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Abstract: Sea-crossing bridges have attracted considerable attention in recent years as an increasing number of projects have been 
constructed worldwide. Situated in the coastal area, sea-crossing bridges are subjected to a harsh environment (e.g. strong winds, 
possible ship collisions, and tidal waves) and their performance can deteriorate quickly and severely. To enhance safety and 
serviceability, it is a routine process to conduct vibration tests to identify modal properties (e.g. natural frequencies, damping 
ratios, and mode shapes) and to monitor their long-term variation for the purpose of early-damage alert. Operational modal 
analysis (OMA) provides a feasible way to investigate the modal properties even when the cross-sea bridges are in their operation 
condition. In this study, we focus on the OMA of cable-stayed bridges, because they are usually long-span and flexible to have 
extremely low natural frequencies. It challenges experimental capability (e.g. instrumentation and budgeting) and modal identi-
fication techniques (e.g. low frequency and closely spaced modes). This paper presents a modal survey of a cable-stayed 
sea-crossing bridge spanning 218 m+620 m+218 m. The bridge is located in the typhoon-prone area of the northwestern Pacific 
Ocean. Ambient vibration data was collected for 24 h. A Bayesian fast Fourier transform modal identification method incorpo-
rating an expectation-maximization algorithm is applied for modal analysis, in which the modal parameters and associated iden-
tification uncertainties are both addressed. Nineteen modes, including 15 translational modes and four torsional modes, are iden-
tified within the frequency range of [0, 2.5 Hz].  
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1  Introduction 
 
In recent years, an increasing number of sea- 

crossing bridges have been built worldwide. They are 
constructed for the purpose of promoting the trans-
portation network and economic development of 

coastal areas. Compared to cross-river bridges, sea- 
crossing bridges are often subjected to harsher envi-
ronmental conditions (Guo, 2010). Wind is one of the 
dominant loadings that causes vibrations (e.g. flutter 
and vortex), especially for those typhoon-prone areas 
(Zhou and Sun, 2018; Xu et al., 2019). Seismic risk is 
another issue occurring more often because of the 
movements and collisions between the continental 
and oceanic plate margins (Li et al., 2018). Wave and 
wave current induce hydrodynamic problems further 
affecting structural bearing capacity (Liu, 2006). 

To ensure the safety and serviceability of sea- 
crossing bridges, structural health monitoring (SHM) 
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systems are employed to monitor the structural re-
sponse and provide information on the health states 
(e.g. level of damage) of bridges. Vibration-based 
techniques have been widely applied to identify 
structural damage. Here the data is generally pro-
cessed through Fourier transform or wavelet trans-
form (Doebling et al., 1998; Ren and de Roeck, 2002; 
Kim and Melhem, 2004; Guo et al., 2005; Taha et al., 
2006). The structural modal parameters (e.g. modal 
frequencies, damping ratios, and mode shapes) are 
often used as the indicators of health state. Challenges 
exist since the modal information is not sensitive 
enough to the structural damage, and the variation of 
the parameters can be due to environmental and op-
erational changes rather than the damage (Zhou and 
Sun, 2019). From the authors’ experience/view, sev-
eral things need to be clarified in the SHM commu-
nity. Firstly, more attention should be paid to the 
overall structural health state, which can be quantified 
by the failure probability with formulating appropri-
ate limit state functions, instead of examination of any 
superficial damage. The damage that cannot be de-
tected by the change of modal parameters may have 
negligible effect on the failure probability. Secondly, 
although the modal parameters are important factors 
to consider in the SHM, we should not be over- 
optimistic of its role. For instance, it is unrealistic to 
locate the damage of a kilometer-long bridge by de-
ploying only several accelerometers. As for the var-
iability of modal parameters, a large data set as the 
reference state is necessary and the data should be 
analyzed in a probabilistic manner. Besides the de-
mands for the SHM, it is of great interest to investi-
gate the structural modal properties of sea-crossing 
bridges for the purpose of validating and updating 
their numerical models in the design stage as well as 
understanding their dynamic behavior. 

