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Abstract: Tunable metastructures (including phononic crystals and metamaterials) have the unique advantage that one can change 
the operating frequency and acoustic wave characteristics as needed. In this paper, the bandgap characteristics and their control-
lability of a metastructured beam with mass-spring oscillators and under an axial force are investigated in depth both by the finite 
element method and by experiment. The experimental and numerical results indicate that there is one local resonance (LR) 
bandgap and multiple Bragg scattering (BS) bandgaps. The width and position of each bandgap can be tuned effectively by ad-
justing the axial force, lattice constant, and spring stiffness, and a super wide pseudo-gap can be obtained under suitable conditions. 
By integrating different mass-spring oscillators into one metastructured beam, the bandgap width can be broadened and pseudo- 
gap-like characteristics can be achieved. By changing the number of different oscillators, the propagating distance of elastic waves 
in the beam can also be controlled. It is further revealed that point defects have a large influence on the BS bandgaps but little effect 
on the LR bandgap. The present work provides an important reference for the optimal design of adjustable high-performance 
metastructures. 
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1  Introduction 

 
When an elastic wave propagates in a phononic 

crystal (PC, a medium with periodicity in material 
properties or/and geometry), it will interact with the 

periodic structure to produce destructive or construc-
tive interference, which can lead to the Bragg scat-
tering (BS) bandgap (Kushwaha et al., 1993; Birkl et 
al., 1996). If resonant cells are integrated into a me-
dium or structure, they will resonate at certain fre-
quencies and efficiently absorb the wave energy (Liu 
et al., 2002; Huang and Sun, 2010) to form another 
type of bandgap, the local resonance (LR) bandgap 
(Liu et al., 2000). Such a medium is also known as a 
metamaterial (MM). Generally, there is a limitation 
for PCs that the center frequency of the first-order BS 
bandgap is decided by c/(2L), where c is the wave 
velocity and L is the lattice constant (Zhang et al., 
2015). It means that we have to design a large L in 
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order to obtain the low-frequency BS bandgaps which 
are critical to applications related to acoustic waves. 
By contrast, the LR mechanism allows small L to 
control the low-frequency elastic waves, and hence 
MMs are not subjected to the above restriction, and it 
is much easier to get low-frequency bandgaps (Gao et 
al., 2017; Sheng et al., 2018). The BS bandgaps can 
exist alone or along with the LR bandgaps, depending 
on the design of the metastructure (PC or MM). In 
general, the two types of bandgap are separated from 
each other by a passband when both mechanisms are 
present in the metastructure. However, under certain 
conditions, their neighbouring boundaries may get 
very close, and accordingly a special super wide 
pseudo-gap emerges (Xiao et al., 2012), in the center 
of which is an extremely narrow passband. 

One-dimensional structures such as rod, shaft, 
and beam are widely used in our daily life.  
Environment-induced vibrations have a great influ-
ence on the strength, stiffness, and stability of these 
structures. Reasonably designed metastructures can 
reduce the damage caused by the vibrations to a cer-
tain extent, and thus have been deeply explored (Yu et 
al., 2008; Gao and Hou, 2018). However, in the case 
where the environment and requirements vary from 
time to time, it is difficult for a metastructure with 
fixed bandgaps to meet practical needs. In such cir-
cumstances, the metastructure with actively tunable 
bandgaps exhibits great advantages. In recent years, 
great research progress has been made on actively 
controlling bandgap characteristics by adopting 
metastructures with multi-field coupling effects (such 
as piezoelectric (Rupp et al., 2010; Zhou et al., 2019), 
dielectric (Yang et al., 2008), electrorheological (Yeh, 
2007), and magnetorheological (Bayat and Gorda-
ninejad, 2015)), by applying pre-stress (Bertoldi and 
Boyce, 2008; Mousavi et al., 2015), or by changing 
temperature (Huang and Wu, 2005).  

Recently, Zhou et al. (2019) carried out a theo-
retical study on a pre-stressed PC beam with piezoe-
lectric spring oscillators, predicting the existence of 
super wide pseudo-gap, and giving its appropriate 
conditions. In this study, we further use numerical and 
experimental methods to validate the theoretical 
analysis, and to explore more deeply the effects of 
lattice constant, spring stiffness, and axial force on the 
bandgap characteristics. In particular, we demonstrate 

how to choose the appropriate parameters to obtain an 
actively tunable, low-frequency, and wide bandgap. 
The influences on bandgaps of integrating different 
mass-spring oscillators and of introducing point de-
fects into the metastructured beam are also studied 
and discussed. 
 
