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Abstract: Geotechnical classification is vital for site characterization and geotechnical design. Field tests such as
the cone penetration test with pore water pressure measurement (CPTu) are widespread because they represent
a faster and cheaper alternative for sample recovery and testing. However, classification schemes based on CPTu
measurements are fairly generic because they represent a wide variety of soil conditions and, occasionally, they may
fail when used in special soil types like sensitive or quick clays. Quick and highly sensitive clay soils in Norway
have unique conditions that make them difficult to be identified through general classification charts. Therefore,
new approaches to address this task are required. The following study applies machine learning methods such as
logistic regression, Naive Bayes, and hidden Markov models to classify quick and highly sensitive clays at two sites
in Norway based on normalized CPTu measurements. Results showed a considerable increase in the classification
accuracy despite limited training sets.
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1 Introduction

One of the primary concerns in the majority of
construction projects in Norway is the presence of
highly sensitive or quick clays, which significantly
affects the feasibility of such projects. As cone pene-
tration tests with pore water pressure measurement
(CPTus) are widespread and present in almost ev-
ery geotechnical exploration program in Norway, it
would be convenient to determine whether a soil
profile contains quick clays based on the CPTu test
results.
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The use of CPTu for soil classification is a com-
mon practice, particularly using the well-known clas-
sification charts found in (Lunne et al., 1997). How-
ever, a major challenge comes to light when the soil
deposits comprise non-textbook soils, as in the case
of quick or highly sensitive clays. In these cases, al-
ternatives should be determined to maintain the con-
venience of using indirect field measurements with-
out expending a large amount of resources.

In this context, the use of machine learning ap-
proaches is ideal as local data can be used to train
a model to learn how the measured data character-
ize a certain kind of soil. With little information,
results will not be satisfactory; however, as the ex-
ploration advances, the model will learn from the
newly obtained data and adjust itself to provide bet-
ter results.
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This study investigates the potential of machine
learning techniques to improve the identification of
highly sensitive and quick clay soils using CPTu.
All computations performed within this study use
Python (van Rossum, 1995) as the programming en-
vironment. Machine learning algorithms used are
logistic regression and Naive Bayes, as programmed
in the scikit-learn library (Pedregosa et al., 2011),
and the hidden Markov model (HMM), available in
the hmmlearn library (hmmlearn, 2010).

The methodology followed considers the analy-
sis of two CPTu datasets from previous studies at
sites wherein highly sensitive and quick clays were
encountered and wherein the layering (lithology) at
each test location is known. The CPTu data were
then used to classify the samples using well-known
classification charts and machine learning methods.
Finally, the results were compared against the ac-
tual layering, and performance measurements were
computed to compare the different approaches.

2 Datasets

2.1 Norwegian geo-test sites dataset

The Norwegian geo-test sites (NGTS) dataset is
a research consortium led by the Norwegian Geotech-
nical Institute (NGI), with the participation of the
Norwegian University of Science and Technology and
other organizations. Its main focus is to develop field
laboratories for the testing, verification, and control
of new methods and equipment for site investigations
and foundation engineering (NGI, 2019). Within
the NGTS framework, an important study subject is
quick clays, for which the site at Tiller (Trondheim,
Norway) was chosen. Fig. 1 presents the location
of the CPTus, while Figs. 2 and 3 show the sum-
mary of the tests alongside the layering of the site.
In this study, 31 CPTus were used (CPTu C18 was
discarded due to high sleeve friction (fs), which was
not representative of the site).

The layering of the site consisted of 2.0 m of
dry crust, followed by a clay layer up to a depth of
7.5 m on top of a quick clay layer of 12.5 m thick. The
water table was 1.5 m from the surface (a hydrostatic
condition was assumed). The terrain was flat, so
the features described above were expected to have
few variations over the study area. The lithology
was based on previous studies conducted at the site,

including soundings and laboratory tests. Detailed
information about this can be found in (L’Heureux
et al., 2019).