Operational modal analysis (OMA), also known 
as ambient modal identification, aims at identifying 
structural modal properties using output-only data 
(Brincker and Ventura, 2015). The excitation in OMA 
is commonly unmeasured but assumed to be ‘broad-
band random’. Since it does not require specific 
knowledge of input and thus is economic in imple-
mentation, OMA has attracted considerable attention 
in the vibration testing of civil engineering structures. 
Identification techniques can be generally distin-

guished by the format of data either in the time do-
main or in the frequency domain. Though there are 
time-frequency domain methods, their applications 
are rare and thus not introduced here. In the time 
domain, representative methods include Ibrahim time 
domain method (Ibrahim, 1977) and stochastic sub-
space identification (SSI) with its variants (Peeters 
and de Roeck, 2001). The SSI methods have been 
widely used in OMA applications as they are robust 
and efficient (Mevel et al., 2003; Brownjohn et al., 
2010; Liu et al., 2013). In addition, automated OMA 
techniques using a multi-stage clustering approach 
allow the modal identification to be performed 
without user interactions, and this greatly facilitates 
data analysis (Reynders et al., 2012; Sun et al., 2017). 
As for frequency domain methods, peak-picking 
(Felber, 1993) and frequency domain decomposition 
(FDD) (Brincker et al., 2000) are popular. Because of 
the frequency nature of modal parameters and the 
existence of the fast Fourier transform (FFT),  
frequency domain methods exhibit great efficiency in 
processing long-time stationary data, while the time 
domain methods have the advantage of dealing with 
nonstationary and transient data. 

Although the identification of natural frequency 
and mode shape usually has adequate accuracy, the 
precision of estimating damping is still insufficient 
(Zhang et al., 2005). In order to quantify the identi-
fication uncertainties, statistics-based OMA methods 
have been developed. Working with classical statis-
tics (or the frequentist approach), various estimators 
(Brincker and Ventura, 2015) have been proposed to 
infer modal parameters, whose uncertainty arises 
from the uncertain data. Different from the ‘fre-
quentist’ point of view, the Bayesian method repre-
sents another school of thought. It views the problem 
as a posterior inference, and all the knowledge of 
modal parameters is encapsulated in their joint pos-
terior distribution (Au et al., 2013). The Bayesian 
method identifies the structural modal properties as 
the most probable values (MPVs) and provides identi-
fication uncertainties by the posterior covariance ma-
trix. The Bayesian FFT method is a typical approach 
formulated in the frequency domain. Fast algorithms 
for the calculation of MPV have been developed for 
well-separated modes (Au, 2011) and closely spaced 
modes (Au, 2012). An expectation-maximization 
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(EM) algorithm and its variants have been proposed 
recently, which have improved the computational 
efficiency and convergence (Li and Au, 2019). 

In this study, a modal survey of a cable-stayed 
sea-crossing bridge has been conducted, where 
structural modal properties have been identified using 
the Bayesian FFT method. In this paper, a brief re-
view of the Bayesian FFT method incorporating the 
EM algorithm is given first. Then, a detailed descrip-
tion of the bridge is provided. At last, the investiga-
tion with field data is presented. 

 
 
2  Bayesian FFT with EM algorithm 

 
Let the measured acceleration time history of n 

degrees of freedom (DOFs) be 1
0{ }n N

j j

y ϒ , where N 

is the number of samples per data channel. The 
(scaled) FFT of data is given by 

 
1

0

/ exp( 2πi / ),
N

k j
j

t N jk N




  F y             (1) 

 
where i2=−1; Δt is the sampling interval; Fk corre-
sponds to the frequency fk=kΔt/N up to the Nyquist 
frequency Nq=int[N/2], where int[.] denotes the inte-
ger part and k=1, 2, …, Nq. 

Applying the Bayes’ theorem and assuming a 
uniform prior probability density function (PDF), the 
posterior PDF of modal parameters, denoted by θ, for 
the given FFT data {Fk} is proportional to the like-
lihood function, i.e.  

 

( { }) ({ } ),k kp pθ F F θ                      (2) 

 

where ({ } )kp F θ  is also known as the joint PDF of 

{Fk} condition on θ. For small Δt and large N, the 
FFT data {Fk} is asymptotically independent and 
jointly ‘circularly complex Gaussian’ distributed. The 
likelihood function is then given by 
 

f
1 * 1({ } ) exp ,nN

k k k k k
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p
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where Nf is the number of FFT data within the se-
lected frequency band; ‘*’ represents the conjugate 

transpose; ‘| |’ denotes the matrix determinant; Ek is 
the theoretical covariance matrix of {Fk}, i.e. the 

expectation of *.k kF F  

For a classically damped system, if there are m 
modes dominating the selected frequency band, the 
FFT data can be modeled as 

 
,k k k k F h p 
                         

(4) 

 
where hk=diag(h1k, h2k, …, hmk) is a diagonal matrix 
with the frequency response function (FRF) being the 
diagonal entry; pk is the FFT of the modal excitation; 
Φ=[φ1, φ2, …, φm] is the mode shape matrix corre-
sponding to the measured DOFs; εk is the prediction 
error consisting of channel noise and modeling error. 