 
2  Metastructured beam 

2.1  Beam model and some theoretical results 

The metastructured beam investigated in this 
study is shown in Fig. 1. It contains three components: 
the base beam, the springs, and the masses. The 
springs (with stiffness K) and the masses (with mass 
M) form the mass-spring oscillators, which are ar-
ranged periodically on the base beam. The lattice 
constant (period length) is L, and the two ends of each 
spring are connected to the mass and the base beam, 
respectively. The base beam has a rectangular cross 
section (with thickness H and width B), and is elas-
tically isotropic (with Young’s modulus E, Poisson’s 
ratio ν, and density ρ).  

In the following analysis, the mass is assumed to 
be a concentrated one, the base beam is modelled 
using the Euler-Bernoulli model (Bauchau and Craig, 
2009), and the mass of the spring is completely ig-
nored. When a harmonic bending wave w(x)e-iωt (ω is 

the angular frequency, i 1   is the imaginary unit) 
propagates in the beam subjected to an axial force N, 
the deflection amplitude w(x) satisfies the following 
fourth-order differential equation (Gei et al., 2009): 
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and the coefficients, Wi (i=1, 2, 3, 4), will be deter-
mined from the boundary conditions.  

For elastic wave propagation in an infinite pe-
riodic beam, the physical variables at the two ends of 
a unit cell should be related through the Bloch theo-
rem (Kittel, 2005), that is 

 
i

1(0) e (0),kL
j j V V                            (4) 

 
where k is the Bloch number, and the state vector V(x) 
consists of w(x) (deflection), w′(x) (slope), −EIw″(x) 
(bending moment), and −EIw′′′(x) (shear force). Here 
the prime denotes a derivative with respect to x. 

According to the analysis of Zhou et al. (2019), 
the edge frequencies of the bandgaps in the beam can 
be classified into two groups. The first group is asso-
ciated with the BS bandgaps, given by 
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The second group, related to the LR bandgap, reads as 
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When the neighbouring boundaries of the BS 

and LR bandgaps become coincident, a so-called 
super wide pseudo-gap will form, and the conditions 
are 
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where 2 2 2π /( )Γ n NL EI  . As indicated above, K 

is an increasing function about n and N, so the min-
imum K that makes the super wide pseudo-gap exist 
when n=1 and N=0 is 
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2.2  Numerical simulation 

In order to verify the above theoretical predic-
tions based on a unit cell using the periodic condition 
(Zhou et al., 2019), we now develop numerical and 
experimental methods to make further comparisons 
and also to carry out extensive parametric studies. 
The numerical simulation makes use of the finite 
element method (FEM) based on the commercial 
software ABAQUS. The mass-spring oscillator is 
then simulated by adopting concentrated mass and 
spring-damping modules. The beam can be simu-
lated by wire (1D), shell (2D), or solid (3D) units; 
they are the most appropriate for a long and thin 
beam, a thin and wide beam, or a short and thick 
beam, respectively. Since the base beam is treated 
theoretically as an Euler-Bernoulli beam in Section 
2.1, we also choose the wire unit in the simulation 
for consistency. 

Our simulation focuses on the frequency re-
sponse spectrum, from which the bandgap character-
istics can be easily clarified (Javid et al., 2016). Thus, 
here we consider a metastructured beam of finite 
length; its FEM model is shown in Fig. 2. The cross 
section is rectangular, the same as in the theoretical 
beam model. The beam is divided into several seg-
ments according to the lattice constant, and the joint 
nodes are marked in the figure. At a position above 
each node, an attachment point is added, where a 
concentrated mass can be placed. A spring is finally 
integrated into the FEM model by connecting it to the 

Fig. 1  Schematic diagram of the metastructured beam
xj is the local coordinate at the jth cell 
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node and the attachment point at its two ends, re-
spectively. It is noted that, in general, we need to 
adopt a strategy in the numerical simulation that will 
restrain the boundary reflection in a finite-size beam 
(e.g. the perfectly matched layer for a finite beam 
(Chew and Liu, 1996)). However, we have found 
through comparison that the effect of boundary re-
flection on the bandgap characteristics is very small 
and can be neglected. Thus, the FEM results pre-
sented in this study are all obtained for a finite-size 
beam without any special treatment of the boundary 
reflection. 
 
