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Abstract: The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting 
antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. 
Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phos-
phorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated 
human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and met-
abolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates 
mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN 
in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the 
effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be ad-
dressed in further experiments, indicated here as future directions, which may help researchers in this field of  
research. 
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1  Introduction 
 

Sulforaphane (SFN; C6H11NOS2), an organosulfur 
compound obtained from cruciferous vegetables, 
such as broccoli and cauliflower, exhibits several 
cytoprotective effects in human cells (Houghton et al., 

2016). SFN is an antioxidant, antiglycative, anti- 
inflammatory, antitumor, and antimicrobial agent, 
depending on circumstances such as the concentration 
and duration of exposition (Leoncini et al., 2011; 
Bergantin et al., 2014; Angeloni et al., 2015a, 2015b; 
de Oliveira et al., 2018a, 2018b; Russo et al., 2018). 
SFN can also promote mitochondrial protection in 
brain cells. Nonetheless, the complete mechanisms by 
which SFN can benefit mitochondria remain to be 
demonstrated. There is evidence indicating that the 
antioxidant and anti-inflammatory effects caused by 
SFN treatment may be linked at the subcellular level 
by the modulation of mitochondrial function (Krysko 
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et al., 2011; Jin et al., 2017; de Oliveira et al., 2018a, 
2018b). In spite of this, the underlying mechanism 
linking the effects of SFN on the mitochondria and on 
the redox environment of mammalian cells remains to 
be fully understood.  

Studies of SFN bioavailability in several ex-
perimental models have shown that SFN peak plasma 
concentration is observed between 1 and 3 h after 
SFN intake (Hanlon et al., 2008; Keum et al., 2009). 
Clarke et al. (2011) have demonstrated that SFN is 
metabolized in the kidney, lung, liver, colon, and 
brain, among other organs, of mice after oral inges-
tion of variable amounts of SFN. No gender differ-
ences in SFN metabolism or tissue distribution were 
observed. Importantly, it was demonstrated that the 
most abundant compounds found in the tissue of mice 
that ingested SFN were the SFN forms conjugated 
with glutathione, cysteine, and N-acetylcysteine (NAC), 
and not free SFN. Also, the kinetics of metabolism 
and the tissue distribution of SFN accompanied the 
plasma concentration of SFN, except in the small 
intestine, colon, and prostate. Vermeulen et al. (2008) 
studied SFN bioavailability in humans who consumed 
cooked or raw broccoli and found that the absorption 
of SFN was delayed when broccoli was cooked. Also, 
the peak plasma concentration of SFN was higher 
when raw broccoli was ingested by the volunteers. 
Fahey et al. (2015) tested the administration of glu-
coraphanin (the precursor of SFN found in broccoli) 
or the combination of glucoraphanin and the enzyme 
myrosinase (that converts glucoraphanin into SFN) in 
humans in relation to SFN bioavailability. They ob-
served that the presence of myrosinase increased SFN 
bioavailability in humans. Importantly, SFN also in-
duces some toxicity. For example, Socała et al. (2017) 
showed that SFN increased seizure vulnerability in 
mice (LD50=212.67 mg/kg; LD50, median lethal dose). 

The use of SFN as an antioxidant is of particular 
interest in the case of brain cells, since the brain pre-
sents some particularities that increase its vulnerabil-
ity during redox impairment, as reviewed by Cobley 
et al. (2018). Briefly, the brain consumes oxygen gas 
(O2) at very high rate to maintain the bioenergetic 
status needed to sustain its high activity (Magistretti 
and Allaman, 2015). Also, brain cells contain lower 
levels of both enzymatic and non-enzymatic antiox-
idant defenses when compared to other cell types 
(Uttara et al., 2009; Baxter and Hardingham, 2016; 

Ren et al., 2017; Salim, 2017). Some neurotransmit-
ters, such as dopamine and adrenaline, may undergo 
autoxidation, generating reactive species, such as the 
superoxide anion radical (O2

−·) and reactive quinones 
(Heikkila and Cohen, 1973; Cohen and Heikkila, 
1974). The autoxidation reactions may be catalyzed 
by transition metals, whose concentrations are high in 
brain cells (Bandy and Davison, 1987; Miller et al., 
1990). The mitochondria-located monoamine oxidase 
(MAO) enzymes also generate hydrogen peroxide 
(H2O2) during the degradation of neurotransmitters 
(mainly dopamine, tyramine, tryptamine, noradrena-
line, 5-hydroxytryptamine, and 2-phenylethylamine) 
(Ramsay and Gravestock, 2003; Youdim et al., 2006). 
Neurotransmission involves drastic alterations in the 
intracellular concentration of calcium ions (Ca2+). 
Increased Ca2+ levels are commonly associated with 
mitochondrial dysfunction and general damage in 
neurons and glial cells (Lipton et al., 1993; Brown, 
1999, 2001). In addition to the autoxidation of neu-
rotransmitters, brain cells consume glucose at very 
high rates, and this carbohydrate may also undergo 
autoxidation, giving rise to reactive species that also 
affect mitochondrial function and dynamics (Thor-
nalley, 1985; Wolff and Dean, 1987; Hunt et al., 
1988). The brain’s structure and function are highly 
dependent on lipids, mainly the polyunsaturated fatty 
acids and cholesterol (Bazinet and Layé, 2014). Lipid 
peroxidation occurs at high rates in the brain and, 
depending on the extent of this type of redox im-
pairment, the function of mitochondria in neurons and 
glial cells may be compromised (Niki et al., 2005; 
Reis and Spickett, 2012; Sultana et al., 2013; di 
Domenico et al., 2017). During neuroinflammation, 
the brain undergoes redox stress due to increased 
production of reactive species by the mitochondria  
in both microglial and neuronal cells (Bedard and 
Krause, 2007; Sumimoto, 2008; Schain and Kreisl, 
2017). In summary, the brain is very sensitive to 
redox impairment due to several endogenous factors. 
Moreover, exogenous redox active agents, including 
xenobiotics present in the diet, may alter the redox 
balance in brain cells by affecting mitochondrial 
function and causing a pro-oxidant status that may 
favor cell loss and neurodegenerative processes 
(Aoyama and Nakaki, 2013; de Oliveira, 2015). In 
this review, we describe and discuss the effects of 
SFN on the mitochondria of brain cells. 
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2  Overview of mitochondrial structure, func-
tion, redox biology, and dynamics 
 

