence of the state and output tracking 
errors in the sense that ║e║, ║ė║→0, as t→∞. 

Proof    See Appendix A for details.  
Step 2: Stability analysis of the fast subsystem 

Theorem 2    Considering the dynamics of the 
fast subsystem described by Eq. (22) with the pro-
posed sub-controller Eq. (52) in tracking control, if 

2
1 M 1 2 1 1 1 M

2 2
M 1 M

[ (2 ) 4 ]
max ,

2 2

      
 

   
  

 
 is 

satisfied, then there is asymptotic convergence of the 
state and output tracking errors in the sense that 

, 0,η η  as t→∞. 

Proof    See Appendix B for details. 
Step 3: Stability analysis of the approximate differ-
ential filters 

Firstly, the stability of the approximate differ-
ential filter (that acts as the link velocity estimator in 
the slow subsystem) is discussed.  

From Eqs. (13) and (44), the original link 
tracking error equation in full-state slow subsystem 
can be obtained as 

 

P D( ) Sat( , ) Sat( , ).    e eM J e Ce YP K e K K e K 
    

(80) 

d d
ˆ ˆˆ ˆ( )  M J q C q G 

P̂

dq
dq

dq 

τ
DSat( , )ξK K ξ

PSat( , )eK K ee

dθ

dθ



D 2ˆSat( , )
ηK K Kx

PSat( , )
ηK K η

q

θ

ξ
su

fu

d d
ˆ ˆˆ ˆ( )  M J q C q G 

P̂

dq
dq

dq 

τ
DSat( , )ξK K ξ

PSat( , )eK K ee

dθ

dθ



D 2ˆSat( , )
ηK K Kx

PSat( , )
ηK K η

q

θ

ξ
su

fu

0Jh

Fig. 1  Block diagrams of the controller block diagram for 
robot manipulators with weak joint flexibility (a) and 
strong joint flexibility (b) 
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Considering the approximate differential filter 
Eq. (63), the slow subsystem with only link position 
measurements can be rewritten as 

 

P D( ) Sat( , ) Sat( , ),

( ),

     


 

e ξM J e Ce YP K e K K ξ K

ξ U e ξ

 
 

(81) 
 

where n nξK 
 
is the saturation factor matrix of 

estimated velocity error. 
Theorem 3    With the parameters properly  

selected according to 2λm(KP)>λM(KD), 
2 2 2

M D M M D8 ( ) ( ) ( ),   K U U K  and 
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the approximate differential filter, included in the 
slow subsystem, is asymptotically stable with output 
tracking errors ║e║, ║ξ║→0, as t→∞, where λm(X) 
stands for the smallest eigenvalue of matrix X. 

Proof  See Appendix C for details. 
Step 4: Stability analysis of the high-gain  
observers  

Defining T T
1 2 1 1 2 2ˆ ˆ[ , ] [ , ]   x x x x x x x   as 

the estimation error, from Eqs. (72) and (73), we 
obtain: 

 

1 1 1 2

2 2 1

,

( , ).

   


  

x y x x

x y x f x u

  
 

                (82) 

 

Recalling 1 2,y y n  defined in Eq. (73), we 

order 
 

1
1 


c
y , 2

2 2
,




c
y                      (83) 

 

where 1 2,c c n  are positive definite matrices, and 

ω is an arbitrarily small constant. 
Considering the high-gain observer within the 

frame of singularly perturbed systems, x can be 

viewed as the slow variable, and the fast variables of 
the observer system can be described in the time 
domain by using the scaled estimation error: 

 

1
1 


x
ψ


, 2 2 .ψ x                         (84) 

 
Substituting Eqs. (83) and (84) into Eq. (82), we 

have 
 

1 1 1 2

2 2 1

,

( , ).


 

  
   

ψ c ψ ψ

ψ c ψ f x u




                (85) 

 
At this point, the high-gain observer can be 

presented as Eqs. (72) and (85) in form of singularly 
perturbed systems.  

