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Abstract: It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted
deformation control technologies for high sidewall –bottom transfixion (HSBT) zones to guarantee the stability of rock
surrounding underground hydro-powerhouses under complex geological conditions. In this study, the spatial and temporal
coordinated deformation control of HSBT zones was addressed from the aspects of the deformation mechanism, failure
characteristics, and control requirements, and some coordinated deformation control technologies were proposed. On this basis,
a case study was conducted on the deformation control of the HSBT zone of the underground powerhouse at the Wudongde
hydropower station, China. The results showed that the relationship between excavation and support, and the mismatch of
deformation and support of the surrounding rock mass in the HSBT zone of underground caverns with a large span and high in-
situ stress can be appropriately handled. The solution requires proper excavation and construction procedures, fine blasting
control, composite and timely support, and real-time monitoring and dynamic feedback. The technologies proposed in this study
will ensure the safe, high-quality, and orderly construction of the Baihetan and Wudongde underground caverns, and can be
applied to other similar projects.

Key words: Underground powerhouse; Coordinated deformation mechanism; High sidewall –bottom transfixion (HSBT);
Cavern group; Control technology

1 Introduction

China has the most abundant water power re‐
sources worldwide, and Southwest China has become
the center of hydropower development (Li HB et al.,
2017; Lin et al., 2019; Fan et al., 2020, 2021a). The
geological and hydrological conditions in western ar‐
eas, which feature deep valleys, steep-sloped banks,
and high tectonic stress, are very complex. Many
large water diversion and power generation systems
are arranged inside mountains, forming complex un‐
derground cavern groups (Lin et al., 2015; Huang et
al., 2020). Large-scale underground powerhouses are
characterized by their large span, high sidewalls,

crossed structure, and great buried depth (Zhang and
Zhang, 2009; Lin et al., 2011, 2013; Luo et al., 2015;
Panthi and Broch, 2022). The Baihetan cavern span
exceeds 30 m and the height can reach 80–90 m.
There are three main caverns: the main powerhouse,
main transformer chamber, and tailrace surge tank
(Fig. 1). The following areas constitute a significant
plastic deformation zone (high sidewall–bottom trans‐
fixion (HSBT) zone): (1) the elevation range of the
main powerhouse to the tailrace surge tank; (2) from
the downstream sidewall to the tailrace surge tank
along the longitudinal direction of the hydraulic tur‐
bine sets; (3) the partition between the two hydraulic
turbine sets from the transverse direction.

Note that the draft tube gate chamber can be ar‐
ranged independently (Fig. 1), as in the Baihetan hy‐
dropower station, or together with the main transform‐
er chamber, as in the Xiangjiaba hydropower station,
or with the tailrace surge tank, as in the Xiluodu hy‐
dropower station, depending on the geological and
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topographical conditions and security calculation anal‐
ysis. With the layout of the main powerhouse, the tail‐
race surge tank can also be replaced by a tail-water
tunnel with a variable top height and its auxiliary
system.

These HSBT zones control the overall safety of
the underground cavern and the rhythm of the transi‐
tion from excavation to subsequent installation of hy‐
draulic turbine sets and concrete pouring. The defor‐
mation control of the HSBT zones is the priority to
ensure the safety of the cavern group after the top
arch is formed. Therefore, it is vital to correctly under‐
stand the time-dependent deformation mechanism and
control the stability of the surrounding rock in the
HSBT zones of underground powerhouses subjected

to high in-situ stress (Wang et al., 2016; Li et al.,
2018, 2020; Luo et al., 2020).

Many studies have shown that deformation of
the rock surrounding the large-span high sidewall un‐
der high in-situ stress conditions is a serious problem
(Ghorbani and Sharifzadeh, 2009; Rezaei and Rajabi,
2018; Menéndez et al., 2019; Pinheiro et al., 2021;
Kumar and Saini, 2022). For example, the integrity of
the surrounding rock is relatively good at the Jinping
I (Wu FQ et al., 2010; Wu AQ et al., 2016), Xiluodu,
and Xiangjiaba hydropower stations (Fan and Wang,
2010; Fan et al., 2011, 2012b; Shi et al., 2018). How‐
ever, sidewall deformation during the construction
process was large, with non-convergent horizontal dis‐
placements or a long convergence period (Zhu et al.,

Fig. 1 Diagram of the three main caverns and the HSBT zone in the Baihetan hydropower station: (a) underground
caverns in the Baihetan hydropower station; (b) three main caverns and the HSBT zone (section A–A)
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2010; Zhang et al., 2021). The spatial effect of the
disturbance and failure of the surrounding rock
caused by the unloading induced by excavation and
the unfavorable geological plane is the primary mech‐
anism leading to the significant time-dependent defor‐
mation of a high sidewall (Wang et al., 2016; Li et al.,
2020). To ensure the stability of high sidewalls, the
excavation methods of short footage, weak blasting,
timely supporting, safety monitoring, and dynamic
support design (Li et al., 2018, 2020) are generally ad‐
opted, and a long anchor cable is adopted for rein‐
forcement (Wang et al., 2016; Luo et al., 2020). These
methods have been successfully applied in the routine
construction procedures of top-down, layer-by-layer
digging, layer-by-layer anchoring, and shotcreting, as
in the Xiluodu hydropower station underground pow‐
erhouse (Luo et al., 2015; Huang et al., 2022). How‐
ever, in the actual construction process, due to chang‐
es in the geological environment, negligence of man‐
agement, and other reasons, the excavation of an un‐
derground powerhouse may not follow the typical pre‐
set sequence (Ma et al., 2020; Shi et al., 2022). The
time-dependent deformation and control technology
of high sidewalls need further study. Previous studies
have shown that the key factors affecting the deforma‐
tion and failure of the bottom transfixion zone of an
underground powerhouse are the cavern layout and
structure, and the engineering geological characteris‐
tics of the rock mass (Dong et al., 2011; Wang et al.,
2020). Hence, the corresponding support control mea‐
sures are often different due to complex lithology,
rock mass structure, in-situ stress, cavern structure,
and tunnel excavation. For a single underground cav‐
ern, the failure modes of surrounding rock in under‐
ground engineering are block instability, fracture,
fault slip, and bending failure (Hoek and Brown,
1980; Li et al., 2014; Song et al., 2016). For the large
underground cavern groups, the failure of the sur‐
rounding rock mass can be divided into three types:
structural control, stress control, and structure-stress
combined control types (Dong et al., 2011; Sun YP et
al., 2021). The digital control measures for a large un‐
derground cavern group were taken based on the clas‐
sification system of 18 typical surrounding rock fail‐
ure modes at three levels of control factors, failure
mechanisms and occurrence conditions, and corre‐
sponding engineering stability analysis methods
(Jiang Q et al., 2019). Targeted engineering prevention

and control measures can include layered, sequence,
step excavation (Chen YF et al., 2015), excavation se‐
quence optimization (Wu et al., 2010), surrounding
rock stability geological feedback, monitoring feed‐
back and numerical feedback (Ghorbani and Sharifza‐
deh, 2009; Ishida et al., 2014; Huang et al., 2020;
Wen et al., 2020), real-time monitoring, and dynamic
support design (Li et al., 2013; Dai et al., 2016).