Mitochondria are organelles whose ability to 
function according to cellular needs is highly de-
pendent on their structure. They have a double- 
membrane structure formed by the outer and inner 
mitochondrial membranes (OMM and IMM, respec-
tively) (van der Laan et al., 2016). The OMM and 
IMM surround the intermembrane space (IMS), 
which is fundamental to the synthesis of adenosine 
triphosphate (ATP) by the organelles (Porcelli et al., 
2005; Herrmann and Riemer, 2010; Papa et al., 2012). 
Protein import machinery is present in both the OMM 
and IMM, and mitochondrial function is highly de-
pendent on this process (Stojanovski et al., 2008; 
Prasai, 2017). In the mitochondrial matrix, a viscous 
space limited by the IMM, there are several enzymes 
that mediate the reactions of metabolic pathways, as 
will be summarized here. Moreover, the matrix con-
tains the mitochondrial DNA (Gustafsson et al., 2016). 
The electron transfer chain (ETC, also known as the 
respiratory chain) comprises the complexes I (nico-
tinamide adenine dinucleotide (NADH) dehydro-
genase), II (succinate dehydrogenase (SDH)), III 
(coenzyme Q-cytochrome c reductase), and IV (cy-
tochrome c oxidase), and the mobile electron transfer 
components ubiquinone (also known as coenzyme 
Q10, which carries electrons from complexes I and II 
to complex III) and cytochrome c (a heme protein that 
transfers electrons from complex III to complex IV) 
(Chaban et al., 2014). Ubiquinone also transfers 
electrons from other sources, such as -oxidation, to 
complex III (Zhang et al., 2006; Watmough and 
Frerman, 2010). The electrons that flow between the 
complexes I, III, and IV transfer energy that is used by 
those proteins to pump H+ ions from the mitochon-
drial matrix into the IMS. This generates an electro-
chemical gradient, which is quantified as the mito-
chondrial membrane potential (MMP) (Signes and 
Fernandez-Vizarra, 2018). In complex IV, the elec-
trons are transferred to O2 (the final acceptor of elec-
trons in the ETC), producing H2O (Chaban et al., 
2014). When the concentration of H+ ions reaches a 
threshold, the H+ ions return to the mitochondrial 
matrix through complex V (the so-called ATP synthase/ 
ATPase), producing ATP in the process (Papa et al., 
2012). Loss of MMP, as may occur for example 

during redox impairment of the mitochondrial mem-
branes or in the case of inhibition of any part of the 
ETC, leads to decreased ATP production and in-
creased production of reactive oxygen species (ROS) 
by the mitochondria (Murphy, 2009), as will be dis-
cussed below. Importantly, a reverse transport of 
electrons has been observed in certain situations, as 
reviewed by Scialò et al. (2017). There are several 
sources of electrons for the ETC, such as the tricar-
boxylic acid cycle (TCA, also known as Krebs’ cycle), 
and the oxidation of fatty acids, α-ketoacids (derived 
from amino acids), and ketone bodies (Mailloux et al., 
2007; Akram, 2014). The use of a given energetic 
substrate depends on the cell type and the expression 
of certain enzymes. For example, oxidation of ketone 
bodies does not occur in the liver due to the absence of 
the enzyme succinyl-CoA-acetoacetate-CoA transferase 
(the so-called thiophorase enzyme) that is responsible 
for the activation of acetoacetate (Puchalska and 
Crawford, 2017). The involvement of mitochondria in 
metabolic pathways also depends on the organ’s par-
ticularities. In the liver, for example, the mitochondria 
take a central role by mediating some reactions of the 
gluconeogenesis and urea cycle (during fasting, some 
types of exercise, some types of diets, or stress) 
(Bigot et al., 2017; Petersen et al., 2017). Hepatic 
mitochondria are also involved in the synthesis of 
lipids, such as fatty acids and cholesterol (in these 
cases, mitochondria are a source of citrate that is 
needed in the cytosol as a source of acetyl-coenzyme 
A) (Nguyen et al., 2008). In the kidney, mitochondria 
also participate in some gluconeogenesis reactions 
during starvation (Gerich et al., 2001). However, 
brain mitochondria are not associated with the syn-
thesis of ketone bodies or gluconeogenesis, for ex-
ample, during fasting (Tracey et al., 2018). Thus, 
there are differences between cell types in their mi-
tochondrial function and substrate consumption (Spi-
nelli and Haigis, 2018). However, virtually all mito-
chondria are central to the homeostasis of Ca2+, which 
is particularly important in neurons due to the role of 
Ca2+ ions in mediating neurotransmission (Pinton  
et al., 1998; Raffaello et al., 2016; Paupe and Prudent, 
2018).  