 
 
 
 
 
 
 
 

There are several ways to simulate the pre-stress 
induced by the axial force in ABAQUS, including 
restarting analysis, applying a specific initial stress 
field, and using multiple analysis steps. Here we 
adopt three analysis steps to simulate the dynamic 
response of a pre-stressed beam: (1) in the initial step, 
fix the left end of the beam in the x-direction; (2) 
create a static-general analysis step based on the ini-
tial step, turn on the NLGEOM switch, and apply a 
concentrated tensile force on the right end of the beam; 
(3) set a steady-state dynamics analysis step, choose 
the parameters including the frequency range and the 
step length, and apply the displacement excitation in 
the y-direction to the right end of the beam. By 
comparing the wave amplitudes at the two ends of the 
beam in the frequency range of interest, the bandgap 
characteristics of the metastructured beam can be 
finally obtained. 

 
 

3  Experiment 
 

In the theoretical and numerical analyses, the 
base beam is modelled based on the Euler-Bernoulli 
theory, and the effects of the gravity of the beam, the 
mass of the springs, and the boundary reflections are 

all ignored. Correspondingly, in the experiment, it is 
necessary to select a slender base beam with large 
stiffness, lightweight springs, and small masses. In 
addition, the concentrated forces, caused by mass- 
spring oscillators, applied on the center line of the 
base beam, will make the base beam deform unevenly 
along the width direction. The smaller the beam 
stiffness, the larger the mass (and the spring stiffness 
and the aspect ratio of the beam as well), and the 
higher the frequency, the more obvious the uneven 
effect. Therefore, to reduce the error between the 
experimental and theoretical/numerical results, we 
need to make a careful selection of the material and 
geometric parameters of the metastructured beam. 
Finally, according to Eq. (9), the spring stiffness must 
be large enough (at least to approach Kmin) for the 
super wide pseudo-gap to exist.  

Based on the above considerations, the base 
beam was made from 6061 aluminum alloy, with 
Young’s modulus E=68.9 GPa, Poisson’s ratio v=0.33, 
and density ρ=2700 kg/m3. The geometric parameters 
of the base beam were selected as: length Lb=1.2 m, 
width B=0.008 m, and thickness H=0.002 m. Five 
series of springs had the same length of 0.01 m but 
different diameters, and the stiffnesses were measured 
by a mechanical testing machine and found to be 4931, 
12 892, 19 335, 32 668, and 41 976 N/m, respectively. 
The mass was made of stainless-steel with the mass 
being M=0.02 kg. 

The schematic diagram and the picture of the 
experimental setup are shown in Figs. 3 and 4, re-
spectively. The two ends of every spring were bonded 
to the mass and the center line of the surface of the 
base beam by glue. The distance between the mass- 
spring oscillators is L.  

In order to reduce the boundary influence and 
apply the axial forces conveniently, two small holes 
with a diameter of 3 mm were drilled at a distance of 
4 mm from the two ends of the beam, respectively. 
Soft ropes were used, which pass through the small 
holes, with the left rope connected to a fixed point to 
constrain the axial (x-direction) displacement of the 
beam, and the right rope connected to a weight so as 
to exert an axial force on and maintain the pre-stress 
in the base beam. A white noise vibration signal was 
input at the right end to excite the beam. Lightweight 
accelerometers were integrated at both ends of the 

Fig. 2  Schematic diagram of the metastructured beam in 
ABAQUS 



Yuan et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2019 20(11):811-822 815

base beam to collect the dynamic responses, which 
were transferred to the computer via digital to analog 
converter (DAC) and then used to calculate the fre-
quency response spectrum.  