Generally, research has focused mainly on the
stability of a single cavern with relatively simple geo‐
logical conditions. Nowadays, research on the stabili‐
ty of underground caverns is receiving increasing at‐
tention (Dai et al., 2016; Xiao et al., 2016; Zhou et
al., 2019; Jiang et al., 2020). However, research on
coordinated deformation control technologies of the
HSBT zone of large underground hydro-powerhouses
is still limited. For the stability control of HSBT
zones of an underground powerhouse during the exca‐
vation process, other than the excavation scope, more
attention should be paid to the coordinated relation‐
ship of the spatio-temporal deformation between un‐
derground caverns (Hu et al., 2018; Wang et al., 2019,
2020). First, the reasonable spacing between the cav‐
erns and the structural form of the HSBT zones
should be analyzed. Second, it is necessary to study
the relationship between the construction sequence,
the supporting system, and the construction progress.
Therefore, in this study, based on a systematic analy‐
sis of the deformation and failure characteristics and
control requirements of the HSBT zone of an under‐
ground powerhouse, the control of the stability of
rock surrounding the HSBT zone of a large-scale un‐
derground powerhouse under a high in-situ stress en‐
vironment is discussed. The deformation characteris‐
tics and characteristics of the surrounding rock under
the combined action of various factors are revealed.
Technologies for controlling the mass deformation of
rock in HSBT zones are also proposed.

2 Deformation characteristics, mechanism,
and control requirements

2.1 Deformation characteristics of the HSBT zone

Several failure types of rock surrounding the
HSBT zone in existing large-scale underground pow‐
erhouses during the construction period have been
summarized (Li et al., 2020; Luo et al., 2020). They
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include surrounding rock cracking and fragmentation,
swelling or spalling of the concrete spray layer, defor‐
mation or cracking of the anchor head rock, disloca‐
tion of the rock anchor beam along with the expan‐
sion joint, and water seepage (Fig. 2).

It is acknowledged that the deformation and fail‐
ure of surrounding rock are closely related to the high
intermediate principal stress, which leads to the fail‐
ure of the internal rock mass and the stress-driven de‐
formation and failure phenomenon (Wang et al.,
2016; Li et al., 2018). The deformation of the sur‐
rounding rock mass of an HSBT zone is space- and
time-dependent. Typical time-displacement curves of
the HSBT zone of a large-scale powerhouse are
shown in Fig. 3. The deformation of the rock mass of
the HSBT zone shows a sudden increase and a signifi‐
cant deformation rate during the blasting excavation
stage, mainly due to the high stress of the surrounding
rock. The rapid excavation-induced unloading in the
high confining pressure environment leads to the sud‐
den loosening and cracking of the surrounding rock,
resulting in sizeable initial deformation.

After excavation and support, the engineering
disturbance intensity weakens, the stress field redistri‐

bution process of the surrounding rock gradually be‐
comes stable, and the deformation rate of the loose
rock mass changes from high to low until it reaches
convergence. From the perspective of space, rock de‐
formation of an HSBT zone is the mechanical re‐
sponse of a rock mass subjected to excavation. The
deformation involves mainly the tensile displacement
of the discontinuous rock along a fracture in the loosen‐
ing zone. Therefore, along the direction of spatial
depth, the monitoring deformation development rules
are different for monitoring points at different distances
from the excavation surface due to the different de‐
grees of rock mass looseness nearby. The closer to the
excavation face, the greater the sidewall displacement
(Fig. 3): the sidewall displacement at 0.5D is signifi‐
cantly higher than that at 2.0D away from the tunnel
face.

The spatial-temporal rock deformation of the
HSBT zone is one of the key factors to control to en‐
sure the stability of an underground cavern. The time-
dependent rock deformation of HSBT zones is caused
by the spacing effect of stress induced by excavation
changing the environment from high pressure to low
confining pressure and high differential stress and
rock cracking (Li et al., 2020).

Fig. 4 is a schematic diagram of the aging defor‐
mation mechanism of a high sidewall. It shows that
after blasting excavation, the natural stable equilibri‐
um state is destroyed. The tangential stress around the
cavern increases while the radial stress decreases,
gradually forming an environment of low confining
pressure and high differential stress under the high in-
situ stress field. After excavation, the surrounding
rock stress release and redistribution process are not
instantaneous. The release load on the excavation face
is time-dependent and most of the load is released at
the time of excavation. Thus, surrounding rock defor‐
mation in the initial stage of blasting excavation in‐
creases suddenly. Then the deformation rate gradually
slows until the displacement tends to converge, form‐
ing a time-dependent deformation process.

The excavation of a large-span underground pow‐
erhouse causes an extensive adjustment in the range of
stress in the surrounding rock, which will affect the ex‐
cavation response of a small cavern within its range of
influence. It is mainly characterized by the influence
of excavation on the stress and deformation of sur‐
rounding rock of the main transformer tunnel and
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Fig. 2 Failure types of rock surrounding the HSBT zones
in the Yingliangbao underground powerhouse: (a) fragment
damage; (b) swelling and cracking of the concrete
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adjacent drainage corridor. The transfixion of cavern
groups is a process of transformation from sepa‐
rated small cavern groups to connected large cavern
groups. When the partition wall that separates two
cavern groups and bears a considerable load of sur‐
rounding rock is excavated and unloaded, the distribu‐
tion of stress and deformation of the surrounding rock
will change dramatically. The primary effect is that
the diffusion section of the main powerhouse is exca‐
vated, forming a connection with the downstream
sidewall of the main powerhouse, which drastically
affects the surrounding rock stress of the main power‐
house. The excavation and transfixion of the lower
gate well of the draft tube gate chamber will affect the
stress and deformation of the surrounding rock of the
upstream main transformer chamber.

2.2 Influencing factors and control requirements

The deformations of the excavation face and af‐
fected areas have strong spatial-temporal evolution
characteristics due to the cavern group’s layered and
partitioned construction characteristics (Hu et al.,
2020; Wang et al., 2020; Wen et al., 2020). For a vast
cavity, the deformation of the rock mass will continue
to grow for up to 4–6 years during the long excava‐
tion period. It is characterized by the continuous evo‐
lution of growth, convergence, and stability (Jiang et
al., 2017; Kumar et al., 2021). This process involves
the process of redistribution of rock mass stress,
which is directly expressed as the deformation of rock
mass, and the change of anchorage force. It is neces‐
sary to determine the mechanical properties of the
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Fig. 4 Schematic diagram of the aging deformation mechanism of a high sidewall
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rock mass by taking excavation and support mea‐
sures. In the actual construction process, it is neces‐
sary to master the comprehensive effect of factors
such as in-situ stress, rock mass characteristics, and
the construction method in the complex engineering-
geological environment. This can be achieved by the
analysis and control of the deformation rate, deforma‐
tion trend, and total deformation (Broch, 2016; Dada‐
shi et al., 2017; Ma et al., 2020; Deng et al., 2021,
2022; Fan et al., 2021b; Sun H et al., 2021). The fac‐
tors affecting the deformation of the surrounding rock
are listed in Table 1.