The ETC may fail in the transfer of electrons 
between the complexes and the electron transfer 
components, generating ROS, such as O2

−·, whose 
major sources are the complexes I and III (Grivennikova 
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and Vinogradov, 2006; Bleier and Dröse, 2013). 
Mitochondrial intoxication also promotes the pro-
duction of ROS by the organelles (de Oliveira, 2015, 
2016; de Oliveira and Jardim, 2016). Actually, mi-
tochondria are the main source of ROS in human 
cells (Murphy, 2009). The dismutation of O2

−· by the 
manganese-dependent mitochondrial enzyme super-
oxide dismutase (Mn-SOD), which is located in the 
mitochondria, generates H2O2 (Sies et al., 2017). 
There is evidence pointing to the presence of several 
enzymes that convert H2O2 into H2O in the mito-
chondria. A major H2O2-detoxifying enzyme is glu-
tathione peroxidase (GPx), which has a mitochondrial 
isoform (Esposito et al., 2000). Also, some authors 
have suggested that mitochondria contain catalase 
(CAT), another enzyme involved in the detoxification 
of H2O2 (Bai and Cederbaum, 2001; Salvi et al., 2007; 
Bakala et al., 2012). Furthermore, mitochondria 
contain a peroxiredoxin enzyme that also consumes 
H2O2, as reviewed by Cao et al. (2007). H2O2 me-
tabolism in the mitochondria (and in the cytoplasm) 
depends on high levels of the major non-enzymatic 
antioxidant glutathione (GSH), which is consumed by 
GPx (Sies et al., 2017). The recycling of GSH de-
pends on the availability of the reduced form of nic-
otinamide adenine dinucleotide phosphate (NADPH), 
which is used by the enzyme glutathione reductase 
(GR) to reduce the glutathione disulphide (GS-SG) 
formed from the oxidation of GSH (Huang and 
Philbert, 1995). The increased generation of ROS by 
the mitochondria or their decreased ability to metab-
olize such pro-oxidant agents causes oxidative stress 
in the organelles, leading to bioenergetic collapse and 
cell death (Maes et al., 2011; Sies et al., 2017). 
Moreover, mitochondria may undergo nitrosative 
stress when there is an increase in the production of 
reactive nitrogen species (RNS) in the cells (Sies et al., 
2017). The detection of increased levels of 3- 
nitrotyrosine, for example, indicates increased for-
mation of peroxynitrite (ONOO−), which is generated 
from nitric oxide (NO·) and O2

−· (Calcerrada et al., 
2011; Radi, 2013). A growing body of evidence 
points to a role for mitochondria in the generation of 
NO·, which would modulate several signaling path-
ways associated with the organelles (Poderoso et al., 
1996, 2019). Recently, de Armas et al. (2019) have 
reported that peroxiredoxin 3 is responsible for the 
reduction of ONOO− in human mitochondria.  

The control of the antioxidant enzymes (both 
enzymatic and non-enzymatic) located in the mito-
chondria is mediated by some signaling pathways 
commonly associated with cell survival. Activation of 
the transcription factor nuclear factor erythroid 2- 
related factor 2 (Nrf2) is a major antioxidant route in 
human cells (Ma, 2013). Nrf2 modulates the expres-
sion of antioxidant enzymes, such as SOD, CAT, GPx, 
and GR (Nguyen et al., 2009; Ma, 2013). The ex-
pression of the rate-limiting enzyme in the synthesis 
of GSH, γ-glutamate-cysteine ligase (γ-GCL, which 
is formed by the catalytic and modifier subunits, 
GCLC and GCLM, respectively), is also controlled 
by Nrf2, among other transcription factors (e.g., nuclear 
factor-κB (NF-κB)) (Franklin et al., 2009; Lu, 2009, 
2013). Nrf2 also coordinates the expression of en-
zymes involved in phase II detoxification reactions, 
such as glutathione-S-transferase (GST), responsible 
for the conjugation of GSH with xenobiotics and/or 
toxicants (Deponte, 2013). The glyoxalase system, 
which participates in the detoxification of reactive 
dialdehydes (such as methylglyoxal), is also dependent 
on GSH (Deponte, 2013). GSH is consumed in the 
glutathionylation of proteins in the post-translational 
control of protein function (Ghezzi, 2013). Thus, the 
metabolism of GSH needs intense regulation to attend 
at least three groups of reactions necessary to main-
tain cell homeostasis. The cellular needs of GSH are 
described in several excellent publications by other 
research groups (Deponte, 2013). The transport of 
GSH into mitochondria occurs in virtually any nu-
cleated human cell and is determinant in modulating 
the vulnerability of neurons to redox impairment re-
sulting from the exposure to ROS or RNS (Fernández- 
Checa et al., 1997, 1998; Lash, 2006; Marí et al., 2013; 
Wilkins et al., 2013). Cell fate is closely related to 
mitochondrial function and production of ROS by 
these organelles, as may be seen during the triggering 
of apoptosis through cytochrome c release (Green et al., 
2014). 