By hanging different weights, replacing springs 
of different stiffness, and changing the oscillator 
spacing, the effects of axial force N, spring stiffness K, 
and lattice constant L on the bandgap characteristics 
of the metastructured beam can be studied separately 
or jointly via the proposed economic and efficient 
experimental setup. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4  Results and discussion 
 

In the following, we will adopt dimensionless 
parameters for convenience of discussion. Therefore, 
unless specially stated, the reference lattice constant 
is set to L0=0.1 m and the reference spring stiffness is 
K0=10 000 N/m. Then, we define the dimensionless 
lattice constant as ηL=L/L0, the dimensionless spring 
stiffness as ηK=K/K0, and the dimensionless axial 
force as ηN=N/(EA). 

The frequency response spectrum of the meta-
structured beam calculated by ABAQUS is shown in 
Fig. 5 for ηK=2, ηL=1, and ηN=0. The quantity S= 
20lg(AO/AI) (unit: dB) is used to describe the attenu-
ation intensity, where AO and AI are the wave ampli-
tudes at the receiving point and the excitation point, 
respectively. Since the reference intensity of the sig-
nal at the excitation point is 0, there is attenuation 
when S<0 and the signal is enhanced when S>0. As 
can be seen from Fig. 5, in the range of 0–1200 Hz, 
there are two bandgaps in the metastructured beam: 
the one with lower frequency and stronger attenuation 
is the LR bandgap, while the other one with higher 
frequency and weaker attenuation is the BS bandgap. 
The bottom gray bar is determined by S. The darker 
the color, the stronger the attenuation, while the white 
stripes represent the formants. Therefore, the gray bar 
can also describe the bandgap characteristics of the 
metastructured beam. Fig. 6 shows the wave propa-
gation when the frequency is in the bandgap or in the 
passband, from which the amplitude attenuation or 
maintenance can be seen clearly.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 
 
 
 

 

Fig. 5  Frequency response spectrum calculated by 
ABAQUS (ηK=2, ηL=1, and ηN=0). ω1–ω4 are edge fre-
quencies of bandgaps 

Fig. 6  Wave propagation when the frequency is in the 
bandgap or passband (ηK=2, ηL=1, and ηN=0) 

Fig. 4  Photo of the experimental setup

Fig. 3  Schematic diagram of the experimental setup
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4.1  Effects of lattice constant, spring stiffness, and 
axial force on bandgaps 

We have the following relationship between the 
frequency and the lattice constant L: 

 

B ,
2

c
f

L
                                 (10) 

 
where fB is the center frequency of the first-order BS 
bandgap, and c is the wave velocity in the base beam 
(Zhang et al., 2015). Thus, the larger the lattice con-
stant L, the lower the corresponding frequency. 

Fig. 7 shows the effect of the dimensionless 
lattice constant ηL on the bandgap while the dimen-
sionless spring stiffness and axial force are fixed as 
ηK=5 and ηN=0. The gray bars in the figure are de-
termined by the attenuation intensity from the FEM 
simulations. The solid lines, which are fitted by the 
numerical results, can reflect the continuous change 
of the bandgap edge frequencies. The dots represent 
the edge frequencies predicted by the theoretical 
model, and the dashed line represents the natural 
frequency of the mass-spring resonator. It can be 
seen that the finite element results agree very well 
with the theoretical results. When ηL increases from 
0.5 to 3.0, the number of bandgaps increases from 1 
to 6, while the edge frequencies decrease and the 
widths of the two lowest-order bandgaps become 
narrower.  

These positions, where the boundaries of the BS 
bandgap and the LR bandgap coincide, are called the 
turn points (TPs), and the first three TPs are shown in 
Fig. 7. The darkest bandgap in every bar represents 
the LR bandgap, whose position is exchanged with 
that of the BS bandgap at TPs gradually from the 1st 
bandgap to the 4th bandgap. When TP exists, the 
neighbouring boundaries of two bandgaps coincide to 
form a so-called super wide pseudo-gap (Zhou et al., 
2019), and this formation condition is expressed by 
Eq. (8). Observing the position of the dashed line, we 
can find that the natural frequency of the mass-spring 
resonator can be located in the LR bandgap, or in the 
BS bandgap, or even in the passband. 

