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This is a supplementary study of the solution 
method previously proposed by the author (Lee, 
2017; Rahman and Lee, 2017). The proposed method 
is used for solving three-coupled integrable disper-
sionless equations with disturbance terms. It has only 
been adopted for solving (1) a nonlinear beam prob-
lem, and (2) a nonlinear vibro-acoustic problem. In 
the solution process, the three-coupled nonlinear 
equations can be transformed into only one Duffing 
equation. The higher-level nonlinear solutions, which 
were ignored in the previous method, can be gener-
ated using the proposed approach. Hence, in each step 
in the solution, only one independent nonlinear alge-
braic equation need be solved. As in the previous 
method, the proposed method has the advantage that 
the periodic solutions are represented by Fourier 
functions rather than the tedious implicit functions. 
The solutions from the proposed method agree rea-
sonably well with those obtained from the classical 
harmonic balance method. 

In recent decades, many solution methods have 
been developed and adopted to solve various 
differential equations and conduct numerical 
simulations for structural dynamic, fluid dynamic, 

wave propagation problems, etc. (Hu and Wang, 2008; 
Li et al., 2011; Huang et al., 2012; Leung et al., 2012; 
Yin et al., 2012; Zhu et al., 2013; Zhong et al., 2014; 
Zhou et al., 2014; Wang et al., 2016; Zhang et al., 
2016; Zheng et al., 2016; Lee, 2017; Lu et al., 2018). 
For example, Guner and Bekir (2018) adopted the 
solitary wave ansatz method to find exact analytical 
solutions of the space-time fractional Zakharov- 
Kuznetsov-Benjamin-Bona-Mahony equation, the 
space-time fractional Klein-Gordon equation, and the 
space-time fractional modified regularized long wave 
equation. Hashemi and Akgul (2018) obtained the 
analytical solution of a nonlinear Schrodinger 
equation in both time and space fractional terms. Two 
analytical approaches, Nucci’s reduction method and 
the simplest equation method, were used to extract 
analytical solutions especially of soliton kinds. 
Tasbozan et al. (2018) focused on the exact solution 
sets of a nonlinear conformable time-fractional 
coupled Drinfeld-Sokolov-Wilson equation using the 
Sine-Gordon expansion method. They also studied  
an analytical approximate method, namely a 
perturbation-iteration algorithm for the system.  

Among various solution methods, the approach 
of harmonic balance is the one of significant attention 
from researchers in the areas of nonlinear vibration 
and nonlinear structural dynamics. There have been 
many different versions of harmonic balance methods 
(e.g. spreading residue harmonic balance method 
(Qian et al., 2017), incremental harmonic balance 
method (Huang et al., 2011, 2018; Huang and Zhu, 
2017), residue harmonic balance method (Leung et 
al., 2012; Mohammadian and Shariati, 2017), and 
modified residue harmonic balance method (Lee, 
2017, 2018; Rahman and Lee, 2017)). To solve the 
nonlinear problem in this study, the author proposes 
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the modified harmonic balance method from Leung 
and his co-authors’ research work (Leung et al., 
2012), in which their method was newly applied to 
solving three-coupled non-homogenous integrable 
dispersionless equations without disturbance terms. 
As mentioned, the proposed method was previously 
adopted in (Rahman and Lee, 2017; Lee, 2018). In the 
solution process, the transformation is adopted to 
convert the coupled nonlinear partial differential 
equations with disturbance terms into a nonlinear 
ordinary differential equation. An order parameter is 
introduced into the residual of the Fourier truncation 
series in the harmonic balance processes. The pro-
posed method is based on a primary idea in (Leung et 
al., 2012; Lee, 2017, 2018; Rahman and Lee, 2017). 

The theory is given in Data S1, including all 
governing equations, solution steps, and explanations 
of variables. After the implementation of the pro-
posed method into the nonlinear problem, the results 
are generated and shown in Tables1–4 and Figs. 1 and 
2, respectively. Tables 1–3 show the comparisons 
between the results from the proposed method and 
from the classical harmonic balance method (Lee, 
2002) for various disturbance magnitudes and fre-
quencies. v is a time dependent variable in the inte-
grable dispersionless equations; k1 and k2 are the in-
tegration constants; ω is the excitation frequency; κ is 

the excitation magnitude; =2k1/c; =2/c2; c is a 
constant representing the speed of the propagating 
waves. The zero-, first-, and second-level periodic 
solutions of v are computed using Eqs. (12), (16), and 
(21), respectively. Hence, the amplitudes of the pe-
riodic responses can be found. In the case of small 
disturbance (κ=1), the first-level solutions can 
achieve an error rate of less than 4% for various fre-
quencies. In general, the first- and second-level solu-
tions are very close. In the other excitation cases, the 
maximum difference between the second-level and 
harmonic balance solutions is less than 4.3%. Table 4 
shows the results of the two coupled nonlinear dif-
ferential equations Eqs. (5a) and (5b) solved by the 
classical harmonic balance method. It should be noted 
that k2=1.  