The number of mitochondria can be increased by 
the mitochondrial biogenesis (mitogenesis) process, 
which needs the expression of both nuclear and mi-
tochondrial genes (Scarpulla, 2006, 2008). The pe-
roxisome proliferator-activated receptor γ coactivator 
1-α (PGC-1α) is a major modulator of mitochondrial 
biogenesis, as reviewed by Scarpulla (2008, 2011) 
and Jardim et al. (2018). Mitochondrial number, size, 
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and shape can also be changed by fusion (when two 
or more mitochondria combine, generating a single 
organelle) or fission (when one mitochondrion di-
vides, leading to the formation of two or more orga-
nelles) (Scott and Youle, 2010; Westermann, 2012). 
In this context, mitophagy is a biological process by 
which the number of mitochondria is reduced (Wang 
et al., 2019). Mitophagy is important in the turnover 
and quality control of this organelle (Zhang, 2013; 
Campello et al., 2014). Modulation of mitochondrial 
number, size, and architecture has therapeutic rele-
vance, and research in this area of mitochondrial 
medicine is important for the treatment or prevention 
of mitochondria-related diseases, such as cancer, 
neurodegeneration, and metabolic disorders (Campello 
and Scorrano, 2010; Corrado et al., 2012; Rodolfo et al., 
2018). 

 
 

3  Efects of SFN on brain mitochondria in  
in vitro experimental models 

 
Several research groups have examined whether 

and how SFN would be able to modulate mitochon-
drial physiology in cultured cells (Table 1). Certain 
signaling pathways have been explored to understand 
how SFN affects mitochondrial parameters (Fig. 1). 
In spite of this, the complete mechanism of action 
elicited by SFN has not yet been elucidated. In this 
section, we discuss the effects induced by SFN on 
mitochondria and the ability this natural agent pre-
sents in modulating cell fate in different in vitro ex-
perimental models. 

3.1  Mitochondria-related antioxidant and anti- 
apoptotic effects induced by SFN 

de Oliveira et al. (2018b) showed that a 30-min 
pretreatment with 5-µmol/L SFN effectively blocked 
mitochondria-related apoptosis triggered by a chem-
ical challenge with the prooxidant H2O2 in the human 
neuroblastoma cell line SH-SY5Y. SFN prevented 
upregulation in the levels of Bax, reducing the release 
of cytochrome c from the mitochondria to the cytosol. 
Consequently, SFN blocked the H2O2-induced acti-
vation of the pro-apoptotic caspases-9 and -3, thereby 
preventing the cleavage of poly(ADP-ribose) poly-
merase (PARP) and DNA fragmentation, the hall-
marks of apoptosis (Green et al., 2014). SFN also  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

modulated the mitochondria-related redox parameters 
by decreasing the impact of H2O2 on the levels of 
markers of lipid peroxidation, protein carbonylation, 
and nitration in the membranes of the organelles. SFN 
also promoted an increase in GSH levels and attenu-
ated O2

−· production by mitochondria isolated from 
the H2O2-challenged SH-SY5Y cells. In summary, 
SFN promoted mitochondrial protection by modu-
lating the mitochondria-associated redox biology in 
H2O2-treated SH-SY5Y cells. Mitochondrial function 
was also examined by de Oliveira et al. (2018b). SFN 
prevented the H2O2-induced decline in the activity  
of the enzymes aconitase, α-ketoglutarate dehydro-
genase (α-KGDH), and SDH, which are crucial to  

Fig. 1  Effect of SFN on the transcription factor Nrf2 
After the reaction of the enzyme myrosinase, free sul-
foraphane (SFN) is obtained by the brain cells and activates 
nuclear factor erythroid 2-related factor 2 (Nrf2) by reacting 
with Kelch-like ECH-associated protein 1 (Keap1) in the 
cytosol. Free Nrf2 translocates to the nucleus of the cells, 
stimulating the expression of genes whose products are in-
volved in antioxidant defenses and phase II detoxification 
reactions, as well as in the maintenance of mitochondrial 
function and dynamics. Those genes contain an antioxidant 
response element that interacts with the basic leucine zipper 
domain (bZIP) of Nrf2. HO-1: heme oxygenase-1; NQO-1: 
nicotinamide adenine dinucleotide phosphate (NADPH):
quinone oxidoreductase-1; SOD: superoxide dismutase; TRX-1: 
thioredoxin 1; GSTM-1: glutathione-S-transferase M 1 
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maintaining TCA function in virtually any nucleated 
cell. Mitochondrial function-related effects induced 
by SFN were also observed on the activity of complex 
I (the initial part of the ETC) and complex V. In 
H2O2-treated cells, SFN also prevented the loss of 
MMP and the decline in the levels of ATP. Silencing 
of the transcription factor Nrf2 inhibited the protec-
tive effect of SFN on mitochondrial function (com-
plexes I, V, and MMP) in the H2O2-treated SH-SY5Y 
cells. 