The FRF contains the natural frequency f and 
damping ratio ζ. The modal excitation pk and predic-
tion error εk are modelled as independent circularly 
complex Gaussian distributions with a constant power 
spectral density (PSD) matrix of S and a constant PSD 
of Se, respectively. The theoretical covariance matrix 
Ek is then given by 
 

T
e ,k k nS E H I                          (5) 

 

where *= ,k k kH h Sh  and In is the n×n identity matrix. 

In the above probabilistic model, the modal ex-
citation is assumed to be broadband random, and 
have a constant PSD within the selected frequency 
band. Since this band is usually narrow, it is much 
more robust than the conventional ‘white noise’ as-
sumption (i.e. constant PSD for all frequencies) in 
most OMA methods. On the other hand, the possible 
input loads, e.g. wind, sea-wave, and traffic load, 
have generally a slow-varying spectrum, so that the 
assumption of constant PSD within the narrow band 
should not induce a large modeling error. The same 
reasoning holds for the measurement error, because 
most accelerometers have a slow-varying ‘pink’ 
spectrum. 

With sufficient data, the posterior distribution of 
modal parameters can be well approximated by a 
Gaussian distribution centered around the MPVs, and 
the covariance matrix is given by the inverse of the 
Hessian of the negative log-likelihood function. 
Computation of the MPVs and the covariance matrix 
is non-trivial, primarily because the number of modal 
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parameters can be large and the matrix Ek is almost 
rank-deficient when the signal-to-noise ratio is high 
(i.e. small Se) and the number of modes m is fewer 
than that of the measured DOFs n. For the calculation 
of MPVs, a recently developed EM algorithm (Li and 
Au, 2019) has been applied in this study, and it is 
briefly reviewed below.  

The EM algorithm takes advantage of the model 
structure to decouple the optimization problem into 
more manageable pieces. This divide-and-conquer 
strategy gives a conceptual clarity and simplicity of 
the algorithm. Instead of directly maximizing the 
log-likelihood function, the EM algorithm maximizes 
the expectation of the complete-data log-likelihood 
function, which is in fact a lower bound of the 
log-likelihood function. More specifically, consider 
the FFT Fk as the observed variable and the modal 
response ηk=hkpk as the latent variable. The condi-
tional joint distribution p({Fk, ηk}|θ) then gives the 
so-called complete-data likelihood function. In the 
implementation of the EM algorithm, for a given 
starting value θ(0), the expectation step computes the 
expected complete-data log-likelihood function (Q 
function) and the maximization step obtains the MPV 
of θ by maximizing the Q function. 

For the expectation step,  
 

( )

( )

{ }{ },
( ) [log ({ , } )],t

k k

t
k kQ E p

η F θ
θ θ F η θ       (6) 

 

where E[.] denotes the expectation operator. 
For the maximization step, 
 

( )( 1){ } arg max[ ( )].
tt Q  θθ θ θ                   (7) 

 
The two steps are iterated until convergence. In 

the developed EM algorithm, the updates of Φ, S, and 
Se have been derived analytically, allowing a fast 
calculation of MPVs. Variants of the above ordinary 
EM were also proposed by Li and Au (2019) to ac-
celerate its convergence, but they will not be intro-
duced here because of space limitations. 
 