2.2 Vegvesen dataset

This dataset consisted of seven CPTus that were
part of the studies for the construction of a bridge
on part of County Road 715 (Fv. 715) in Trønde-
lag County, Norway. The bridge foundations were
planned to be placed in an area at high risk for quick
clay slides. The soil layering at the site was not as
regular as that at the NGTS site; the common se-
quence was a stiff upper layer followed by clay on
top of a thick quick clay layer, and subsequent to
a certain depth, there appeared clay or stiffer soil
layers.

The location of the tests is shown in Fig. 4
(p.448), while the layering and water table depth
are shown in Fig. 5 (p.449)(a hydrostatic condition
was assumed for the groundwater). It is important
to note that in this case, the layering was proposed
by the authors based on the information from the
site data report by Statens Vegvesen (2013), which
included laboratory and field tests. The summary of
the tests is shown in Figs. 6 and 7 (p.449).

3 Data processing

The CPTu data were received as raw files
in “.cpt” format, comprising measurements of the
depth, tip resistance (qc), fs, and pore pressure be-
hind the cone (u2). The tip resistance value was
corrected from the effects of the pore pressure act-
ing at the conical tip using the following formula:
qt = qc + (1 + ra) · u2, where ra is the net area ratio
dependent on the probe design and qt is the corrected
tip resistance. The normalized parameters were then
computed according to the following equations.

For normalized cone resistance (Qt),

Qt =
qt − σv0

σ′
v0

; (1)

for normalized friction ratio (Fr),

Fr =
fs

qt − σv0
; (2)

for pore pressure ratio (Bq),

Bq =
u2 − u0

qt − σv0
=

Δu2

qt − σv0
; (3)
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Fig. 2 CPTu summary and layering and water table depth at NGTS site. The plots show the qc, fs, and u2

over the depth. References to color refer to the online version of this figure
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Fig. 4 CPTu layout at Vegvesen site

for normalized excess pore pressure (U2),

U2 =
Δu2

σ′
v0

, (4)

where σv0 and σ′
v0 are the in-situ total and effective

stresses, respectively, u0 is the in-situ pore pressure,
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and Δu2 = u2 − u0 is the excess u2.
The data were inspected for abnormal

measurements (e.g. negative fs) and smoothed us-
ing a median statistical filter, as recommended by
Wickremesinghe (1989), to remove unwanted spikes.

In the present study, for the machine learning
classification, logarithmic transformations were per-
formed over the normalized parameters to fit the
data in the (0, 1) range. U2 was preferred over
Bq, as it is a better pore pressure parameter for
soil type identification according to Schneider et al.
(2008). The transformed normalized parameters,
Qnorm

t , F norm
r , and Unorm

2 , are presented below:

Qnorm
t =

2 · lg(Qt) + 1

9
, (5)

F norm
r =

lg(Fr) + 4.5

6
, (6)

Unorm
2 =

lg(U2 + 40)

2.2
. (7)

To have a point with which to compare the ma-
chine learning approach, the classification was first
performed using well-known charts that consider sen-
sitive soils in their classification schemes. Charts
used were those recommended by Robertson (1990,
2016), Eslami and Fellenius (1997), Schneider et al.
(2008), and Gylland et al. (2017). The metric used to
evaluate the accuracy was the accuracy score (A.S.),
defined as follows:

A.S. =
Number of correctly classified samples

Total number of samples
. (8)

As this part of the work was focused on pre-
dicting the appearance of highly sensitive and quick
clays from the CPTu measurements, only three soil
classes were considered: sensitive, clayey, and other
(coarser or stronger). The classification results were
consequently adjusted to measure the classification
accuracy.
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Fig. 6 Summary of CPTu at Vegvesen site in terms
of the test measurements. References to color refer
to the online version of this figure
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Fig. 7 Summary of CPTu at Vegvesen site in terms of
the normalized parameters. References to color refer
to the online version of this figure

3.1 Robertson (1990)

This classification chart is based on an extensive
database of CPTus and uses the three normalized
parameters introduced above to define soil behavior
types. The soil behavior types are defined as: (1)
sensitive and fine-grained soils; (2) organic soils and
peat; (3) clays to silty clays; (4) silt mixtures; (5)
sand mixtures; (6) sands; (7) gravelly sands to sands;
(8) very stiff sands to clayey sands; (9) very stiff fine-
grained soils.