3.2  Mitochondria-related anti-tumor effects in-
duced by SFN 

SFN is also able to induce mitochondria-related 
cell death in tumor cells. Depending on the concen-
tration, SFN activates certain signaling pathways that 
trigger cell death in a mitochondria-dependent man-
ner. This is particularly important in the context of 
gliomas, whose mortality and morbidity rates are 
considered high (Ostrom et al., 2014).  

Karmakar et al. (2006) observed that SFN at 
20–40 µmol/L induced cell death in human malignant 
glioblastoma (GBM) T98G and U87MG cells by 
increasing the Bax (B-cell lymphoma-2 (Bcl-2)- 
associated X protein)/Bcl-2 ratio, triggering cyto-
chrome c release from the mitochondria, and acti-
vating caspase-3. SFN also caused the release of 
apoptosis-inducing factor (AIF) from the mitochon-
dria by a mechanism associated with increased mi-
tochondrial membrane permeability. Furthermore, 
SFN at 40 µmol/L (the highest concentration tested 
by the authors) upregulated calpain, caspase-12, and 
caspase-9 levels in both cell lines. The calpain up-
regulation was associated with an increase in the 
levels of Ca2+ ions in the cytosol, which may have 
been related to endoplasmic reticulum stress triggered 
by exposure to SFN in the GBM cells. Thus, SFN 
activated multiple pro-apoptotic pathways in both cell 
lines by mitochondria-dependent and -independent 
routes. This effect is very likely to amplify the pro- 
apoptotic effect induced by SFN in tumor brain cells.  

Huang et al. (2012) tested SFN at different 
concentrations (12.5–50.0 µmol/L) on human ma-
lignant glioma GBM 8401 cells and found decreased 
rates of cell viability in all the experimental groups. 
SFN at any concentration tested also caused MMP 
collapse and activation of caspases-9 and -3. SFN 
activated the mitogen-activated protein kinase (MEK) 

and extracellular signal-regulated kinase 1/2 (ERK1/2)- 
dependent signaling pathways, causing a mitochondria- 
related increase in the rates of apoptosis. SFN also 
inhibited the transcription factor NF-B, which has 
been associated with tumor resistance, in the GBM 
8401 cells. The authors also demonstrated that SFN 
(200–400 µmol/L) decreased the growth of tumors in 
an experimental model of cancer xenografts. Their 
experimental design did not allow them to test 
whether SFN induced any type of interplay between 
the MEK/ERK and NF-B signaling pathways. Such 
an effect may occur because of the role the MEK/ 
ERK axis has in the regulation of NF-B in different 
cell types (Carter and Hunninghake, 2000; Jiang et al., 
2004; Kloster et al., 2011). 

Miao et al. (2017) showed that SFN-induced 
apoptosis in GBM cell lines was dependent on a 
pro-oxidant effect of the natural compound. SFN at 
20–40 µmol/L increased the level of Bax and reduced 
the level of Bcl-2, causing activation of caspase-3 and 
triggering mitochondria-related apoptosis in U251 
and U87 cell lines. Those effects were blocked by 
NAC (3 mmol/L), a well-known antioxidant, indi-
cating that SFN is able to induce an increase in the 
production of reactive species, depending on its 
concentration (i.e., SFN is a redox-active agent that 
acts as an anti- or pro-oxidant according to its con-
centration and the cellular conditions). The type of 
reactive species produced by SFN, and the source of 
the pro-oxidant agents in the cell lines were not ad-
dressed. Therefore, studies aiming to reveal the pro- 
oxidant agents involved in SFN-induced mitochondria- 
related cell death are welcome. 

Bijangi-Vishehsaraei et al. (2017) reported that 
SFN (10.0–30.0 µmol/L for 24 h) induced apoptosis 
in U87 and M-HBT32 GBM cells by activating 
caspase-3 and caspase-9. They also found that inhi-
bition of ROS production by the mitochondria sup-
pressed SFN-induced apoptosis in GBM cells. There-
fore, ROS originating from the mitochondria are very 
likely to play a role during the triggering of the in-
trinsic apoptotic pathway stimulated by SFN. A co- 
treatment with NAC blocked the SFN-induced cell 
death, reinforcing the conclusion that SFN induced  
a pro-oxidant pulse that activated mitochondria- 
dependent cell death in that experimental model. 
Similarly, Zhang et al. (2016) observed that SFN 
(20.0–40.0 µmol/L for 24 h) stimulated apoptosis in 
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U251MG GBM cells by upregulating Bad and Bax, 
consequently promoting cytochrome c release into the 
cytosol. The authors found evidence of downregula-
tion of Bcl-2 and survivin in SFN-treated U251MG 
cells. Thus, SFN is able to trigger apoptosis by a 
mechanism associated with mitochondria in GBM 
cells. 

Some research groups have demonstrated an 
effect of the combination of SFN with other bioactive 
molecules in the triggering of cell death in brain tumor 
cells. Jiang et al. (2010) reported that SFN (25.0 µmol/L) 
alone or in combination with resveratrol (RESV,  
25.0 µmol/L) upregulated Bax levels, leading to cy-
tochrome c release from the mitochondria to the cy-
tosol, consequently activating caspase-3 in human 
U251 glioma cells. Moreover, SFN induced Akt 
downregulation, favoring apoptosis in the glioma 
cells. Other mitochondria-related apoptotic signaling 
pathways were not investigated by the authors in that 
experimental model. 