Fig. 8 compares the experimental results with the 
FEM simulations. It is seen that the bandgap widths 
and positions predicted by the two methods are gen-
erally consistent with each other. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 shows the effect of the dimensionless 

spring stiffness ηK on the bandgaps in the metastruc-
tured beam. As ηK increases, the edge frequency ω4 
increases all the time, while ω1 increases slowly and 
then stabilizes to a fixed value. After the 1st TP, ω2 
stabilizes at the first-order Bragg frequency, and ω4 
increases with the trend previously possessed by ω2. 
It can be judged by the position of the dark region that 
the LR bandgap and the BS bandgap are also ex-
changed at the 1st TP. In general, with the dimen-
sionless spring stiffness ηK increasing, the bandgap 
edge frequency and width increase. The width of the 
passband between the first two bandgaps decreases 
first and then increases, and at the 1st TP, the  
passband almost disappears, forming a super wide  
pseudo-gap. 

Fig. 8  Effect of ηL on bandgaps (ηK=3.3, ηN=2.72×10−5)

Fig. 7  Effect of ηL on bandgaps (M-K system means 
mass-spring system; LR means local resonant bandgap; 
TP means turn point where the boundaries of the BS 
bandgap and the LR bandgap coincide. ηK=5, ηN=0) 
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When an axial force is applied to the beam, the 
effective stiffness of the beam (before buckling) will 
increase. As can be seen from Fig. 10, with ηN in-
creasing, the edge frequencies of the BS bandgap 
increase, while the edge frequency ω1 of the LR 
bandgap increases slowly and finally approaches the 
natural frequency of the mass-spring resonator, and 
ω2 remains almost unchanged after the 1st TP. The 
bandgap width becomes wider first and then narrower, 
and a pseudo-gap appears at the 1st TP (near ηN=1.5). 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

4.2  Super wide pseudo-gap 

According to the previous discussion, it can be 
concluded that under certain conditions, such as at 
TPs in Fig. 7, the boundaries of the LR and BS 
bandgaps will coincide, and the passband between the 
two bandgaps becomes extremely narrow, forming a 
so-called super wide pseudo-gap. In this study, we 
just pay attention to the first two lowest pseudo-gaps 

(n=1 and n=2 in Eq. (8)). Satisfying the formation 
condition in Eq. (8), the three dimensionless param-
eters (ηL, ηK, and ηN) are not all independent. In the 
following, we fix ηL=1, while choosing ηN as the main 
parameter to study for its effect on the pseudo-gap. 

Figs. 11 and 12 show the variations of the super 
wide pseudo-gaps with the dimensionless axial force 
ηN when n=1 and n=2 in Eq. (8), respectively. The 
dotted line represents the extremely narrow passband. 
As ηN increases, the width of each pseudo-gap in-
creases. When n=1, the ratio of bandgap width to total 
width ((ω4−ω1)/ω4) exceeds 85.3% from 0 Hz to ω4; 
when n=2, the ratio ((ω6−ω3+ω2−ω1)/ω6) exceeds 
77.8% from 0 Hz to ω6. If an elastic wave filter is 
designed based on this characteristic, elastic waves 
whose frequencies are in the narrow passband can be 
selected out over a super wide frequency range, and 
the larger the ηN, the better the filtering effect.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9  Effect of ηK on bandgaps (ηL=1, ηN=0)

Fig. 11  Effect of ηN on the super wide pseudo-gap when 
n=1 (ηL=1) 

Fig. 12  Effect of ηN on the super wide pseudo-gap when 
n=2 (ηL=1) 

Fig. 10  Effect of ηN on bandgaps (ηL=1, ηK=5) 
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Fig. 13 shows the comparison between the ex-
perimental and numerical results when ηN=2.8×10−5, 
ηK=3.3, and ηN=5.5×10−5, ηK=4.2. It should be noted 
that the corresponding ηK for ηN=2.8×10−5 and 
ηN=5.5×10−5 are 3.655 and 3.966 respectively under 
the formation conditions of a super wide pseudo-gap, 
which are close to the parameters used in the exper-
iment. It can be seen that the passband between the 
two lowest bandgaps is relatively narrow, giving rise 
to the super wide pseudo-gap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  One-dimensional tandem metastructured 
beam 

When an elastic wave propagates in the meta-
structured beam, the wave amplitude will be attenu-
ated or enhanced. If different metastructured models 
are connected in series or in tandem, the wave prop-
agation behavior will be a comprehensive result. If 
the attenuation is greater than the enhancement, the 
synthesized structure can achieve the effect of wid-
ening bandgaps (Zhu et al., 2014; Barnhart et al., 
2019). This feature has been used to construct 1D 
layered PCs with an ultra-wide bandgap (Kushwaha, 
2008; Chen et al., 2017) as well as metamaterials with 
broadband wave mitigation at subwavelength scale 
(Chen et al., 2016; Xu et al., 2019).  