The results of using this classification chart are
shown in Figs. 8 and 9. For comparison, in this study,
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Fig. 9 Classification in (Robertson, 1990) showing the Vegvesen dataset: (a) Qt-Fr; (b) Qt-Bq. References to
color refer to the online version of this figure

soil class 1 was considered as quick and sensitive
clay, soil classes 3 and 4 as clayey, and soil classes
2, 5, 6, 7, 8, and 9 as other. The accuracy scores of
this classification using the study datasets are shown
below:

NGTS : A.S. = 70%, for Qt-Fr chart,

A.S. = 53%, for Qt-Bq chart;

Vegvesen : A.S. = 28%, for Qt-Fr chart,

A.S. = 27%, for Qt-Bq chart.

From the chart, it is evident that the classifica-
tion results for the Vegvesen dataset had a low accu-
racy score because of the high Qt of the site’s sensi-

tive clays compared with the zone defined by Robert-
son (1990). However, the results for the NGTS site
showed better agreement with the chart, especially
the Qt-Fr plot.

3.2 Eslami and Fellenius (1997)

This classification chart was developed when in-
vestigating the use of cone penetration test (CPT) in
pile design using data from 20 sites in five countries.
In this case, the “effective” cone resistance and fs
values are used instead of the normalized ones. The
effective cone resistance is defined as qE = qt − u2.
The chart defines five classes: (1) sensitive and
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collapsible clay and/or silt; (2) clay and/or silt; (3)
silty clay and/or clayey silt; (4) sandy silt and/or
silty sand; (5) sand and/or sandy gravel.

The results of using chart in (Eslami and Felle-
nius, 1997) with the datasets in this study are shown
in Figs. 10a and 10b. Better agreement was ob-
served in the identification of sensitive soils for the
Vegvesen dataset compared with Robertson (1990).
In both datasets (though clearer in that of NGTS),
it was possible to see a major overlap between the
clayey and quick clay soils. The accuracy scores were
63% for NGTS and 74% for Vegvesen.

3.3 Schneider et al. (2008)

The work performed by Schneider et al. (2008)
focused on improving the simple classification charts
available at that time to consider the effects of
undrained penetration on penetration resistance.
The chart was plotted on a Qt-U2 space. The
database used in this study included sensitive soils
from Norway and Canada. The classification chart
is divided into five different zones: (1a) silts and
low-rigidity-index (Ir) clays, (1b) clays, (1c) sensitive
clays, (2) essentially drained sands, and (3) transi-
tional soils.

Figs. 10c and 10d show both datasets plotted on
the Qt-U2 space. It was observed that the sensitive
clays from the Vegvesen dataset showed a behavior
closer to that predicted by the scheme, with an accu-
racy score of 75%. Meanwhile, in the NGTS dataset,
there were more cases of “false positives” meaning
that a large fraction of the clay layer was classified
as sensitive when it was not; however, the accuracy
score was still 75% as well.

3.4 Robertson (2016)

This chart updates that proposed by Robertson
(1990) by using behavior-based descriptions and an
updated normalized tip resistance Qtn. Seven zones
are defined in this classification system: (1) clay-
like contractive sensitive (CCS); (2) clay-like con-
tractive (CC); (3) clay-like dilative (CD); (4) tran-
sitional contractive (TC); (5) transitional dilative
(TD); (6) sand-like contractive (SC); (7) sand-like
dilative (SD).

Fig. 11 shows both datasets plotted on the Qtn-
Fr space. Once again, the NGTS dataset presented
a large fraction of the clayey soil as sensitive, but

the other two soil classes seem to fall well within the
correct groups. Meanwhile, the Vegvesen dataset
showed a large fraction of sensitive soils classifying
as TC or CC. The accuracy score was 75% for NGTS,
while 52% for Vegvesen.

3.5 Gylland et al. (2017)

This work proposes a classification chart specif-
ically focused on the identification of sensitive clays
and is based on tests performed in Norway using pa-
rameters following the same philosophy as Robertson
(1990) but with a different normalization: Nmc, Bq1,
and Rfu, as shown below:

Nmc =
qt − σv0

σ′
A + a

, (9)

Bq1 =
Δu1

qt − σv0
, (10)

Rfu =
fs
Δu1

, (11)

where in the reference stress σ′
A = σ′m

c + σ
′(1−m)
v0 ,

σ′
c is the effective pre-consolidation stress, a is the

attraction, m is the SHANSEP-framework exponent
(typically between 0.7 and 0.8 for Norwegian clays),
and Δu1 is the excess pore pressure at the tip of the
cone (u1).