Letting X1= (σci; c; φ; γ; E; v), X2= (GSI; RQD),
X3=(D0), X4=(Pi; Ti; Di), and X5=(model size; excava‐
tion sequence; boundary conditions; …), the displace‐
ment of the surrounding rock in the large under‐
ground caverns Zdis can be expressed as

Zdis=g(X1, X2, X3, X4, X5), (1)

where g is the function used to obtain Zdis; X1 indicates
the material parameters; X2 indicates the geological
parameters; X3 indicates the blast damage factor; X4 in‐
dicates the reinforcement parameters; X5 indicates the
other parameters.

In addition, the maximum Zdis (Zdis,max) can be ob‐
tained by the following constraint conditions:

ì

í

î

ïïïï

ïïïï

σca £ 0.8σci
σrb £ 0.8σrbmax
σac £ 0.8σacmax

(2)

where σca, σrb, and σac are the calculated or measured
maximum stress of the rock, rock bolt, and anchor ca‐
ble, respectively, and σrb,max and σac,max are the permissible

Table 1 Factors affecting the deformation of the surrounding rock in large underground caverns

Factor
Intact rock

Rock mass
structural

characteristics

Blast

Reinforcement

Others

Parameter
Uniaxial compressive strength (UCS)
σci; Mohr-Coulomb (MC) param‐
eters: cohesion c and friction an‐
gle φ; unit weight γ; elastic mod‐
ulus E; Poisson’s ratio v

GSI; rock quality designation (RQD)

Blast damage factor D0

Supporting intensity Pi; supporting
time Ti; supporting depth Di

Model size; excavation sequence;
boundary conditions; ...

Computational formula

σn
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=
σ3
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τ =
σci cos φ
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sin φ

a

a ( mbσn

σci

+ s) a



c = τ - σn tan φ

GSI = 1.5Jcond89 +
RQD

2


Jcond89 =
35Jr /Ja

1 + Jr /Ja



RQD =
∑(Length of corepieces)

Total length of coresum
´ 100

σ1 = σ3 + σci(mb

σ3

σci

+ s) a



mb =m i exp ( GSI - 100
28 - 14D0 ) 

s = exp ( GSI - 100
9 - 3D0 ) 

a =
1
2
+

1
6 ( )e

-
GSI
15 - e

-
20
3

Note
σ1 and σ3 are the maximum and

minimum principal stresses at
failure, respectively; σn and τ
are the normal and shear
stresses, respectively; mb, s,
and a are the Hoek-Brown
(HB) input parameters estimat‐
ed from the HB constant mi,
the geological strength index
(GSI), and the blast damage
factor D0, respectively (Shen
et al., 2012)

Jr and Ja are the joint roughness
number and joint alteration
number, respectively; Jcond89 is
the joint condition rating (Hoek
et al., 2013)

Hoek et al. (2002)
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maximum stresses of the rock bolt and anchor cable,
respectively. Usually, Zdis can be obtained by numeri‐
cal methods based on the equilibrium equations, geo‐
metric equations, constitutive equations, and bound‐
ary conditions:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Equilibrium equations: σ ijj + f i = 0

Geometric equations: ε ij =
1
2 ( )μ ij + μ ji 

Constitutive equations: σ ij =E ijklεkl

Boundary conditions: μ i = μ̄ i σ jin j = t̄ i

(3)

where σ ijj is the surface stress tensor component; f i is

the body stress tensor component; ε ij is the strain ten‐
sor; μ ij is the derivative of displacement tensor; σ ij is

the surface stress tensor; E ijkl is the elastic modulus
tensor; μ i is the boundary values of displacement com‐

ponents; n j is the boundary normal vector; μ̄ i and t̄ i

are the known boundary values of displacement com‐
ponent and stress component, respectively.

In the specific case of the Baihetan underground
caverns, most of the factors stated above can be deter‐
mined, thus a displacement management standard can
be put forward based on the numerical results, moni‐
toring data, standard specification, and field problem
characteristics (Fig. 5 and Table 2).

When the monitored change of the high sidewall
or lower transfixion areas reaches a critical level, the
monitoring center will issue a warning and encrypt an
observation after analysis and judgment. If necessary,
an on-site survey will be organized to identify the rea‐
sons, and countermeasures will be formulated.

3 Coordinated deformation control technologies

Based on the deformation and failure mechanism
of rock surrounding a high sidewall, the deformation

coordination and control technology of a typical high
sidewall in China is summarized in Table 3. Due to
the complexity of underground cavern groups, the cur‐
rent design code SL 266-2014 (MWR, 2014) does not
give a clear method for controlling the stability of the
surrounding rock. The code only describes the basic
analysis and design principles (Kumar et al., 2021;
Sun YP et al., 2021). To guide the real-time analysis
and control of the local stability of rock surrounding
large underground cavern groups, a coordinated con‐
trol technology of deformation of underground cavern
groups under normal construction conditions is sum‐
marized in Table 4.

Fig. 5 Flow diagram for the determination of deforma‐
tion control requirements

Table 2 Control requirements for surrounding rock deformation in the Baihetan underground powerhouse

Rock grade

III

IV

Safety level

Δ (mm)

≤15

≤25

δ (mm/d)

≤0.2

≤0.2

Warning level

Δ (mm)

(15, 25)

(25, 35)

δ (mm/d)

(0.2, 1.0)

(0.2, 1.0)

Danger level

Δ (mm)

≥25

≥35

δ (mm/d)

≥1.0

≥1.0

Δ is the increase in deformation; deformation rate δ refers to the average deformation rate every 7 d and 24 h after blasting and unloading

549



| J Zhejiang Univ-Sci A (Appl Phys & Eng) 2022 23(7):543-563

T
ab

le
3

D
ef

or
m

at
io

n
co

or
d

in
at

io
n

an
d

co
n

tr
ol

te
ch

n
ol

og
y

of
a

h
ig

h
si

d
ew

al
lo

f
a

ty
p

ic
al

la
rg

e-
sc

al
e

u
n

d
er

gr
ou

n
d

ca
ve

rn

N
am

e

L
ef

tb
an

k
of

B
ai

he
ta

n

R
ig

ht
ba

nk
of

B
ai

he
ta

n

L
ef

tb
an

k
of

W
ud

on
gd

e

R
ig

ht
ba

nk
of

W
ud

on
gd

e

N
uo

zh
ad

u

P
en

gs
hu

i

X
ia

ng
ji

ab
a

E
rt

an

L
on

gt
an

Ji
np

in
g

II

D
im

en
si

on
of

po
w

er
ho

us
e

(l
en

gt
h×

w
id

th
×

he
ig

ht
)

(m
)

38
4.