Correspondingly, for the slow part Eq. (72), 
asymptotic stability is guaranteed by the converse 
Lyapunov theorem (Theorem 4.17) in (Khalil and 
Grizzle, 1996). For the fast part Eq. (85), the homo-
geneous expression can be written as 

 

0 , ψ A ψ                                   (86) 

 

where 1 2 2
0

2

,n nc

c 0
 

   
A 

I
 1 2

2

.n 
  
 

ψ
ψ

ψ
  

Considering a Lyapunov function candidate 
W2(Ψ)=ω2ΨTG0Ψ for the fast part of the high-gain 
observer, for an arbitrarily given positive definite 
symmetric constant matrix Ψ0, there always exists a 
positive definite symmetric matrix G0 as the solution 

of the Lyapunov equation T
0 0 0 0 0A G G A Ψ    in 

Khalil and Praly (2014), i.e. W2 is positive definite. 
Differentiating Vf with respect to the fast-scaled 

time t/ω 
 

  

T T
2 0 0

T
m 0( ) 0.

 



 

  

W ψ G ψ ψ G ψ

ψ Ψ ψ

  
               (87) 

 
Hence, asymptotic stability of both the slow and 

fast parts of the high-gain observer results in asymp-
totic stability of the high-gain observer included in the 
fast subsystem (Zhang and Liu, 2012). 
Step 5: Stability analysis of the composite system  

In the steps above it has been demonstrated that 
both the slow and fast subsystems with state  
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estimators are asymptotically stable. However, the 
stability of individual subsystems does not guarantee 
the stability of the composite system Eqs. (11) and (12) 
directly (Han and Chen, 1993; Lightcap and Banks, 
2010; Khosravi and Taghirad, 2014).  

Consider the following Lyapunov function can-
didate for the composite system 

 

1 s 2 f ,V bV b V                          (88) 

 
where Vs and Vf are defined in Appendixes A and B, 
respectively. b1 and b2 are positive constants.  

It can be found that V is positive definite based 
on the discussion above, and the time derivative of V 
is given by 

 

1 s 2 f .V bV b V                             (89) 
 

Note that, although very similar treatments to the 
above steps are used here in the stability proof for the 
composite system, there is an important difference 
from Step 1 in that, Eq. (11) is used in this step to 
replace Eq. (13) (which appears in Step 1) to substi-

tute into sV  in Eq. (89), and due to that the total sys-

tem is represented by Eqs. (11) and (12).  The analysis 

related to fV  is exactly the same as Step 2. Conse-

quently, it is not difficult to get the negative defi-

niteness of V , so as to conclude that the composite 
system is asymptotically stable under the similar 
constraints in the steps above. 

 
 

6  Validation example 
 

In this part, numerical simulations are presented 
to verify the effectiveness of the two proposed 
BA-OFT controllers on a two-link robot manipulator 
in Ge (1996) with different joint flexibility, which is 
modeled by Eqs. (1)–(3). 

The functions of M(q), C(q, q ), and G(q) are 

expressed in terms of the elements of the uncertain 
parameter vector P=[p1, p2, p3, p4, p5]

T as follows: 
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p q p p p g

p g p p

  
   

G q ,  

J=diag{0.1, 0.1}, g=9.81 m/s2, 
τ1M=200 Nm, τ2M=100 Nm, 

 
where the real values of the uncertain parameters used 
in the simulations are set as P=[1.66, 0.42, 0.63, 3.75, 
1.25]T, and τ1M and τ2M denote the maximum output 
torque of the motors at the first and second joints, 
respectively. 

Without loss of generality, the desired position 
trajectories for each link are given as 

 

d1 d2

1
= sin 10 rad.

10 6
q q t

      
 

 

6.1  Comparisons of controllers for a robot ma-
nipulator with weak joint flexibility 

For a robot manipulator with weak joint flexi-
bility, the stiffness coefficient in Eq. (4) is set as 
k=10 000. 

Performance comparisons are made among the 
proposed BA-OFT controller, the traditional adaptive 
controller in (Yu and Chen, 2015) with our state es-
timation approach (named as TA-OFT), and the tra-
ditional adaptive controller in (Yu and Chen, 2015) 
with our state estimation approach plus a saturation 
function (named as TA-OFT+SF). The proposed 
controller BA-OFT is expressed by Eqs. (48), (49), 
(63), (76), and (77), while the traditional adaptive 
controller in (Yu and Chen, 2015) is presented as 

 

s r r s
ˆ ˆˆ ,    u Mq Cq G K s                 (90) 

1 T
1

ˆ ,P Γ Y s


                          (91) 

f D , u K Z                             (92) 

 
where r d= q q Λe   is the virtual reference trajectory, 

s=ė+Λe is the sliding surface, Λ is a constant matrix 
whose eigenvalues are strictly in the right half com-
plex plane, Ks is a positive definite constant matrix, 

D
K  is reasonably defined positive-definite diagonal 
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matrix, su  and fu  denote respectively the slow con-

trol law and the fast control law in (Yu and Chen, 
2015).  