The main drawback of this scheme is that it
is necessary to know parameters that are not nec-
essarily associated with the CPT itself, e.g. the
attraction and pre-consolidation stress. Moreover,
it requires the knowledge of u1, which is not usu-
ally measured, preferring u2. Therefore, in this
case, it was necessary to use correlation involving
the measured parameters to estimate those from the
model.

Figs. 12 and 13 (p.453) show both datasets plot-
ted on the chart proposed by Gylland et al. (2017).
It was evident that the NGTS dataset showed better
agreement than the Vegvesen dataset. The accuracy
score here was only a binary classification score due
to the nature of the classification proposed by the
authors. The results are summarized below:

NGTS : A.S. = 86%, for Nmc-Bq1 chart,

A.S. = 87%, for Nmc-Rfu chart;

Vegvesen : A.S. = 39%, for Nmc-Bq1 chart,

A.S. = 40%, for Nmc-Rfu chart.
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The Vegvesen dataset was plotted almost com-
pletely out of the red shaded area defining sensitive
clays, demonstrating a different behavior of the sen-

sitive clays present in the area compared with those
that were part of the dataset used by the authors,
which included the NGTS site at Tiller.
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4 Machine learning classification
results

4.1 Machine learning classificators

The machine learning algorithms for the clas-
sification used in this work were logistic regres-
sion, Naive Bayes, and an HMM, as included in the
Python libraries scikit-learn (Pedregosa et al., 2011)
and hmmlearn (hmmlearn, 2010). Briefly, logistic
regression uses a linear model to create a decision
boundary that separates different classes, and the
Naive Bayes approach uses a probabilistic framework
based on Bayes’ theorem, with simplification of the
conditional independence of the data. Finally, an
HMM uses Markov chains and a probabilistic frame-
work to model the spatial correlation between mea-
sured data. The measurement of the model’s per-

formance was performed through the accuracy score
introduced previously.

4.2 Results of the NGTS dataset

4.2.1 Logistic regression classifier

A logistic regression classificator was sequen-
tially trained, and results of the predictions are
shown in Fig. 14, using Qnorm

t -F norm
r , Qnorm

t - Unorm
2 ,

and the three parameters together as predictors.
Results showed a high accuracy score, even for

the first estimation (using only one CPTu to train),
with a sharp increase afterwards. It was observed
that accuracy scores of at least 80% were reached
upon using only four tests to train the classificator. It
was also noted that the Qnorm

t -Unorm
2 scheme showed

higher accuracies with fewer data. Furthermore, the
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use of the three parameters to train the classifica-
tor demonstrated improved accuracies as well as less
variability.

It is important to highlight that the NGTS site
is a highly homogeneous site with a regular layering
sequence and low dispersion of the measured param-
eters. These results should not be expected to occur
in non-homogeneous sites.

4.2.2 Naive Bayes classifier

Results of using a Naive Bayes classificator on
the NGTS dataset are shown in Fig. 15. It was ob-
served that the results showed more scattering in the
accuracy of the first estimation, especially when us-
ing F norm

r , but quickly increased afterwards. The
primary advantage of using the Naive Bayes ap-
proach compared with logistic regression is that the
run time is around ten times less than that of the
latter, which may make a major difference in large
datasets.
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Fig. 14 Results of a sequentially trained logistic
regression classificator on the NGTS dataset using
Qnorm

t and Fnorm

r (a), Qnorm
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2 (b), and the
three parameters together (c) as predictors

4.2.3 HMM

For this part, an HMM was trained in a semi-
supervised manner. The model parameters (transi-
tion matrix, means, covariances, and starting prob-
abilities) were estimated from the training data.
Then, the model was allowed to update (optimize)
the values of the transition matrix and covariances
in the expectation-maximization stage, while the rest
remained fixed. The Viterbi algorithm was used to
determine the most likely sequence of states (soil
classes). Sequential training was performed, but due
to a restriction in the programmed code, it was only
possible to use the CPTu test that defined the three
soil classes. This restriction reduced the number
of combinations available, but it was assumed that
there were still enough to draw conclusions from.
The results of the sequential training and classifica-
tion are shown in Fig. 16.