03
×

31
.9

×
75

.6

43
8×

34
×

88
.7

33
3×

32
.5

×
89

.8

33
3×

32
.5

×
89

.8

25
.7

5×
74

.1

25
2×

30
×

84
.5

25
5.

4×
33

.4
×

85
.2

28
0.

3×
30

.7
×

65
.4

38
8.

8×
30

.3
×

74
.5

27
6.

99
×

28
.9

×
68

.8

B
ur

ie
d

de
pt

h
(m

)

H
or

iz
on

ta
ld

ir
ec

ti
on

30
0–

45
0

42
0–

80
0

75 66

62
7–

70
0

13
0–

20
0

13
0

30
0 –

11
0–

30
0

V
er

ti
ca

l
di

re
ct

io
n

34
0–

48
0

42
0–

54
0

16
0–

54
0

21
0–

39
0

– –

12
0–

24
0

20
0–

30
0

10
0–

28
0

18
0–

35
0

M
ax

im
um

pr
in

ci
pa

l
st

re
ss

(M
P

a)

21
.0

6

30
.9

9

11
.6

8.
2

13
.2

10 12
.2

38
.4

28

35
.6

5

L
it

ho
lo

gy

B
as

al
t

B
as

al
t

L
im

es
to

ne
,

m
ar

bl
e,

do
lo

m
it

e

G
ra

ni
te

,
se

di
m

en
ta

ry
ro

ck

C
al

ca
re

ou
s

sh
al

e

S
an

ds
to

ne

S
ye

ni
te

,b
as

al
t

B
la

ck
cl

ou
d

gr
an

it
ic

gn
ei

ss

M
ar

bl
e

R
oc

k
m

as
s

qu
al

it
y

gr
ad

e

M
ai

nl
y

II
I 1,

m
in

or
II

M
ai

nl
y

II
I 1,

m
in

or
II

I 2

M
ai

nl
y

II
,

II
I – IV

M
ai

nl
y

II
,

m
in

or
II

I

–

M
ai

nl
y

II
–

II
I

M
ai

nl
y

II
I

G
en

er
al

de
fo

rm
at

io
n

(m
m

)

50 24 6 15 30 40 40 60

M
ax

im
um

de
fo

rm
at

io
n

(m
m

)

10
3

58 14 43 65 10
4

83 94

M
ai

n
de

fo
rm

at
io

n
co

nt
ro

lt
ec

hn
iq

ue

T
hi

n-
la

ye
r

pr
ot

ec
ti

on
ex

ca
va

ti
on

,
qu

ic
kl

y
fo

ll
ow

-u
p

of
su

pp
or

t,
w

ho
le

-p
ro

ce
ss

m
on

it
or

in
g

an
d

gu
id

an
ce

,
si

x-
se

qu
en

ce
fi

ne
ex

ca
va

ti
on

an
d

bl
as

ti
ng

in
th

re
e

zo
ne

s
of

ro
ck

w
al

l
be

am
la

ye
r,

pr
ot

ec
ti

ve
la

ye
r

an
d

ro
ck

pl
at

fo
rm

(L
u

et
al

.,
20

18
;

W
an

g
et

al
.,

20
19

;
F

an
et

al
.,

20
21

b)

C
ar

bo
na

ce
ou

s
fi

lm
ar

ea
,

w
ea

k
bl

as
ti

ng
,

de
ep

an
ch

or
in

g,
bu

tt
re

ss
w

al
l,

ri
gi

d-
fl

ex
ib

le
su

pp
or

t
pl

us
gr

ou
ti

ng
,

w
ea

k
bl

as
ti

ng
,t

ig
ht

an
ch

or
ag

e,
an

ti
-r

el
ax

at
io

n

F
in

e
ge

ol
og

ic
al

ex
pl

or
at

io
n,

co
m

pl
ex

ro
ck

an
d

so
il

m
od
‐

el
in

g
an

al
ys

is
(W

an
g

an
d

S
ha

o,
20

10
;

L
v

an
d

C
hi

,
20

18
)

T
hi

n
la

ye
r

ex
ca

va
ti

on
,

pr
e-

st
re

ss
ed

an
ch

or
ag

e,
co

ns
ol

i‐
da

ti
on

gr
ou

ti
ng

re
in

fo
rc

em
en

t
w

it
ho

ut
co

ve
r

w
ei

gh
t,

pr
e-

st
re

ss
ed

ro
ck

an
ch

or
be

am
w

it
ho

ut
cr

ac
k

(L
iu

,
20

10
)

P
re

-s
pl

it
bl

as
ti

ng
(F

an
et

al
.,

20
11

;J
in

g
et

al
.,

20
15

)

R
ei

nf
or

ce
m

en
to

f
lo

ng
an

ch
or

ca
bl

e
(Z

hu
et

al
.,

20
07

)

S
ho

rt
fo

ot
ag

e,
w

ea
k

bl
as

ti
ng

,
ti

m
el

y
su

pp
or

t
(G

an
et

al
.,

20
19

)

T
im

el
y

su
pp

or
t,

bl
as

ti
ng

co
nt

ro
l,

sa
fe

ty
m

on
it

or
in

g,
an

d
dy

na
m

ic
de

si
gn

of
su

pp
or

t(
C

he
n

et
al

.,
20

11
)

550



J Zhejiang Univ-Sci A (Appl Phys & Eng) 2022 23(7):543-563 |

T
ab

le
4

D
ef

or
m

at
io

n
co

or
d

in
at

io
n

an
d

co
n

tr
ol

te
ch

n
ol

og
y

of
u

n
d

er
gr

ou
n

d
ca

ve
rn

gr
ou

p
ca

se
s

N
am

e

B
ai

he
ta

n

W
ud

on
gd

e

L
ia

ng
he

ko
u

E
rt

an

L
on

gt
an

X
il

uo
du

Ji
np

in
g

II

L
ax

iw
a

S
iz

e
of

ta
il

ra
ce

su
rg

e
ta

nk
(m

)

Φ
(4

3–
48

)×
(9

3–
12

8)

Φ
53

×
11

3.
5

19
0.

0×
19

.5
×

80
.4

20
3×

19
.8

×
69

.8

95
.3

×
21

.6
×

89
.7

31
7×

95
.0

×
25

.0

19
2.

3×
26

.3
×

23
.9

Φ
29

.6
×

11
3.

5

D
im

en
si

on
of

m
ai

n
tr

an
sf

or
m

er
ch

am
be

r
(l

en
gt

h×
w

id
th

×
he

ig
ht

)
(m

)

36
8×

21
×

39
.5

27
2×

18
.8

×
35

23
9.

4×
18

.8
×

25
.3

21
4.

9×
18

.3
×

25

39
7×

19
.5

×
22

.5

34
9.

3×
33

.3
2×

19
.8

37
4.

6×
19

.8
×

31
.4

35
4.