From Fig. 9, it is seen that the edge frequency ω3 
before TP is the same as ω2 after TP. If two pairs of 
mass-spring oscillators (A and B), selected from both 
sides of TP, are arranged in the way as shown in 
Fig. 14, the new metastructured beam is expected to 

have much wider bandgaps and the analogous  
pseudo-gaps. In the following discussion, the syn-
thesized beam is named AB, while the one with only 
springs A (or B) is named AA (or BB). 

 
 

 
 
 
 
 
 
 

Taking ηKA=3, ηKB=4, m=10, and n=9, input the 
vibration signal at the left end of the beam, and re-
ceive the signal at the right end. The FEM results are 
shown in Fig. 15. It is seen that the edge frequency ω1 
of AB is very close to AA, while ω4 of AB is very 
close to BB. The original passband between the two 
bandgaps of AA (or BB) becomes a bandgap in AB, 
with only a very narrow frequency range acting like a 
passband. In this case, AB exhibits similar character-
istics to a super wide pseudo-gap. In fact, the result of 
a tandem structure can be approximated as a weighted 
average of the results of individual structures, and the 
weighting factors are related to the number of the 
respective resonators (Deymier, 2013), which are 
m/(m+n) and n/(m+n). Fig. 16 shows the comparison 
between the directly calculated result of AB by 
ABAQUS and the approximate result using the above 
weighted formula, which is SAB=(mSAA+nSBB)/(m+n). 
It is seen that the bandgap characteristics from the two 
methods match quite well with each other. Therefore, 
the bandgap characteristics of the tandem structure 
can be approximately predicted from Fig. 9. Obvi-
ously, we can integrate other springs, masses, or lat-
tice constant L, to form a synthesized metastructured 
beam, so as to obtain much wider bandgaps and a 
super wide pseudo-gap according to Figs. 7, 9, and 10. 

In addition, it is very effective to control the 
propagation distance of an elastic wave at certain 
frequencies in the synthesized beam by adjusting m 
and n. Fig. 17 shows the wave propagation in the 
beam with m (ηK=1) and n (ηK=3) mass-spring oscil-
lators at 385 Hz while keeping m+n=19. It is seen that 
when m equals 6, 10, and 13, the wave propagation 
distances are roughly 7L, 11L, and 14L, respectively, 

Fig. 13  Comparison between the experimental and nu-
merical results (ηL=1) 

Fig. 14  Two metastructured beams with different mass-
spring resonators connected in series to form a new syn-
thesized metastructured beam 
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indicating that the wave propagation distance in the 
beam can be effectively controlled. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

4.4  Effect of defect  

Defect, which is an important topic in the re-
search of PCs, can cause wave localization (Figotin 
and Klein, 1996), energy accumulation, wave guiding 
(Miyashita, 2005; Yao et al., 2010), and other special 
phenomena. Wave propagation in some periodic 

structures can be very sensitive to defects, while it 
may be insensitive to defects in other situations. For 
the 1D metastructured beam considered in this study, 
we mainly discuss the influence of point defects (lost 
mass-spring oscillators) on the bandgaps. Fig. 18 
shows the effect of defect when ηL=1, ηN=0, and 
ηK=1.3. There are 10 mass-spring units, and the 3rd 
and 7th oscillators represent the third and seventh 
mass-spring oscillators from the excitation end. The 
experimental and finite element results show that the 
omission of a few mass-spring oscillators has little 
effect on the global bandgap characteristics, espe-
cially on the LR bandgap. However, the upper edge 
frequency ω4 of the BS bandgap is sensitive to the 
defects, and the more the defects, the lower the ω4, 
and the weaker the attenuation. If the point defects 
increase, the BS bandgap will gradually disappear. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
5  Conclusions 