To make the comparisons as fair as possible, the 
same parameters in the controllers are selected at the 
same values. The saturation function sat(·) is selected 
to be arctan(·) and the parameters involved are set as 

  
KP=diag{80, 40}, KD=diag{40, 10}, 

P diag{30,10} K , D diag{10,10} K , 

U=diag{500, 500}, D diag{0.02, 0.02} K , 

ε=1.5, y1=diag{100, 100}, y2=diag{1000, 1000},  
Ke=Kξ=diag{1, 1}, diag{0.0001, 0.0001} η ηK K  , 

Γ=diag{100, 100}, Ks=diag{80, 80}, Λ=diag{10, 10}. 
 
To make overall evaluation of the control per-

formance, we adopted the following criteria (Liu et al., 
2010, 2011): 

Adjusting time–a period from the start to the 
moment when the tracking error ei falls into the area 
of ±10−3 rad; 

Maximum torque–the maximum absolute value 
of τi 

from the start to the end; 
RMS–root mean square of the errors, which is 

defined as 

 
2

0
RMS( ) d / , 1, 2,

T

i ie t T i e           (93) 

2

0
RMS( ) d / .

T
t T e e               (94) 

 
Computing cycle–the average time cost of the 

control algorithm in a single closed-loop period.  
In this study, the experimental tests were made 

on a laptop platform equipped with Intel(R) 
Celeron(R) CPU 1007U@1.50 GHz, 8 GB RAM, 
64-bit Windows OS. 

As shown in Fig. 2, Fig. 3, and Table 1, we find 
that the proposed controller BA-OFT presents the 
best dynamic performance, with the shortest adjusting 
time and the smallest RMS value of the tracking er-
rors. Furthermore, the proposed controller has the 
smallest maximum torque control inputs to each joint, 
due to the saturation function and projection-type 
parameter adaptation strategy we used to make the 
control law bounded, which does much to suppress 

the initial sharp oscillations, especially when there is 
non-zero tracking error of the link position at the 
beginning. 

It is worth noting that the controller TA-OFT 
+SF, which greatly benefits from our state estimation 
approach and saturation function, shows a relatively 
close control performance (especially in aspects of 
tracking errors and control torque inputs) to the pro-
posed controller BA-OFT, while the controller 
TA-OFT has a severe oscillation and fails to keep the 
control torque inputs within the limitation of each 
joint at the initial moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2  Comparisons of controllers for robot manip-
ulators with strong joint flexibility 

For a robot manipulator with strong joint flexi-
bility, numerical simulations are made on the pro-
posed bounded adaptive OFT controller with correc-
tive control (named as BA-OFT+CC, expressed by 
Eqs. (48), (49), (63), (78), and (79)), the proposed 
bounded adaptive OFT controller with the flexibility 
compensation used in (Yu and Chen, 2015) (named as 

Fig. 2  Position tracking errors for link 1 (a) and link 2 (b)
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BA-OFT+FC, expressed by Eqs. (58), (61), (93), and 
(94)), and the traditional adaptive controller with 
flexibility compensation in (Yu and Chen, 2015) plus 
our state estimation approach (named as TA-OFT+FC, 
expressed by Eqs. (90), (92), (95), and (96)). 

The flexibility compensated controller in (Yu 
and Chen, 2015) can be written as follows: 

 

1 tp , u K Z                                       (95) 

a s f 1( ) ,     u K u u u                     (96) 

 
where u′ is the composite control law, 1u  is the 

flexibility compensator, and Ka and Ktp 
are definite 

positive constant matrices.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Firstly, to illustrate the effectiveness of the 
proposed BA-OFT+CC, we make simulations on a 
robot manipulator with different joint flexibilities, i.e. 
the joint stiffness coefficient, k, is set at 10, 50, and 
100, respectively.  

The parameters involved are set as follows:  
 

ε=1.5, U=diag{1000, 1000}, 
Γ=diag{100, 100}, Λ=diag{10, 10},  
KP=diag{100, 60}, KD=diag{40, 10},  
Ke=Kξ=diag{1, 1}, Kη=diag{0.1, 0.1},  

y1=diag{100, 100}, y2=diag{1000, 1000}, 

P D diag{10,10},  K K  diag{0.001, 0.001},ηK   

 
and the saturation function sat(·) is set as arctan(·). 