75
×

29
.0

×
53

.0

M
ai

n
ge

ol
og

ic
al

pr
ob

le
m

H
ig

h
in

-s
it

u
st

re
ss

,
br

it
tl

e
ba
‐

sa
lt

,
w

ea
k

in
te

rb
ed

de
d

di
s‐

lo
ca

ti
on

zo
ne

L
ar

ge
ra

ng
e

of
ca

rb
on

ac
eo

us
th

in
fi

lm
ar

ea
,

st
ee

p
sm

al
l

an
gl

e
st

ra
ti

fi
ed

ro
ck

m
as

s

H
ig

h
al

ti
tu

de
,

hi
gh

co
ld

,
hi

gh
gr

ou
nd

st
re

ss
,r

oc
k

bu
rs

t

H
ig

h
gr

ou
nd

st
re

ss

S
te

ep
di

p
st

ra
ti

fi
ed

ro
ck

m
as

s

In
te

rb
ed

de
d

di
sl

oc
at

io
n

zo
ne

of
ba

sa
lt

fo
rm

at
io

n

H
ig

h
in

-s
it

u
st

re
ss

,
st

ee
p

di
p

st
ra

ti
fi

ed
ro

ck
m

as
s,

lo
ca

l
br

it
tl

e
fa

il
ur

e

H
ig

h
gr

ou
nd

st
re

ss
an

d
br

it
tl

e
fa

il
ur

e

L
it

ho
lo

gy

B
as

al
t

L
im

es
to

ne
,

m
ar

bl
e,

do
lo

m
it

e

S
an

ds
to

ne
,

m
et

am
or

ph
ic

si
lt

st
on

e,
si

lt
y

sl
at

e

S
ye

ni
te

,
ba

sa
lt

B
la

ck
cl

ou
d

gr
an

it
ic

gn
ei

ss

B
as

al
t

M
ar

bl
e

G
ra

ni
te

A
ve

ra
ge

de
fo

rm
at

io
n

(m
m

)

90 40 25 50 45 30

20
–6

0

30
–4

0

M
ax

im
um

de
fo

rm
at

io
n

(m
m

)

19
2

72 54 12
4

97 60 >
10

0

60
–7

0

M
ai

n
de

fo
rm

at
io

n
co

nt
ro

lt
ec

hn
iq

ue

A
dv

an
ce

d
an

d
pr

e-
co

nt
ro

l,
th

in
ve

rti
ca

l
la

ye
rin

g,
fin

e
pl

an
e

zo
ni

ng
,s

ho
rt

st
ep

le
ng

th
,f

in
e

bl
as

tin
g,

fa
st

an
d

st
ro

ng
su

pp
or

t,
fu

ll-
tim

e
m

ea
su

re
m

en
t,

dy
na

m
ic

in
ve

r‐
si

on
op

tim
iz

at
io

n
(F

an
et

al
.,

20
18

;
L

u
et

al
.,

20
18

;
H

an
et

al
.,

20
19

;W
an

g
et

al
.,

20
19

)

M
et

er
-le

ve
ls

ur
ve

y,
sp

at
ia

la
nd

te
m

po
ra

ll
ay

ou
to

pt
im

iz
a‐

tio
n

de
si

gn
,

sy
st

em
pe

rc
ep

tio
n,

pa
ra

m
et

er
in

ve
rs

io
n,

cl
os

ed
-lo

op
co

nt
ro

ls
ys

te
m

,p
er

so
na

liz
ed

su
pp

or
tr

ei
n‐

fo
rc

em
en

t,
fin

e
ex

ca
va

tio
n

co
nt

ro
l(

H
u

et
al

.,
20

18
)

D
ra

in
ag

e
ah

ea
d,

th
in

la
ye

r
ex

ca
va

ti
on

,
la

ye
r

by
la

ye
r

su
pp

or
t(

Ji
an

g
X

et
al

.,
20

19
;X

ia
o

et
al

.,
20

19
)

S
tr

at
if

ic
at

io
n,

se
qu

en
ce

an
d

st
ep

ex
ca

va
ti

on
(C

he
n

F
et

al
.,

20
15

)

R
ea

l-
ti

m
e

m
on

it
or

in
g

an
d

dy
na

m
ic

de
si

gn
of

su
pp

or
t

(J
in

et
al

.,
20

09
)

M
on

it
or

in
g

fe
ed

ba
ck

an
d

nu
m

er
ic

al
fe

ed
ba

ck
(F

an
an

d
W

an
g,

20
11

;
F

an
et

al
.,

20
12

a;
H

ua
ng

et
al

.,
20

22
)

3D
nu

m
er

ic
al

si
m

ul
at

io
n,

dy
na

m
ic

op
ti

m
iz

at
io

n
of

ex
ca

va
ti

on
an

d
su

pp
or

t(
W

u
et

al
.,

20
10

)

C
ra

ck
in

g-
su

pp
re

ss
io

n
m

et
ho

d,
gl

ob
al

op
ti

m
iz

at
io

n
of

ex
ca

va
ti

on
se

qu
en

ce
(J

ia
ng

Q
et

al
.,

20
19

)

Ta
il

ra
ce

su
rg

e
ta

nk
s

of
B

ai
he

ta
n

an
d

L
ax

iw
a

ar
e

cy
li

nd
ri

c
(Φ

in
di

ca
te

s
th

e
di

am
et

er
),

an
d

th
at

of
W

ud
on

gd
e

is
se

m
i-

cy
li

nd
ri

c

551



| J Zhejiang Univ-Sci A (Appl Phys & Eng) 2022 23(7):543-563

With the gradual increase of the size of the
HSBT zones of an underground powerhouse, a single
control technology is gradually transformed into a
comprehensive construction technology. With the geo‐
logical information, support scheme and monitoring
results of on-site excavation, the back analysis, and
simulation of the excavation deformation of the under‐
ground space structure can be carried out in time, and
support design and construction measures can be si‐
multaneously adjusted. The relevant parameters of
ground stress and rock mass mechanics are inverted
by comparing each layer’s predicted and measured de‐
formation values after excavation. Thus, the geologi‐
cal model and the layered and sequential excavation
model are continuously updated to optimize the de‐
sign and construction measures, predict the subse‐
quent excavation response, and improve the effective‐
ness of the excavation support measures.

3.1 Proper excavation and construction
procedures

Adopting the idea of a 3D, multi-level, and pla‐
nar multi-process, the construction procedures and the
excavation layout of each layer of a powerhouse are
considered and planned as a whole. In particular, the
construction procedures of the access tunnel entering
the powerhouse are taken into account in advance.
Taking the powerhouse on the right bank of the
Wudongde hydropower station as an example (Fig. 6),
the excavation procedure is as follows: the top arch of
the main-transformed cavern is excavated after the ex‐
cavation of arch crown Ⅰ . After the excavation and
support of layer Ⅰ, the excavation of layer II should be
completed as soon as possible. After the temporary
support of the layer II sidewall is completed, the chan‐
nel is formed by slotting downstream of layer III of
the main-transformed cavern to excavate the access
tunnel as soon as possible. The access tunnel excava‐
tion and the lock support of the powerhouse side
are completed in sequence according to the se‐
quence of interval and jump cavern excavation to
realize the excavation target of “cavern first and
high sidewall follows”. This is conducive to the
rapid construction of the next part and the rock an‐
chor beam, and the stability of the powerhouse high
sidewall.