SFN has also been tested in an attempt to reduce 
the resistance of GBM cells to temozolomide (TMZ). 
Lan et al. (2015) found that SFN (40.0 µmol/L for 24 h) 
enhanced the mitochondria-related apoptotic effects 
promoted by TMZ, including upregulation of Bax and 
caspase-3/7 activity and downregulation of Bcl-2. 
Other aspects of the mitochondria-mediated apoptotic 
cell death signaling pathway were not examined by 
the authors, but would be a useful subject for further 
studies of GBM cells exposed to SFN and TMZ. 

SFN has been used at concentrations ranging 
from 10.0 to 50.0 µmol/L as an antitumor agent in  
in vitro experimental models. Nonetheless, this con-
centration range is considered high compared with the 
concentrations SFN reaches in in vivo experimental 
models. Also, the passage of SFN across the blood- 
brain barrier (BBB) is limited, which may reduce the 
concentration of SFN reaching brain cells. Thus, the 
development of strategies that would amplify the 
availability of SFN to brain cells in a secure form is 
very important. In this regard, toxicological studies 
are necessary to investigate whether SFN may induce 
toxicity in normal cells as well as tumor cells in  
in vivo experimental models and clinical trials. 

3.3  Effects of SFN on aspects related to mito-
chondrial dynamics 

In human retinal pigment epithelial-1 (RPE-1) 
cells, O'Mealey et al. (2017) reported that SFN blocked 

mitochondrial fission by a mechanism that was not 
associated with Nrf2. Using an elegant experimental 
design, they demonstrated that SFN (50 µmol/L for  
4 h) downregulated dynamin-1-like protein (DNM1L, 
also called Drp1), a major regulator of mitochondrial 
fission events (Smirnova et al., 2001). Their data 
indicated that SFN may modulate mitochondrial 
quality control, among other parameters, such as 
mitochondrial function and dynamics, by a more 
complex mechanism not solely dependent on the 
activation of the classical antioxidant axis associated 
with Nrf2. The authors suggested that this is a prom-
ising new route to be examined when considering the 
treatment of neurodegenerative and other diseases in 
which mitochondrial dynamics is impaired. 

 
 

4  Effects of SFN on brain mitochondria in  
in vivo experimental models  

 
There has been a lack of studies aiming to reveal 

the effects of SFN on brain mitochondria in in vivo 
experimental models. Some research groups have 
demonstrated that SFN administration in vivo pro-
moted mitochondrial protection for which there was 
evidence from ex vivo experimental models (Table 2). 
Greco and Fiskum (2010) reported that treatment of 
rats with SFN at 10 mg/kg (intraperitoneal (i.p.) ad-
ministration) 40 h before extraction of non-synaptic 
brain mitochondria decreased the impact of a chal-
lenge with CaCl2 at 50 μmol/L followed by exposure 
to tert-butyl hydroperoxide (tBOOH) at 250 μmol/L 
on mitochondria in relation to the release of Ca2+ ions 
from the organelles. The CaCl2 concentration used 
was insufficient to induce the opening of the mito-
chondrial permeability transition pore (MPTP) in that 
study. However, the addition of tBOOH triggered 
Ca2+ release from the organelles in a pro-oxidative 
manner by opening the MPTP. SFN did not inhibit 
MPTP opening induced by phenylarsine oxide (PhAsO, 
30 μmol/L), which is able to directly oxidize sulfhy-
dryl groups in the mitochondria, leading to MPTP 
opening and Ca2+ release from the organelles. Also,  
in vivo administration of SFN did not affect the oxi-
dation of mitochondrial pyridine nucleotide in mito-
chondria exposed to tBOOH. Furthermore, SFN did 
not alter mitochondrial respiration rates, as assessed 
by the authors using different oxidizable substrates. In 
this regard, SFN did not change the immunocontents 
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of cyclophilin D, a protein directly involved in the 
sensitivity of mitochondria to inducers of MPTP 
opening. Therefore, the effects of SFN on brain mi-
tochondria may not be generalized, as commented by 
the authors, since some parameters were affected and 
others not, showing some limitations in the ability of 
SFN to promote mitochondrial protection in that ex-
perimental model. On the other hand, the in vitro 
challenge of mitochondria by different stressors fol-
lowing in vivo administration of SFN occurs in a 
context in which the organelles would not be able to 
produce additional antioxidant agents, such as Mn- 
SOD and GSH, capable of increasing the redox de-
fenses when facing such challenges. The content of 
GSH in the organelles, for example, would be main-
tained only by some recycling that would occur in the 
mitochondrial matrix. Also, the synthesis of new 
GSH, which is a target of SFN in virtually any nu-
cleated cell in humans, would not occur due to the 
absence of the transcriptions factors involved in the 
modulation of the production of this non-enzymatic 
antioxidant (Liu et al., 2014). The consumption of 
GSH by the administration of direct or indirect oxi-
dant agents favors the opening of the MPTP in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

case of adding a second stressor, as demonstrated by 
the authors. Even though this is an ex vivo experi-
mental model, the data obtained by the researchers are 
very useful for interpreting what occurs in cells pre-
viously exposed to SFN when facing redox impair-
ment. Future research is needed using different stress-
ors and organelles isolated from other organs in order 
to evaluate whether there are differences in the mi-
tochondrial response to induction of dysfunction based 
on the type of chemical or its source. 