 
3  Bridge information 

 
The investigated sea-crossing bridge is called 

‘Jintang Bridge’, a three-span cable-stayed bridge, 

shown in Fig. 1. It is a part of Ningbo-Zhoushan ex-
pressway that connects Jintang Island and Ningbo 
City. An elevation view of the bridge is shown in 
Fig. 2. The main span is 620 m and there are two side 
spans of 218 m. The steel-box girder is 30.1 m in 
width with uniform cross section. In addition, the 
pylons were made of reinforced concrete with a 
height of 204 m, and the height over the deck is 
155 m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During its operation, large amounts of data have 

been acquired by an SHM system installed to facili-
tate operation management and early alert of possible 
damage. Fifteen uniaxial piezoelectric accelerome-
ters (ASP series, manufactured by KYOWA, Japan, 
with a sensitivity of 100 mV/g (±10%)) were per-
manently installed on the bridge to measure the vi-
bration responses of the girder. Two data acquisition 
systems (UCAM series, KYOWA) with data re-
cording hardware (2 GB built-in memory) were 
equipped at both sides of the bridge. They connected 
the nearby sensors and were synchronized via an 
internal clock. The sensor locations are graphically 
shown in Fig. 2 and a detailed description is provided 
in Table 1. 

Fig. 1  Overview of the investigated cable-stayed sea-
crossing bridge (Jintang Bridge) 
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4  Investigation with field data 

 
In this study, we investigate the modal param-

eters of Jintang Bridge based on the data recorded at 
a sampling rate of 50 Hz for 24 h on July 13, 2013. A 
typical data set of 3600 s is shown in Fig. 3, where we 
can find large amplitudes of vibration for several 
short periods, but low vibration levels in most of the 
time. The data is split into 15-min segments for modal 
analysis. Each segment contains about 200 cycles of 
the fundamental mode, calculated as (measurement 
duration)/(fundamental period)=200, which is con-
sidered to be sufficient for modal identification with 
an acceptable precision (Au, 2014). The choice of the 
aforementioned time window also takes into account 
that the variation of the operation condition, e.g. 
temperature, can be neglected over such a short  
period.  

In order to indicate the modes of interest and 
select frequency bands for modal identification, a 
singular value (SV) spectrum of the measured data is 
first viewed in Fig. 4. It is the plot of the eigenvalues  

 
 
 
 
 
 
 
 
 
 
 
 

of the sample PSD matrix against frequency. The bold 
line in the figure shows the largest eigenvalues, and 
the peaks indicate potential modes that display dy-
namic amplification. The significance of peaks over 
remaining lines indicates the level of signal-to-noise 
effect. The more significant the peaks, the higher the 
signal-to-noise ratio. The horizontal bars ‘[-]’ and the 
circles ‘o’ in the figure represent the selected fre-
quency bands and initial guesses of the natural fre-
quency. The selection of the frequency band is a 
trade-off between the amount of information used in 
making an inference of the modal parameters and the 
modelling error risk. From the plot, a number of 
modes can be observed: the first mode is as low as 
0.2 Hz and the modes are dense in the range of [0, 
2.5 Hz], including several groups of closely spaced 
modes, which dramatically increase the difficulty for 
an efficient and reliable modal identification. In this 
study, 19 bands within 2.5 Hz are selected for modal 
identification. It should be mentioned that the peaks  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 1  Sensor location detail 

Sensor Direction Location 

AC1/AC3 Vertical 
1/2 of (left) side-span (D2–D3)

AC2 Longitudinal 

AC4/AC6 Vertical 
1/4 of the main-span (D3–D4)

AC5 Longitudinal 

AC7/AC9 Vertical 
1/2 of the main-span (D3–D4)

AC8 Longitudinal 

AC10/AC12 Vertical 
3/4 of the main-span (D3–D4)

AC11 Longitudinal 

AC13/AC15 Vertical 
1/2 of (right) side-span (D4–D5)

AC14 Longitudinal 

Fig. 2  Elevation view of the bridge and sensor locations 

Fig. 3  Time history of a typical data set (g indicates the 
acceleration of gravity) 
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Fig. 4  SV spectrum of the measured data
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of some modes are not always as obvious as shown in 
Fig. 4 for different data sets. This is common in 
practice since not all modes are well-excited con-
sistently because of the randomness of excitation. 