In the HSBT zones, a special scientific and rea‐
sonable excavation construction procedure is adopted

according to the spatial characteristics of the cavern
structure and the principle of stable sidewall forma‐
tion. Firstly, the excavation and support construction
of the small cavern is carried out. Then, the small cav‐
ern penetrates 10–20 m into the high sidewall area of
the cavern. After that, the excavation and connection
of the high sidewall are carried out.

The combination scheme of the excavation se‐
quence designed by experience cannot be guaranteed
to be the most reasonable for the stability of cavern
groups (Hu et al., 2018; Jiang Q et al., 2019). The cav‐
ern group effect of the HSBT zones can be significant‐
ly reduced during cavern construction by adopting an
optimal excavation scheme. Also, optimal excavation
is helpful to reduce the unloading of one excavation
to avoid the severe deformation of surrounding rock
and the change in linkage of surrounding rock defor‐
mation of multiple caverns. Taking the excavation se‐
quence of caverns of the Baihetan underground pow‐
erhouse as an example (Fig. 7), the optimal excava‐
tion scheme is as follows. First, the excavation
method of “staggered time and staggered distance”
is adopted. The excavation is staggered at a certain
distance and a certain time interval. To reduce the

Fig. 6 Schematic diagram of the excavation procedure of
the main powerhouse on the right bank of the Wudongde
project
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intensity of adjustment in the surrounding rock, the
excavation is not performed simultaneously in the
same area. Second, in the case of a small tunnel pene‐
trating a big tunnel, the excavation method of “cavern
first and wall behind” is adopted. The water diversion
pressure tunnel and tail-water diffusion tunnel are ex‐
cavated into the workshop first. Third, timely support
should be carried out after the small tunnel penetrates
the big tunnel to reduce the influence of excavation of
the large tunnel on the stability of the rock surrounding
the small tunnel. Combined with the existing construc‐
tion technology, construction machinery, equipment,
and construction channel layout, a layered excavation
plan of the four main caverns is carried out from top to
bottom. The main and auxiliary workshop is divided
into 10 layers (Fig. 7). The main transformer tunnel is
divided into five layers, the tailrace tunnel into four
layers, and the tailrace surge tank into three layers.

3.2 Fine blasting control

The excavations of HSBT zones of an under‐
ground powerhouse can adopt fine blasting, fast seal‐
ing, and timely anchoring technology to ensure the
cavern’s forming quality and reduce the blasting ef‐
fect of the cross cavern. For example, the main power‐
house can adopt a 5–7 m kerf blasting in the middle
part, and a 4 m protective layer is reserved on both

sides to expand and follow up. The protective layer
adopts a mobile standard construction sample frame
and smooth vertical blasting with a small aperture,
small charge, and millisecond difference to reduce
vibration damage to the sidewall–bottom transfixion
zones. All boreholes are made by hand pneumatic
drill. Single blasting dosage is strictly controlled
within 20 kg. Through fine blasting technology, the
ultimate forming and stability of HSBT zones are en‐
sured. In addition, the drilling and blasting process is
standardized to reduce the impact of blasting vibra‐
tion and ensure the stability of the HSBT zones of
the powerhouse by adopting the principle of the per‐
sonnel, machine, and location positioning, and “one-
battery-one-summary” quality control method.

3.3 Composite and timely support

For the particularity of discontinuous fracture
depth and different degrees of fracture of surrounding
rock under high stress, the general principle of sup‐
port should be closed in a timely manner by spraying
concrete to form surface confining pressure and a
bonding effect. At the same time, anchor reinforce‐
ment is carried out in real-time to control the propa‐
gation of cracks in the shallow surrounding rock and
improve the structural strength of the shallow sur‐
rounding rock. If necessary, a pre-stressed anchor
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Fig. 7 Schematic diagram of the excavation and stratification of the Baihetan underground cavern group
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can suppress the development of fractures in shallow
surrounding rock with a large degree of cracking, and
the bond strength of the fracture surface of cracked
surrounding rock can be directly improved by grout‐
ing. A long pre-stressed anchor cable should be adopt‐
ed for deep reinforcement to control the progressive
development of internal failure of the rock mass. The
surface-shallow-deep joint reinforcement method is
helpful to form a relatively complete stress-bearing
structure that effectively increases the strength of bro‐
ken or damaged surrounding rock. Thus, the bearing
performance of all the surrounding rock can be en‐
hanced, converting the rock from a supporting struc‐
ture to a bearing structure. In particular, for the cross-
section into the cavern, the above measures can be tak‐
en to strengthen the support under various adverse
geological conditions. For example, given the charac‐
teristics of rock surrounding a large underground cav‐
ern, such as a thin layer, steep dip angle, and weak
shale geological structure, the excavation unloading
deformation is fast and difficult to control. The new
technology of pre-stressed hollow grouting bolt is ad‐
opted to reinforce the shallow surrounding rock in a
timely manner. A steel plate anchor pier head is used
instead of a concrete one to accelerate the construction
progress and achieve deep anchorage. Thus, the possi‐
bility of unloading deformation in the surrounding
rock is reduced, and the problem of shallow and deep
anchorage of weak shale is solved (Han et al., 2019).
To solve the problem that the deformation of the un‐
derground powerhouse on the right bank of Baihetan
hydropower station continued to expand with the exca‐
vation of the tunnel, the construction technology of
precise hole making through an anchor cable with the
high sidewall was adopted. Thus, the stability of sur‐
rounding rock deformation was ensured (Wang et al.,
2019). Because of the deformation and instability of
the sidewall under high immediate principal stress, it
is necessary to adopt appropriate deep support mea‐
sures such as an anchor cable. Moreover, the deep sup‐
port in this environment must have sufficient strength
to provide the confining pressure necessary for sur‐
rounding rock stability (Shi et al., 2018; Zhang et al.,
2018). Regarding the supporting time of the surround‐
ing rock, the aim should be to avoid the development
trend of catastrophic failure of the surrounding rock.

Referring to the previous research result (Jiang
Q et al., 2019), when the support time is too late, the

failure of the surrounding rock will be aggravated un‐
der the unconstrained and high-stress drive, which
will lead to excessive failure/relaxation of the sur‐
rounding rock. However, if the support is premature,
the elastic deformation of the surrounding rock can‐
not be effectively released, which will inevitably lead
to the failure of the supporting structure. In this situa‐
tion, the surrounding rock support needs to resist the
elastic unloading deformation of surrounding rock be‐
yond the ultimate strength and fracture, resulting in a
significant increase in the fracture/relaxation of sur‐
rounding rock. The elastic deformation of the rock
mass is released only when the supporting time is rea‐
sonable and the fracture depth is within the acceptable
range. In this situation, the surrounding rock support
can effectively control the subsequent development of
surrounding rock fracture and deformation, and main‐
tain the working load of the supporting structure with‐
in the design value interval. When the failure depth of
the surrounding rock is large, more support cost is
needed to effectively control the depth and degree of
failure of the surrounding rock.