In a similar experimental model, Miller et al. 
(2013) demonstrated that the in vivo administration of 
SFN at 5 mg/kg (i.p., 48 h before chemical challenge) 
to male CF-1 mice attenuated the effects of 4- 
hydroxynonenal (4-HNE; 30 µmol/L) on the cortical 
mitochondria in an ex vivo experimental model. SFN 
prevented the mitochondrial respiration dysfunction 
(as assessed through quantification of the consumption 
of O2 due to complex I) and the redox impairment  
caused by 4-HNE in the protein obtained from the 
organelles. SFN was unable to prevent the 4-HNE- 
induced decline in complex II-driven respiration in 
the isolated mitochondria. The authors also demon-
strated that carnosic acid at a lower dose (1 mg/kg, i.p. 

Table 2  Effects of SFN on the mitochondria in ex vivo and in vivo experimental models 

Experimental model Main findings Reference 
SFN at 10 mg/kg (i.p. administration) 40 h 

before extraction of non-synaptic brain  
mitochondria and an ex vivo challenge with 
CaCl2 (50 μmol/L) and tBOOH (250 μmol/L)  

Partial mitochondrial protection evidenced by Ca2+ ion 
release from the organelle 

 

Greco and 
Fiskum, 
2010 

SFN at 5 mg/kg (i.p. administration) 48 h  
before isolation of brain mitochondria and  
ex vivo challenge with 4-HNE (30 µmol/L)  

Prevented mitochondrial impaired respiration 
Decreased the 4-HNE-induced redox impairment in the 

mitochondrial proteins 

Miller et al., 
2013 

SFN at 5 mg/(kg·d) (i.p. administration) for 5 d 
before the induction of seizure in mice 

Alleviated the seizure-induced decline in state 2 respiration 
Increased state 3u and state 3 ADP-state 4o respiration 
Upregulated both complex I- and complex II-driven OCR 

Carrasco-Pozo 
et al., 2015

SFN at 5 mg/kg for 24 h (two doses of SFN 
through i.p. administration) before induction 
of excitotoxicity by quinolinic acid in rats 

Prevented the decline in ATP production, loss of MMP, and 
decreased activity of the ETC components in the brain 
mitochondria of quinolinic acid-treated rats 

Luis-García  
et al., 2017

SFN at 10–40 mg/kg once a day by i.p.  
injection after CO intoxication in rats 

Improved mitochondrial structure in the hippocampus of 
CO-treated rats 

Restored MMP 
Upregulated Nrf2, Trx-1, NQO-1 

Bi et al., 2017

SFN at 5 mg/kg administrated to rats that were 
exposed to iron during the nenonatal period 

Upregulated DNM1L/Drp1 in the hippocampus Lavich et al., 
2015 

SFN: sulforaphane; i.p.: intraperitoneal; tBOOH: tert-butyl hydroperoxide; 4-HNE: 4-hydroxynonenal; CO: carbon monoxide; OCR: ox-
ygen consumption rate; ATP: adenosine triphosphate; MMP: mitochondrial membrane potential; ETC: electron transfer chain; Nrf2: nuclear 
factor erythroid 2-related factor 2; Trx-1: thioredoxin-1; NQO-1: nicotinamide adenine dinucleotide phosphate (NADPH):quinone  
oxidoreductase-1; DNM1L: dynamin-1-like protein, also called Drp1 



Jardim et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(4):263-279 272

administration) caused a similar protection (or even 
better results, as in the case of complex II-driven 
respiration) in the 4-HNE-challenged mitochondria. 
The limitations of SFN in relation to mitochondrial 
protection need further investigation, since they may 
involve different modulation of signaling pathways 
associated with cell survival and antioxidant defense. 

Carrasco-Pozo et al. (2015) found that SFN at  
5 mg/(kg·d) (i.p. administration) for 5 d attenuated 
mitochondrial impairment resulting from the induc-
tion of seizure in male CD1 mice. SFN caused anti-
convulsant and antioxidant effects, and prevented the 
mitochondria-related bioenergetic state in the mice 
hippocampus. SFN alleviated the decline in state 2 
respiration following pilocarpine-induced status epi-
lepticus. Moreover, SFN increased the state 3u respi-
ration (the so-called state 3 uncoupled, which may be 
induced by adding an uncoupler to mitochondria in 
state 4) in the status epilepticus group. Moreover, the 
state 3 ADP-state 4o (mitochondrial respiration as-
sociated with ATP synthesis) was increased by SFN 
in the hippocampal mitochondria of both control and 
status epilepticus experimental groups. The authors 
also analyzed the ETC activity in separated parts and 
found that SFN upregulated both complexes I and II 
enzyme activities in the hippocampus of the pilocarpine- 
induced status epilepticus experimental group. SFN 
also upregulated both the complex I- and complex II- 
driven oxygen consumption rates (OCRs) of mito-
chondria obtained from that group. In spite of the 
mitochondrial function-related benefits promoted by 
SFN, this molecule was unable to prevent the cell loss 
observed in the hippocampus of the status epilepticus 
group. The authors did not determine whether SFN 
activated cellular signaling pathways associated with 
mitochondrial function and dynamics in that study. 
However, they examined in detail whether SFN 
would be able to modulate the function of mitochon-
dria in the experimentally induced status epilepticus.  