As shown in Fig. 4, the position tracking errors 
of both links converge quickly and are all kept in a 
small scale in the steady state when k=50 or 100, 
which indicates that the proposed controller 
BA-OFT+CC is adaptable to robot manipulators with 
different joint flexibilities. Specifically, when k=10, 
the robot manipulator presents an extremely strong 
joint flexibility, and the tracking performance is rela-
tively worse than that when k=50 and 100, but the 
position tracking errors of both links still fall within 
the limit of 10−3 rad. 

Secondly, to show the superiority of the pro-
posed controller BA-OFT+CC, simulations are car-
ried out comparing it to controllers BA-OFT+FC and 
TA-OFT+FC, where the joint stiffness coefficient is 
set as k=50, and the saturation function sat(·) in the 
control law is selected to be arctan(·). 

To make a fair comparison, the same parameters 
in the controllers are selected at the same values.  The 
parameters involved are finally set as 

 
Γ=diag{100,100}, Λ=diag{10, 10},  

KP=diag{100, 60}, KD=diag{40, 10}, 

P D diag{10,10}  K K , Ke=Kξ=diag{1, 1}, 

ε=1.5, μ=0.02,  D diag 0.001, 0.001 K , 

 
 
 
 
 
 
 

Table 1  Performance comparisons in case of weak joint flexibility 

Controller 
Adjusting time (s) Maximum torque (Nm) RMS (rad) Computing 

cycle (ms) Joint 1 Joint 2 Joint 1 Joint 2 e1 e2 e 

TA-OFT 0.54 0.45 271.27 143.92 0.0823 0.0804 0.1139   6.27 

TA-OFT+SF 0.50 0.43 141.69   83.26 0.0795 0.0781 0.1090   9.85 

BA-OFT 0.47 0.34   68.39   38.54 0.0668 0.0693 0.0967 11.32 
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Fig. 3  Torque inputs for joint 1 (a) and joint 2 (b)
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Ks=diag{98, 98}, Ka=diag{5001, 5001}, 
Ktp=diag{5000, 5000}, U=diag{1000, 1000}, 

y1=diag{100, 100}, y2=diag{1000, 1000}. 
 

As shown in Fig. 5, Fig. 6, and Table 2, as a 
positive result of applying the strategies of bounded 
control and corrective control, the proposed controller  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

BA-OFT+CC presents the best control performance, 
with a much smaller RMS value of tracking errors and 
maximum torque control inputs to each joint, in 
comparison to the other two controllers. The un-
bounded controller TA-OFT+FC actually fails to 
restrict the torque control inputs and exceeds the 
limitation of the joint actuators. 
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Fig. 4  Position tracking errors for link 1 (a) and link 2 (b) with different joint stiffness coefficients
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Fig. 6  Torque inputs for joint 1 (a) and joint 2 (b) 
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Fig. 5  Position tracking errors for link 1 (a) and link 2 (b) 
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7  Conclusions 
 

This work systematically discusses BA-OFT 
control for robot manipulators with weak flexibility 
and strong flexibility at joints, in the presence of 
parametric uncertainties and saturated torque inputs. 
It is demonstrated that an adaptive control law of 
projection type and a general class of smooth satura-
tion functions make the proposed controller bounded 
so as not to generate control torque inputs that exceed 
the output limitation of the joint actuators. An ap-
proximate differential filter and a high gain observer 
ensure the whole closed-loop control with only posi-
tion measurements of motors and links. Meanwhile, 
the corrective control strategy helps the traditional 
singular perturbation approach adapt to robot manip-
ulators with strong joint flexibility. Moreover, as-
ymptotic stability of both subsystems and the whole 
composite system is achieved. 

The proposed control approach is tested and 
evaluated on a two-link robot manipulator with 
parametric uncertainties. The validation results 
demonstrate that the proposed controllers have supe-
rior dynamic performance and the controllers using 
our bounded control strategy can effectively restrict 
the torque control inputs within the limit of the joint 
actuators. More importantly, the proposed BA-OFT 
controller with corrective control is verified as 
adaptable to robot manipulators with different joint 
flexibilities. The control approaches for robot ma-
nipulators with weak flexibility and strong flexibility 
at joints are shown to have high computing efficiency, 
that good real-time performance will be beneficial to 
engineering applications. 
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Appendix A: Stability proof of the slow  
subsystem 
 

Consider a Lyapunov function candidate Vs for 
the slow subsystem as 

 

T T
s

T
P 0

1

1
( ) ( )Sat( , )

2
1

sat( , )d ,
2

i

i i

n e

i e i
i

V

K e k e





   

  

ee M J e e M J e K

P ΓP

  

 
  (A1) 

 
where ε is the adaptive weighting coefficient defined 
in Eq. (49). 