3.4 Real-time monitoring and dynamic feedback

Real-time monitoring and feedback are reflected
in the following aspects:

(1) Monitoring of the blasting particle vibration
velocity, acoustic wave tests before and after rock
blasting, and the third-party test of grouting plump‐
ness of bolt should be carried out.

(2) Data of the change in deformation and stress
of the rock surrounding the supporting structure
should be obtained by embedding the multi-point dis‐
placement meter, dislocation meter, anchor bolt, and
cable dynamometer in a representative section system.

(3) Further special tests on the deformation char‐
acteristics of the rock mass should be conducted to
obtain the evolution of the deformation and fracture
of the deep rock mass. A variety of tests should be car‐
ried out, such as borehole photography in the rock
mass and microseismic monitoring.

(4) Necessary anchoring observation corridors
and facilities should be added in critical parts of the
cave group.

(5) The frequency of acquisition of monitoring da‐
ta should be adjusted in a timely manner, and the engi‐
neering site’s implementation progress and compliance
with safety requirements should be monitored.
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When the cavern is excavated, the deformation

and failure information and the geological informa‐

tion of the surrounding rock are gradually enriched.

The mechanical parameters of the rock of the engi‐

neering core area can be accurately obtained by in‐

door testing. Blasting excavation tests and support

tests can provide results for optimization of excava‐

tion and support (Li X et al., 2017; Behnia and Sei‐

fabad, 2018). The monitoring data of conventional

deformation, bolt stress, and cable load during cav‐

ern excavation can provide the unloading response

information of the surrounding rock. The observa‐

tion methods, such as multiple acoustic tests, multi‐

ple borehole photography, and real-time monitoring

of space microseismic activity of surrounding rock

failure in critical areas can reveal the evolution

characteristics of surrounding rock unloading fail‐

ure more precisely (Wu et al., 2016; Behnia and Sei‐

fabad, 2018; Kumar et al., 2021). Therefore, the sta‐

bility control and support optimization of the cav‐

ern group are further improved. The implementa‐

tion process and critical optimization components

of cavern group deformation control are illustrated

in Fig. 8.
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4 Case studies of HSBT zones

4.1 Background

The Wudongde main powerhouse on the right
bank follows the excavation procedure of a 3D, multi-
level, and planar multi-process. The excavation is
from top to bottom, with one layer of excavation and
one layer of support. The excavation section of layer Ⅰ
is 13.5 m×32.5 m (height×width), and the top arch is
three-centered. The size of excavation of the middle
pilot tunnel in the early stage is 10 m×12 m (height×
width). The high sidewall below layer IV is excavated
in layers from top to bottom. The high sidewall takes
6–7 m slot broaching in the middle part with 4–5 m
protective layers on both sides. Layer IV is through
the excavation of the high sidewall and L3 construc‐
tion adit. First, the construction of the connection
with L3 is performed in hydraulic turbine sets 7 and
8. The excavation methods for layers VII and VIII
were the same as those for layer IV, and the layer IX,
in which the vertical height from the top arch of the
powerhouse is more than 70 m, was through the exca‐
vation of the machine nest and tail-water branch cav‐
ern. The rock stabilities of the high sidewall and top
arch were prominent in the excavation process. La-
yers X and XI were machine nest and protective floor
layers excavated by smooth blasting.

During the blasting construction of layer VI ex‐
cavation in the main powerhouse on the right bank,
the deformation of the upstream sidewall at the hy‐
draulic turbine sets 7 and 8 increased suddenly. Deep
cracking of the surrounding rock along the layer oc‐
curred, which seriously affected the overall stability
of the high sidewall. In terms of local geological con‐
ditions, the abnormal deformation area is located in
the area with a small angle (<20°) between the strike
of the rock layer and the axis of the powerhouse, and
the rock layer has a steep dip (inclined to the down‐
stream). The rock layer is relatively thin and smooth,
the bond strength is weak, and the geological condi‐
tions are poor, which are the geological factors associ‐
ated with the abnormal deformation of the upstream
sidewall. In terms of construction impact, the up‐
stream sidewall of the powerhouse formed the HSBT
zone (Fig. 9) after layer VI was excavated and the L3
construction adit was connected. Stress adjustment
caused the unloading relaxation of the upstream side‐
wall along with the rock layer. The roof blasting of

the L3 construction adit resulted in a sudden increase
of 20 m in the height of the high sidewall. During the
roof blasting, the actual height of the two rows of an‐
chor cables above was not constructed, which in‐
creased by 30 m. The length of the roof blasting was
35 m and the lateral constraint was suddenly relieved,
which was the mechanical factor of the abnormal de‐
formation of the upstream sidewall.

In terms of abnormal deformation of fracture
morphology, the position and shape of circumferential
fractures in shotcrete indicate that the deformation of
the upstream sidewall towards the powerhouse’s open
surface after layered excavation results in tensile frac‐
tures of the surrounding rock layer at this position.
Then, it leads to obvious circumferential fractures in
the tunnel wall of the air supply corridor intersecting
with the rock formation at a large angle. Further‐
more, according to the fracture connectivity test of
surrounding rock in the air supply corridor, the frac‐
tures at hydraulic turbine set 7 extend widely along
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Fig. 9 Excavation of L3 construction adit at hydraulic
turbine sets 7 and 8: (a) No. 7; (b) No. 8 (unit: m)
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the plane direction. This indicates that the shear
strength of the rock mass in this part decreases due to
the plane opening and further produces the overall slid‐
ing of the surrounding rock along its plane. According
to the deformation monitoring data, the abnormal de‐
formation is mainly in the shallow surface of the sur‐
rounding rock, but the surface cracking gradually ex‐
tends to the deep surrounding rock. The abnormal de‐
formation mechanism of the upstream sidewall of the
main powerhouse on the right bank is also analyzed
and explained using numerical simulation (Fig. 10).

In Fig. 10 (Feng et al., 2015), the length, width,
and height of the calculation model are 927, 82, and
666 m, respectively. The length is 82 m along the axis
of the tunnel. The maximum buried depth of the top
arch of the main powerhouse is 286 m. When the ini‐
tial geo-stress field of the model was generated, the
deadweight stress was the maximum principal stress.
The lateral pressure coefficients along the axis and
perpendicular to the axis of the vertical tunnel were
0.8 and 0.6, respectively. The upper surface of the
model was a free boundary, and the other surfaces
were subjected to normal constraints. Mohr-Coulomb
strength criterion is adopted for rock, and the same
criterion considering residual strength is adopted for
the structural surface. Mechanical parameters of the
rock mass and the structural surface are shown in
Table 5.

Since the rock mass of layer VI constricts the lat‐
eral deformation of the main powerhouse sidewall,
the maximum deformation of the surrounding rock be‐
fore the excavation of layer VI concentrates around
the anchor beam of the upstream sidewall. When lay‐
er VI is excavated, the upper sidewall is in lateral re‐
straint contact, and the surface rock mass cut by the
layer has the space to deform downward and toward
the inside of the powerhouse. Therefore, the maxi‐
mum deformation position is transferred to the lower
part of the sidewall, resulting in an obvious increase
in the sidewall lateral deformation (Fig. 10c).