The modal parameters are identified using the 
Bayesian FFT method reviewed in Section 2, where 
the MPVs of the modal parameters as well as their 
identification uncertainties are computed for the time 
segment from 1:00 am to 1:15 am. In order to com-
pare identification results, the data is also analyzed 
using the FDD technique. As shown in Table 2, the 
natural frequencies identified by FDD match well 
with the Bayesian FFT results. For the damping ratio 
estimation, discrepancies are apparent between these 
two methods. This is due to the fact that the identifi-
cation uncertainty of the damping ratios is signifi-
cantly higher than that of the natural frequencies. It 
should be noted that both methods operate in the 
frequency domain, but they have fundamental dif-
ferences. The FDD only uses the information of the 
PSD at the modal frequencies, while the Bayesian 
FFT method takes advantage of the information in a 
frequency band containing modal frequencies. It di-
rectly models the FFT data (not the PSD) parameter-
ized by the modal frequencies, damping ratios, and 
mode shapes. The constructed probabilistic model is 
then inferred following the Bayesian principle in an 
iterative way, in which the eigenvalue decomposition 
is not needed.  

The identified MPVs and the coefficients of var-
iation (COVs) (COV=posterior standard deviation/ 
MPV) of modal parameters are also provided in Ta-
ble 2. It is seen from the table that the posterior COVs 
of the natural frequency and damping ratio generally 
decrease with the modal frequencies. This is mainly 
due to the increase of the effective data length, which 
is defined as the data duration over the natural period. 
That is, more cycles of waves are used in identifica-
tion as the modal frequencies increase (Au, 2014). 

The frequencies are densely distributed within 
the low frequency band ranging from 0 to 2.5 Hz, 
mainly because of the long span, and thus small 
stiffness, of the girder. These frequencies are associ-
ated with small posterior uncertainties, indicating a 
reliable estimation. Except for the 8th mode, the 
damping ratios of the remaining modes are less than 
3%, which generally follows our engineering expe-
rience, because the bridge only exhibits a small vi-

bration amplitude in the normal operational condition. 
The posterior COV of the damping ratio can be as 
large as 28%, showing a great variability so that the 
identified MPVs should be used with caution. We can 
observe that posterior COVs of frequencies and 
damping ratios tend to decrease with the mode num-
ber. This is partly because the effective data length 
(data duration/natural period) is longer for higher 
modes with higher frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mode shape COV is calculated as the trace 

of the posterior mode shape covariance matrix. The 
corresponding mode shapes are plotted in Fig. 5. It is 
found that the fundamental mode has a frequency of 
0.224 Hz or a natural period of 4.5 s with an anti- 
symmetric shape in the transverse direction. Since the 
transverse direction of the girder is less constrained 
by the cables, its bending stiffness in the transverse 
direction is less than that in the vertical direction, 
which explains why the transverse mode appears first. 
The first vertical mode occurs at 0.274 Hz with a 
symmetric shape, while the anti-symmetric vertical 
mode appears until 0.672 Hz. Because of the effect  

Table 2  Identified modal parameters 

Mode
Natural frequency Damping ratio Mode shape

MPV 
(Hz)

COV 
(%)

FDD 
(Hz)

MPV 
(%) 

COV 
(%) 

FDD 
(%) 

Pattern
COV 
(%)

1 0.224 0.21 0.226 0.80 28 1.92 T 8.8

2 0.274 0.19 0.275 1.00 21 1.95 V 2.7

3 0.341 0.13 0.342 0.55 26 1.26 V 4.9

4 0.539 0.14 0.543 0.82 20 1.44 V 4.7

5 0.672 0.35 0.674 2.48 20 0.42 T 9.7

6 0.727 0.07 0.726 0.27 26 0.38 V 7.1

7 0.817 0.15 0.818 0.95 15 1.63 V 8.9

8 0.850 0.29 0.867 3.03 16 1.80 T+R 5.5

9 0.944 0.11 0.958 0.84 16 1.17 V 4.8

10 1.025 0.16 1.037 1.24 17 1.09 V 7.8

11 1.151 0.10 1.153 0.90 14 0.47 V 3.2

12 1.277 0.19 1.269 1.59 19 0.35 T+R 8.3

13 1.338 0.17 1.343 1.29 20 1.50 V+R 9.5

14 1.409 0.11 1.409 0.90 16 1.02 V 5.8

15 1.567 0.10 1.587 0.93 14 0.57 V 4.4

16 1.653 0.04 1.654 0.22 19 0.50 T+V 7.8

17 1.868 0.06 1.874 0.59 13 0.91 V 3.0

18 2.130 0.07 2.154 0.68 12 0.96 V 2.2

19 2.414 0.06 2.423 0.61 12 0.95 V+R 4.6

T represents the translational mode in transverse; V represents the 
vertical directions; R represents the torsional mode 
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of cables, the mode coupling behavior occurs often, 
especially for those torsional modes, e.g. Modes 8, 
12, 13, and 19. It should be noted that this work uses 
15 accelerometers to identify 19 modes, and hence 
several mode shapes cannot be directly distinguished, 
e.g. Modes 9 and 17. This is due to the lack of ade-
quate instruments. However, it is still possible to 
separate them by checking their natural frequencies 
and damping ratios. 