Fig. 1 shows the amplitude of v plotted against 
the frequency. The solid line represents the first-level 
results from the proposed method while the dashed 

lines represent the results from the old residue har-
monic balance method (Leung et al., 2012; Hasan et 
al., 2016; Lee, 2017). It can be seen that the zero- 
order solutions from the two methods overlap with 
each other. There are two zero-order solution types, 
one is linear and the other one is nonlinear. The zero- 
order nonlinear solution curves are always higher that 
the linear one. That agrees with a well-known concept 
in structural dynamics. For the linear vibration of a 
structural dynamic system, the vibration amplitude is 
small, while for the nonlinear vibration, the vibration 
amplitude is high. The main difference between the 
new and old methods is that there is no higher-order 
nonlinear solution from the old method. It should be 
noted that the first-order nonlinear solution curves 
from the new method are inclined, while the two 
curves from the old method are vertical. The higher- 
order solutions are linear because all terms in the 
higher-level solution processes are linear in the old 
method. That agrees with observations in nonlinear 
vibration and acoustic research (Rahman and Lee, 
2017; Lee, 2018). Figs. 2a–2c show the phase plots for 
various frequencies. In Fig 2a, the phase plot, which 
comes from the first-level nonlinear solution, is a 
larger circle containing two small ellipses inside it. It is 

implied that at low frequency (i.e. ω/1/2=1), the non-
linear response contains significant higher harmonic 
components (or the response is not simple harmonic 
and contains more than one dominant frequency).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Comparison of amplitude |v| (k1=0.5, k2=α==1, 
ω/α1/2=1) 

 
|v| 

Zero-level First-level Second-level Lee, 2002

1 1.3867 1.3530 1.3474 1.3020

2 1.7472 1.6755 1.6487 1.5788

4 2.2013 2.1016 1.9146 1.8864

8 1.3867 1.3530 1.3474 1.3020

Table 2  Comparison of amplitude |v| (k1=0.5, k2=α==1, 
ω/α1/2=2) 

 
|v| 

Zero-level First-level Second-level Lee, 2002

1 2.1495 2.1122 2.1096 2.0482 

2 2.2743 2.2314 2.2280 2.1592 

4 2.4800 2.4261 2.4206 2.3383 

8 2.7956 2.7199 2.7092 2.6035 
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In Figs. 2b and 2c, the two-phase plots, which 

come from the zero-level solution, are a deformed 
ellipse and an almost prefect ellipse. The nonlinear 
response of the deformed ellipse case contains some 
higher harmonic components only, while the nonlinear 
response of the prefect ellipse case contains few higher 
harmonic components. The nonlinear responses shown 
in Figs. 2a–2c are obtained from the Duffing equation 
transformed from the three-coupled integrable disper-
sionless equations. In some nonlinear structural dy-
namic problems, the same Duffing equation is used for 
computing the nonlinear responses of beams/plates 
with large amplitude vibrations. 

In final conclusion, the modified residue har-
monic balance method has been introduced to solve 
the three-coupled integrable dispersionless equations 

with harmonic disturbance. The former version of this 
method was used for solving the governing equations 
of quadratic nonlinear beam problems, cubic nonlin-
ear beam problems, nonlinear vibro-acoustic prob-
lems, problems of nonlinear delay differential sys-
tems, etc. The proposed method can generate the 
higher-level nonlinear solutions ignored in the old 
method. The zero-, first-, and second-level solutions 
have been found and compared with those from the 
classical harmonic balance method. The second-level 
solutions from the proposed method and those from 
the classical harmonic balance method are generally 
consistent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Comparison of amplitude |v| (k1=0.5, k2=α==1, 
ω/α1/2=6) 

 
|v| 

Zero-level First-level Second-level Lee, 2002

1 6.8455 6.7053 6.6942 6.4684 

2 6.8597 6.7188 6.7076 6.4809 

4 6.8877 6.7455 6.7341 6.5058 

8 6.9428 6.7980 6.7862 6.5546 

Fig. 1  Amplitude of v against frequency (k1=0.5, k2=α= 

=1, =10) 
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Table 4  Comparison of the two amplitudes, |v| and |w| in 
Eqs. (5a) and (5b) using the classical harmonic method 
(α=3/4, =2/3, ω=1) 

 
1 harmonic 
component 

2 harmonic 
components 

3 harmonic  
components 

|v| |w| |v| |w| |v| |w| 

1 1.3653 1.3653 1.4322 1.4322 1.4352 1.4352

2 1.6380 1.6380 1.7724 1.7724 1.7814 1.7814

4 1.9517 1.9517 2.2521 2.2521 2.2845 2.2845

8 2.2013 2.2013 2.9324 2.9324 3.0575 3.0575

Fig. 2  Phase plot (k1=0.5, k2=α==1, =8, ω/α1/2=1) (a); 
Phase plot (k1=0.5, k2=α==1, =8, ω/α1/2=2) (b); Phase 
plot (k1=0.5, k2=α==1, =8, ω/α1/2=6) (c) 
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题 目：一种针对有扰动项的耦合可积非色散方程的修正

残差谐波平衡求解方法 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

目 的：本文将改进残余谐波平衡方法用于求解有扰动项

的耦合可积非色散方程,并简化取得破解方案的

过程。 

创新点：1. 在取得每一阶段破解方案的过程中, 只需处理

一条非线性代数方程式及一组线性代数方程式；

2. 能找出旧方法不能找出的非线性答案。 

方 法：1. 使用理论推导、方程式替换及残余谐波平衡方

法；2. 通过仿真模拟，推导震动位移与频率之间

的关系（图 1）以及位移与速度之间的关系 

（图 2）。 

结 论：1. 成功将改进残余谐波平衡方法应用于有扰动项

的耦合可积非色散方程；2. 通过与其他方法产生

的数据进行比较，验证了所提方法的可行性和有

效性（表 1–3）。 

关键词：大幅自主震动；残余谐波平衡；有扰动项的耦合

可积非色散方程 
 