4.2 Countermeasures and effect analysis

Abnormal deformations at hydraulic turbine sets
7 and 8 (Fig. 9) are caused by several factors includ‐
ing the smooth small tilt angle strata (geology), exces‐
sively long one-time exposure (construction condi‐
tions), and the excavation method of rock layer to the
unloading relaxation (mechanical condition). There‐

fore, a series of measures can be taken in relation to
the construction organization and management, exca‐
vation scheme, blasting control, support optimization
design, and dynamic feedback analysis to ensure the
stability of the HSBT zone in the small-angle tunnel
section during construction. Based on the analysis of
the abnormal deformation mechanism of the HSBT
zone, composite support is adopted, such as adding
anchor cables and filling grouting. At the same time,

Maximum deformation: 32 mm

Maximum deformation: 58 mm

82 m  
927 m

666 m

286 m

(a)

(b)

(c)

Fig. 10 Calculation model and the displacement
distribution of the upstream sidewall before and after
excavation of the L3 construction adit (Feng et al., 2015): (a)
numerical model; (b) before excavation; (c) after excavation
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the further development of the upstream sidewall de‐
formation of the unit section is successfully restrained
by using the information construction technology to
guide the optimization of the subsequent excavation
scheme. Specific measures are as follows:

Firstly, measures should be taken to increase an‐
chor cables, such as adding a row of pre-stressed an‐
chor cables with T=2000 kN per 6.0 m at 828.30,
823.80, 819.30, and 814.80 m from chainage 1+214.5
to chainage 1+316.5 (hydraulic turbine sets 7 – 9) of
the main powerhouse. The locking value is 1700 kN,
and the length of the new anchor cable is 35 m at ele‐
vations of 828.30 and 819.30 m, and 30 m for the rest.

Secondly, seam filling grouting is adopted. All
the newly added anchor cable holes and the newly
added seam filling grouting holes in the second drain‐
age corridor on the upstream side of the main power‐
house are used for seam filling grouting to enhance
the cohesive force of the layer and the overall
strength of the rock mass. The grouting is divided
from deep to shallow with a grouting hole diameter
of 91 mm, a grouting depth of 20 m, and grouting
pressures of 0.3–0.6 MPa. The water-cement ratios
of grout are ,1׃2 ,1׃1 and ,1׃0.5 and the grout is trans‐
formed step by step from thin to thick. Heave defor‐
mation observation was used during grouting.

Finally, real-time monitoring of the HSBT
zone’s deformation and dynamic optimization of the

rock mass excavation scheme of the L3 construction
branch at hydraulic turbine sets 7 and 8 are performed
through the above trinity of comprehensive monitor‐
ing of rock deformation and failure, 3D fine numeri‐
cal simulation, and real-time on-site feedback analy‐
sis. The two-sequence excavation and support are ad‐
opted, and each sequence is divided into three sec‐
tions, with the length of each excavation and support
section being about 20 m. The two-sequence excava‐
tion and support construction will start after the exca‐
vation and support construction of the adjacent first-
sequence range is completed. In each region where
the rock mass thickness is more than 5 m, the thin-
layer excavation method is adopted to perform the ex‐
cavation construction in two layers.

With these measures, the excavation and support
of the construction of the right-bank main power‐
house layer VI have been completed smoothly. The
deformation monitoring data show that (Fig. 11) no
large deformation of the upstream high sidewall

Table 5 Factors affecting the deformation of the

surrounding rock in the large underground caverns

Parameter
Rock mass

Density (kg/m3)

Bulk modulus (GPa)

Shear modulus (GPa)

Cohension (MPa)

Internal friction angle (°)

Dilatancy angle (°)

Tensile strength (MPa)

Structural surface

Normal stiffness (GPa/m)

Shear stiffness (GPa/m)

Cohesion (MPa)

Frictional angle (°)

Dilatancy angle (°)

Residual cohesion (MPa)

Internal friction angle (°)

Tensile strength (kPa)

Value
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Fig. 11 Monitoring data from a multi-point displacement
meter of the upstream sidewall at an elevation of 812 m:
(a) No. 7 hydraulic turbine set; (b) No. 8 hydraulic
turbine set
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occurred in the subsequent excavation. In Fig. 11, the
presented displacement value is the single value moni‐
tored by the multi-point displacement meter. Al‐
though a sudden increase of surrounding rock defor‐
mation occurred during blasting and excavation, it
tended to converge after subsequent time-dependent
deformation, and there was no apparent sudden in‐
crease of deformation in the abnormal parts.

5 Conclusions

Integrated theoretical analysis, numerical simula‐
tion, and case analyses were used to study the defor‐
mation characteristics and control technology of HSBT
zones of large underground hydro-powerhouses. The
main conclusions drawn are as follows:

(1) For the engineering excavation process of
HSBT zones of a large underground powerhouse, the
rapid deformation of the rock mass results from the
change from a high confining pressure environment
to a low confining pressure and high-stress difference
conditions subjected to high in-situ stress, and the spa‐
tial effect of surrounding rock disturbance that is dom‐
inated by significant age deformation.

(2) Proper excavation and construction proce‐
dures, fine blasting control, composite and timely sup‐
port, and real-time monitoring and dynamic feedback
are effective technologies to ensure the stability of the
surrounding rock mass of the HSBT zones.

(3) The coordinated deformation control technol‐
ogies for the HSBT zones have successfully solved
the spatio-temporal mismatch problem between the
supports and deformations, and have been implement‐
ed at the Wudongde large underground powerhouses.

The proposed technologies can provide counter‐
measures for the deformation control of the high side‐
wall and underground tunnel groups subjected to high
site stress and high seismic intensity in high-altitude
regions. However, some issues can be further studied
to further improve the proposed technologies and thus
extend their application to other similar projects. Fu‐
ture research can be carried out on the following
aspects:

(1) Control requirements for surrounding rock
deformation in large underground caverns. This paper
established the control requirements for surrounding
rock deformation in the Baihetan underground power‐

house. However, control requirements of universal ap‐
plication have not been presented because there are
too many factors affecting those values. To ensure the
safety and stability of a large underground power‐
house, it is necessary to establish the surrounding
rock deformation control standard.

(2) Establishment of the damage models of
HSBT zones. More cases need to be analyzed and
summarized to obtain the failure characteristics and
damage models of HSBT zones under different geo‐
logical conditions. The engineering construction se‐
quence, procedure, speed, and reinforcement technol‐
ogy can then be optimized.

(3) Research and development of automatic
warning and support system. The automatic warning
and support system for the HSBT zones can provide
timely and accurate reminders to engineering person‐
nel to carry out support and follow-up construction.
This will help to avoid the phenomena of rock frag‐
mentation and swelling, as well as concrete cracking,
and greatly reduce the safety risks of excavation of
the underground caverns.
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