It was observed that despite the prediction
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being less accurate with few data, it quickly in-
creased, yielding results similar to those obtained
using the other two methods. The advantage of using
an HMM is that because it considers the likelihood
of changing from one class (hidden state) to another,
the predicted profiles do not have unrepresentative
thin layers within one another. This can be seen in
Fig. 17 for CPTus C04 and C10.

4.2.4 Site profiles

To visually compare the different classification
methods, Figs. 17 and 18 display several selected
CPTus with the actual site layering alongside the
machine learning classification. The accuracy of each
profile estimation is presented in Table 1.

For the profile estimation, only seven CPTus
were used for the training to classify each test. The
criteria used to select the training dataset were to
sort the tests by name and use the seven closest to
the CPTu to be classified.

Table 1 Comparison of the machine learning classifi-
cation for the NGTS dataset in terms of the accuracy
score

CPTu
Accuracy score

Logistic reg. Naive Bayes HMM

C01 96% 90% 76%
C02 89% 89% 91%
C03 98% 96% 90%
C04 95% 97% 96%
C05 94% 88% 46%
C06 97% 98% 97%
C07 96% 95% 95%
C08 99% 97% 88%
C09 99% 98% 96%
C10 96% 94% 95%
C11 98% 98% 96%
C12 95% 98% 99%
C13 96% 95% 90%
C14 95% 96% 98%
C15 93% 95% 95%
C16 94% 96% 99%
C17 96% 93% 50%
C19 97% 100% 97%
C20 90% 93% 94%
C22 97% 99% 77%
C23 96% 98% 99%
C24 96% 98% 99%
C25 94% 94% 98%
C26 96% 97% 98%
C27 95% 96% 98%
C28 97% 97% 91%
C29 95% 97% 88%
C30 96% 98% 92%
C31 86% 89% 92%
C32 97% 100% 99%
C33 96% 98% 99%

Median 96% 97% 96%
Mean error 4.7% 4.2% 8.8%

The median accuracy scores were 96% for the
logistic regression, 97% for the Naive Bayes, and
96% for the HMM. These values were quite similar
to each other, but the mean error was considerably
higher for the HMM (Table 1). A visual comparison
showed that the HMM estimated profiles that were
not close to reality, as in the case of C05, which may
have been due to the training set chosen and could
be improved via including more data in the train-
ing phase. For NGTS, the machine learning classi-
fication that performed best was the Naive Bayes,
closely followed by the logistic regression. Table 2
shows the accuracy score for each soil type. In this
case, the identification of quick and sensitive clays
was higher than that of the others (which were still
high, with accuracy scores over 80%). Table 2 also
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Fig. 17 Comparison of the machine learning classification for the NGTS dataset and the profile view of CPTus
C04, C05, C10, and C17. References to color refer to the online version of this figure
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Fig. 18 Comparison of the machine learning classification for the NGTS dataset and the profile view of CPTus
C23, C27, C31, and C33. References to color refer to the online version of this figure

Table 2 Comparison of the machine learning classifi-
cation for the NGTS dataset in terms of the accuracy
score for each soil class

Soil class
Accuracy score

Logistic reg. Naive Bayes HMM

Other 88% 94% 86%
Clay 91% 93% 84%

Sensitive-quick 100% 97% 84%

demonstrates the relatively worse performance of the
HMM.

4.3 Results of the Vegvesen dataset

Since the Vegvesen dataset was much smaller
than the NGTS dataset and the layering of the
site was not as homogeneous, its machine learning

classification was more challenging because in the
process of splitting the dataset to train and test, a
major share of the information was lost (it was not
possible to use it to train). Thus, in this case, in
addition to performing the sequential training and
prediction, a “leave-one-group-out” cross-validation
technique (Scikit-learn, 2019) was used to assess the
performance of the classifiers. Here, a group was
represented by a CPTu.