The same procedures are applied to identify 
modal parameters for the remaining data, and the 
results of the natural frequency and damping ratio in 
24 h are shown in Fig. 6. Black thick lines indicate the 
MPVs of parameters and grey areas cover ±2 poste-
rior standard deviations. The frequencies change 
slightly with time, while the damping ratios have a 
larger variation but still are in the same order of 
magnitude. The time variation of modal parameters  
is mainly due to the randomness of the ambient  
excitation. 

Finally, we would like to mention the efficiency 
of the Bayesian FFT method using the EM algorithm, 
because it is directly relevant to its practical applica-
bility. For the considered example, modal parameters 
and their associated uncertainties are computed using 
a Matlab programming of the EM algorithm and run 
on a laptop of ThinkPad T480s (Intel Core i7, 8 GB of 
RAM and 512 GB of SSD). The computational time 
for identifying each mode is in the order of several 
seconds and it takes around 20 min to process the 
24-h data. Since the identification is conducted in a 
band-wise manner, it can be easily accelerated taking 
advantage of the parallel computation. Owing to its 
efficiency and accuracy, it is ready for practical ap-
plication, even in the scenario of real-time identifica-
tion of structural modes. 

 
 

5  Conclusions 
 
In this study, a modal survey has been conducted 

on a sea-crossing cable-stayed bridge using the up-to- 
date Bayesian FFT method. The applied algorithm 
successfully identified 19 modes within [0, 2.5 Hz], 
including 15 translational modes and four torsional 
modes. The identified modes contain low frequencies, 
closely spaced modes, and coupled mode shapes of 
cable-stayed bridges, which challenge the modal  

Fig. 5  Identified mode shapes. References to color refer to
the online version of this figure 
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identification techniques. This study demonstrates 
that the Bayesian FFT method is applicable for iden-
tifying modal parameters of long-span sea-crossing 
bridges with adequate accuracy and efficiency. The 
identification results show that, due to the constraints 
of cables, the mode shapes of cable-stayed bridges are 
significantly different from those of beam bridges, 
and it is important to monitor the vibration of the 
girder. The identified modal parameters serve as a 
baseline value for the monitoring of Jintang Bridge. 

The significance of this study lies in providing a 
feasible way of investigating the dynamic behavior of 
cable-stayed sea-crossing bridges. The result could 
potentially be used to update the numerical model and 
to detect structural damage. Although the Bayesian 
FFT method provides an efficient and reliable way to 
identify modal parameters as well as the associated 
identification uncertainties, analyzing the data still 
requires hand-picking of the frequency bands and the 
initial guesses of the natural frequencies. In this sense, 
developing an automated Bayesian FFT technique 
will greatly facilitate its use in the SHM field. 
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中文概要 
 

题 目：期望最大化贝叶斯模态识别算法在跨海斜拉桥运

营模态分析中的应用 

目 的：由于地理位置特殊，跨海大桥周围的环境非常复

杂，进而导致跨海桥梁的模态特征复杂多变。本

文旨在应用期望最大化贝叶斯快速傅里叶变换

（FFT）算法对跨海斜拉桥进行运营模态分析。 

创新点：1. 通过使用期望最大化贝叶斯 FFT 算法，使得基

于贝叶斯的运营模态分析速度更快且收敛性更

高；2. 成功识别了 2.5 Hz 以内的 19 阶模态的自

然频率、阻尼比以及振型，同时得到了识别参数

的不确定性大小。 

方 法：通过应用贝叶斯模态识别算法对某跨海斜拉桥的

运营模态数据进行分析，并研究模态参数及其不

确定性。 

结 论：应用期望最大化贝叶斯 FFT 算法能够高效地识别

2.5 Hz 以内的 19 阶模态的自然频率、阻尼比和结

构振型，并能得出参数识别的不确定性大小。 

关键词：跨海斜拉桥；运营模态分析；期望最大化贝叶斯

FFT 算法 

 
 