 
Combined with the theoretical analysis of Zhou 

et al. (2019), the effects of lattice constant, axial force, 
and spring stiffness on the bandgap characteristics of 
a 1D pre-stressed metastructured beam with mass- 
spring oscillators were investigated by experimental 
and numerical methods. It was proved that the width 
and position of the bandgaps can be adjusted by co-
operatively changing the axial force and the spring 
stiffness. In particular, under certain conditions, a 
super wide pseudo-gap will form. The influences of 
serial combination and local defect on the bandgaps 
were also discussed. The main conclusions of this 
study are summarized as follows: 

Fig. 15  Comparison of frequency response spectrum 
between AB and AA or BB (ηL=1, ηN=0) 
AB represents the tandem structure of 10 springs A and 9 
springs B, while AA (or BB) represents the beam with 19 
springs A (or B) 

Fig. 16  Comparison of frequency response spectrum 
between the weighted result and the directly calculated 
result of AB 

Fig. 18  Effect of point defects on bandgaps (ηL=1, ηN=0,
and ηK=1.3) 

Fig. 17  Control of wave propagation distance by changing 
the numbers of two different mass-spring oscillators, and 
m (or n) is the number of springs A (or B) 
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1. Coordinately changing the lattice constant, 
axial force, and spring stiffness can effectively adjust 
the width and position of the bandgaps. Under certain 
conditions, a super wide pseudo-gap can be obtained, 
and the larger the axial force, the better the filtering 
effect based on the narrow passband in the  
pseudo-gap. 

2. The synthesized metastructured beam with 
two kinds of mass-spring oscillators selected from 
both sides of TP has much wider bandgaps and an 
analogous super wide pseudo-gap. At the same time, 
changing the number of different mass-spring oscil-
lators can effectively control the wave propagation 
distance in the beam. 

3. The point defects have less influence on the 
LR bandgap but greater influence on the BS bandgaps. 
If the number of point defects increases, the BS 
bandgap will be narrowed and even disappear. 

It should be pointed out that, although the ex-
perimental results are in good agreement with the 
numerical results, there are still some deviations 
between them. The errors mainly arise from the 
experiment, such as an imprecise measurement of 
the spring stiffness, the position offset of the springs 
on the beam, and the influence of gravity on the 
structure. In addition, the inadequacies of the ex-
periment include the fact that the spring stiffness and 
the axial force cannot be continuously changed, 
resulting in an inability to obtain the accurate char-
acteristics of the super wide pseudo-gap. In addition, 
the spring stiffness is relatively small, resulting in a 
failure to verify the bandgap characteristics with high 
spring stiffness and high-order pseudo-gaps. In fur-
ther studies, we will improve the experimental setup 
and try to lay a more solid foundation for engineering 
applications. 
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中文概要 
 

题 目：带隙可调的超结构梁：数值和实验研究 

目 的：1. 研究晶格常数、预应力和弹簧刚度对超结构梁

带隙的影响，优化结构并形成伪禁带或低频且宽

的禁带；2. 通过实验验证伪禁带的存在性、排列

对带隙的影响以及缺陷对带隙的影响等。 

创新点：1. 通过预应力调节超结构梁的带隙特征，并可以

形成伪禁带；2. 通过排列不同弹簧振子构成宽频

禁带和宽频伪禁带。 

方 法：1. 通过有限元软件模拟预应力、弹簧刚度和晶格

常数等参数对该超结构梁带隙的影响情况；2. 设

计合适的参数并进行结构优化，使得该结构的带

隙宽，频率低，且易于实验实现；3. 在实验中通
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过替换弹簧、改变弹簧间距和施加轴向拉力分别

研究弹簧刚度、晶格常数和预应力的影响，并通

过移除部分弹簧和同时布置不同弹簧的方式研

究缺陷和排列对带隙的影响。 

结 论：1. 该结构存在一条局域共振禁带和多条布拉格散

射禁带；通过调节预应力、弹簧刚度和晶格常数

等可以有效地控制带隙特征。2. 在特定条件下可

以形成宽频伪禁带；通过排列不同弹簧振子可以

达到拓宽禁带、形成宽频伪禁带的效果。3. 缺陷

对布拉格散射禁带的影响较大，对局域共振禁带

的影响较小。 

关键词：超结构梁；预拉伸；可调带隙；伪禁带；排列 

 
 