4.3.1 Logistic regression classifier

Results are shown in Fig. 19. More scattered
behavior and less accuracy were observed in general
compared with the NGTS site; however, given the
fact that this dataset had fewer CPTus and the soil
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layering was more complex, the results were good.
Compared with the classification charts, the logis-
tic regression classifier improved the results. This
was even more evident when analyzing the cross-
validation results shown in Table 3.
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Fig. 19 Results of a sequentially trained logistic re-
gression classificator on the Vegvesen dataset using
Qnorm

t and Fnorm
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2 (b), and the
three parameters together (c) as predictors

Table 3 Results of the leave-one-group-out cross-
validation with logistic regression for the Vegvesen
dataset

“Left out” Accuracy score

CPTu Qt-Fr Qt-U2 All

100 88% 87% 88%
102 71% 65% 71%
106 78% 69% 78%
107 66% 41% 67%
149 93% 85% 93%
154 92% 93% 93%
155 79% 62% 80%

Median 79% 69% 80%

4.3.2 Naive Bayes classifier

Results are shown in Fig. 20. As with the logis-
tic regression, these results were more scattered and
less accurate, but upon using the remaining six tests
for the training, the accuracies increased consider-
ably, as shown in Table 4. In the case of the Qt-Fr

classification, the results showed a median accuracy
score of 91%, which was much more accurate than
any of the classification charts.

4.3.3 HMM

The results of the sequential training and classi-
fication are shown in Fig. 21, while the results of the
cross-validation are shown in Table 5.

The results showed high accuracies that were
generally reached after using four tests to train the
model.
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4.4 Site profiles

Results of the profiles estimated by the machine
learning classification of the CPTus from Vegvesen
dataset are shown in Figs. 22 and 23. The median
accuracy scores were 79% for the logistic regression,
91% for the Naive Bayes, and 87% for the HMM.
Here, as in the NGTS dataset, the Naive Bayes clas-
sification displayed the highest accuracy and the low-
est mean error, as shown in Table 6.

Table 7 shows the accuracy scores for the classi-
fication of each type of soil considered. In this case,

Table 4 Results of the leave-one-group-out cross-
validation with Naive Bayes for the Vegvesen dataset

“Left out” Accuracy score

CPTu Qt-Fr Qt-U2 All

100 92% 92% 90%
102 75% 79% 78%
106 71% 47% 54%
107 72% 43% 73%
149 97% 87% 98%
154 91% 67% 89%
155 93% 76% 92%

Median 91% 76% 89%

Table 5 Results of the leave-one-group-out cross-
validation with the HMM for the Vegvesen dataset

“Left out” Accuracy score

CPTu Qt-Fr Qt-U2 All

100 93% 89% 91%
102 87% 85% 87%
106 70% 18% 30%
107 71% 81% 77%
149 67% 44% 48%
154 90% 68% 91%
155 95% 92% 96%

Median 87% 81% 87%

Table 6 Comparison of the machine learning clas-
sification for the Vegvesen dataset in terms of the
accuracy score

CPTu
Accuracy score

Logistic reg. Naive Bayes HMM

100 88% 92% 93%
102 71% 75% 87%
106 78% 71% 70%
107 66% 72% 71%
149 93% 97% 67%
154 92% 91% 90%
155 79% 93% 95%

Median 79% 91% 87%
Mean error 19.0% 15.6% 18.1%

there was a high accuracy for the highly sensitive and
quick clay identification but a low accuracy for the
other soil types. This may have been a reflection of
the heterogeneity of the soil investigated compared
with that of the NGTS dataset. Here, under the
label “Other”, there might have been a more varied
range of soils.

5 Discussion

In general, soil classification charts meant for
broad use fail to capture special soils like quick or
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Fig. 21 Results of a sequentially trained HMM on the
Vegvesen dataset using Qnorm

t and Fnorm

r (a), Qnorm

t

and Unorm

2 (b), and the three parameters together (c)
as predictors

Table 7 Comparison of the machine learning clas-
sification for the Vegvesen dataset in terms of the
accuracy score for each soil class

Soil class
Accuracy score

Logistic reg. Naive Bayes HMM

Other 24% 60% 77%
Clay 59% 65% 77%

Sensitive-quick 98% 95% 84%



Godoy et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2020 21(6):445-461 459
D

ep
th

 (m
)

0

5

10

15

20

25

30
100 102 106 107

Clay

Other

Sensitive-quick clay

S
ite

la
ye

rin
g

Lo
gi

st
ic

re
g.