By Property 1 and the properties of the satura-
tion function given in Section 4.2, we obtain: 

 
2

s 1 m

2 M

22P
1 m

m

1
( ( ))

2
( ( )) Sat( , )

1
+ Sat( , ) ( ) .

2
i

ie

V m

m

K

k



 

 

 

 

    
  

e

e

J e

J e e K

e K Γ P







    (A2) 

 
The Lyapunov function candidate Vs is positive 

definite if the following inequality is satisfied: 
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To facilitate the expressions, order Vs=Vs1+Vs2, 

where 
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After taking the time derivatives of Vs1 and Vs2, 

respectively, we obtain: 
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From Eqs. (13) and (44), we have 
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Then substituting Eq. (A6) into Eq. (A4), we 

obtain: 
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where  
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The time derivative of Vs can be expressed as 
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Substituting Eqs. (44), (48), and (49) into 

Eq. (A8), sV  can be rewritten as 
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According to property (iv) of the saturation 

functions, we can obtain: 
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According to Property 4, we have  
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Substituting Eqs. (A10)–(A12) into Eq. (A9), 

then we have  
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From Eq. (A13), we can find that sV  is negative 

definite if the following inequalities are satisfied: 
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Therefore, if the above conditions Eqs. (A3), 

(A14), and (A15) hold, the asymptotically stability of 
the slow subsystem is guaranteed. 

 
 

Appendix B: Stability proof of the fast  
subsystem 
 

Consider a Lyapunov candidate function Vf for 
the fast subsystem as 
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Defining H=[η, η ]T, Vf can be written as 
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Differentiating Vf with respect to the fast-scaled 
time δ=t/μ, and substituting Eqs. (22) and (52) into it, 
we then obtain: 
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According to property (iv) of the saturation 

functions, fV  can be rewritten as 
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To ensure f 0,V   W should be a positive defi-

nite matrix, i.e. the following inequality should be 
satisfied 
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Therefore, if the above condition Eq. (B5) 
holds, the asymptotically stability of the fast subsys-
tem is guaranteed. 

 
 

Appendix C: Stability proof of the approxi-
mate differential filter 
 

Consider a Lyapunov function candidate for the 
slow subsystem with the proposed approximate dif-
ferential filter as 
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To facilitate the expressions, we partition Va as 

Va=Vs+ξ
TKDU−1ξ/2, where Vs is defined by Eq. (A1). 

According to Appendix A, we can find that Va is 
positive definite if Eq. (A3) is satisfied. 

Taking the derivative of Va with respect to time t, 
we obtain: 
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According to Appendix A, if Eqs. (A14) and 

(A15) are satisfied, then sV  is negative definite. 

Consequently, aV  is negative definite, if the inequal-

ity (C3) is also satisfied. 
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Finally, the asymptotically stability of the ap-
proximate differential filter included slow subsystem 
can be guaranteed if the conditions Eqs. (A3), (A14), 
(A15), and (C3) hold. 
 
 

中文概要 
 

题 目：柔性关节机器人有界自适应输出反馈控制 

目 的：考虑关节驱动力矩受限、结构参数不确定以及缺

少部分传感器测量等情况，本文研究力矩输入有

界的一般柔性关节机器人自适应输出反馈控制

方法，以提高轨迹跟踪性能。 

创新点：1. 提出一种基于校正控制的强柔性关节机器人控

制方法；2. 设计一类力矩控制输入有界的自适应

输出反馈轨迹跟踪控制器。 

方  法：1. 引入校正控制，突破传统奇异摄动方法仅适用

于弱柔性关节机器人的限制；2. 通过一类光滑饱

和函数和投影型自适应控制律，确保在参数不确

定情况下力矩控制输入的有界性；3. 利用近似微

分滤波和高增益观测实现仅需电机侧和连杆侧

位置测量的输出反馈控制。 

结 论：1. 提出的校正控制策略能够较好地适应不同程度

的关节柔性；2. 设计的有界自适应输出反馈控制

方法可严格确保作业全程的控制输入值有界，且

具有良好的轨迹跟踪性能。 

关键词：机器人；柔性关节；输出反馈控制；有界控制；

自适应控制 

 