N
ai

ve
B

ay
es

H
M

M

S
ite

la
ye

rin
g

Lo
gi

st
ic

re
g.

N
ai

ve
B

ay
es

H
M

M

S
ite

la
ye

rin
g

Lo
gi

st
ic

re
g.

N
ai

ve
B

ay
es

H
M

M

S
ite

la
ye

rin
g

Lo
gi

st
ic

re
g.

N
ai

ve
B

ay
es

H
M

M

Fig. 22 Comparison of the machine learning classification for the Vegvesen dataset and the profile view of
CPTus 100, 102, 106, and 107. References to color refer to the online version of this figure
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Fig. 23 Comparison of the machine learning classification for the Vegvesen dataset and the profile view of
CPTus 149, 154, and 155. References to color refer to the online version of this figure

sensitive clays, especially Norwegian sensitive clays,
which have distinctive features compared with other
soils with similar behavior (e.g. Canadian quick
clays). Furthermore, such classification charts use
each data point individually without considering
the spatial correlation between soils in the same
layer.

This study used three machine learning ap-
proaches to study a methodology to improve the
sensitive soil determination of CPTus: logistic re-
gression, Naive Bayes, and HMM classifications.

The approaches were tested in two different
datasets comprising soils of different characteristics.
In the case of the NGTS site, wherein the soil layering
was regular and the layer characteristics were homo-
geneous, the three methods displayed an excellent

performance, as measured by an accuracy score well
above 90%. Although the three methods had a high
accuracy, that of the HMM was slightly lower than
the other two, particularly in two profiles, C05 and
C17, as shown in Table 1 and Fig. 17. Advantages of
an HMM are that it considers the spatial connection
between the data and can be noticed in less pres-
ence of thin unrepresentative layers. The Vegvesen
dataset had fewer data available to train the models,
but the results were still quite favorable, with accu-
racy scores above 80%. The sequential training of the
models graphically demonstrated how they learned
from the data as it was incorporated. Both datasets
showed that using only four tests to train the model
significantly improved the accuracy of the classifi-
cation. This could be helpful when performing site
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investigations wherein the model can be trained as
the data are retrieved from the soundings and labora-
tory tests or even when in-place visual classification
is performed. Once the model is successfully trained,
the necessity of laboratory tests might be reduced.
This could work even in less homogeneous datasets,
such as that from Vegvesen. Since this study primar-
ily focused on comparing different classification ap-
proaches and discussing the advantages of following
a machine learning classification approach, a simple
performance measure was used: the accuracy score.
It is recommended that a better performance mea-
sure, e.g. the balanced accuracy score or the F1
score (Scikit-learn, 2019), should be used for further
research on this topic. It would also be interesting to
explore other more advanced machine learning classi-
fication approaches, such as ordinal classifications or
neural networks. Additionally, for further research
on this topic, more data representing a broader range
of soil properties are required, with clear identifica-
tion of clays as sensitive, highly sensitive, or quick.
Moreover, the authors encourage the incorporation
of recent models aiming at identifying quick clays. A
good example of such a study is in (Valsson, 2016).

6 Conclusions

In this study, a set of Python libraries were used
to train three different machine learning algorithms:
logistic regression, Naive Bayes, and an HMM.
Results demonstrated the abilities of these methods
to learn from the data, with good classification accu-
racies reached after only four training CPTus. How-
ever, these methods are not meant to be used as gen-
eral classification solutions unless they are trained
with a large dataset that includes different soil con-
ditions to be detected. The major challenge here
involved obtaining enough data to train the mod-
els as well as enough laboratory results to verify
them.

In the future, it would be interesting to keep
researching these methodologies and their appli-
cations in the geotechnical field since they have
proven to yield good results that can aid engineers
in optimizing both field and laboratory tests.
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