Luis-García et al. (2017) found that SFN sup-
pressed the quinolinic acid-induced excitotoxic cas-
cade in striatal neurons in rats. Quinolinic acid is used 
in experimental models of Huntington’s disease and 
causes hyperactivation of the N-methyl-D-aspartate 
(NMDA) receptors, which are closely related to ex-
citotoxicity associated with mitochondrial dysfunc-
tion (Beal et al., 1991; Bordelon et al., 1997; Mishra 
and Kumar, 2014). The authors tested SFN at 5 mg/kg 

for 24 h (two doses of SFN through i.p. administration) 
before the induction of excitotoxicity by quinolinic 
acid treatment. SFN prevented the quinolinic acid- 
induced decline in ATP production, loss of MMP, and 
decreased activity of the ETC components (com-
plexes I–IV, with the exception of complex III). Why 
SFN did not induce any action in complex III in the 
animals exposed to quinolinic acid was not investi-
gated. Moreover, the authors did not investigate the 
mechanism of action involved in the partial protection 
induced by SFN in the rat striatal mitochondria. Ad-
ditional studies would be useful to understand exactly 
how SFN promotes mitochondrial protection in an 
experimental model of striatal excitotoxicity. 

Bi et al. (2017) studied the effects of SFN in 
male Sprague Dawley rats submitted to carbon 
monoxide (CO) poisoning. The animals were treated 
with SFN at 10–40 mg/kg once a day by i.p. injection 
after CO intoxication. SFN at 20 or 40 mg/kg amelio-
rated rat behavior in an open-field test and improved 
mitochondrial structure in the hippocampus of in-
toxicated rats. SFN also restored MMP values in the 
CO-treated animals, and induced the upregulation 
of Nrf2, thioredoxin-1 (Trx-1), and NADPH:quinone 
oxidoreductase-1 (NQO-1) in the hippocampus. 
Nonetheless, whether SFN would be able to alter the 
levels of mitochondria-located antioxidant defenses 
or the levels of markers of redox stress in the mito-
chondria of CO-treated rats was not determined. Al-
terations in the production of reactive species by the 
mitochondria of SFN- and/or CO-treated rats were 
not investigated in that experimental model. It would 
be useful to examine the redox effects of SFN and/or 
CO in mitochondria closely, since MMP, the single 
functional parameter associated with mitochondria 
analyzed by the authors, is a general parameter whose 
levels may be affected by several factors. MMP ho-
meostasis depends on mitochondrial integrity (the 
structure of the membranes and cristae) and on the 
function of the oxidative phosphorylation (OXPHOS) 
system, as well as on the local production of reactive 
species, among other factors. Therefore, more de-
tailed analyses directly related to mitochondria would 
lead to a better understanding of the effects of SFN in 
experimental models of CO poisoning. Importantly, 
CO is a mitochondrial toxicant able to inhibit com-
plex IV of the ETC, leading to decreased ability of 
this protein to pump H+ ions into the IMS (Alonso et al., 
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2003). Consequently, the electrochemical gradient 
across the IMM is decreased and the MMP values are 
affected, leading to decreased ATP production by the 
organelles and release of cytochrome c into the cy-
tosol (Green et al., 2014). Therefore, the investigation 
of parameters directly associated with the function  
of the mitochondria in the case of exposure to SFN 
and/or CO is welcome and would be very useful in the 
development of therapies against CO intoxication. 

Lavich et al. (2015) showed that SFN at 5 mg/kg 
upregulated Drp1 in the hippocampus of adult rats 
exposed to iron during the neonatal period. DNM1L, 
a guanosine triphosphatase (GTPase) protein, modu-
lates mitochondrial fission. Reductions in the levels 
of this protein have been seen in the brain of patients 
suffering from Alzheimer’s disease (Wang et al., 
2009). Therefore, SFN may be able to restore mito-
chondrial dynamics, leading to an increased number 
of the organelles by fission events (Smirnova et al., 
2001). However, the mechanism underlying SFN- 
induced DNM1L upregulation was not addressed in 
that work. 
 
 
5  Conclusions and future directions 
 

There is evidence from both in vitro and in vivo 
experimental models indicating a role for SFN as a 
promising mitochondrial protectant agent. However, 
the mechanism of action is not yet completely un-
derstood. Future directions include: 

(1) Investigating the effects of SFN on signaling 
pathways associated with mitochondrial biogenesis in 
both in vitro and in vivo experimental models focus-
ing on brain cells. Some research groups have demon-
strated that SFN modulated proteins associated with 
mitochondrial biogenesis, but the evidence was not 
sufficient to elucidate and/or confirm that SFN is an 
inducer of the synthesis of new mitochondria. The 
same applies to the effects of SFN on fusion and fis-
sion mitochondrial events; 

(2) Examining whether there is a link between 
modulation of mitochondrial function and/or dy-
namics in microglial cells and the control of neuroin-
flammation in in vitro and in vivo experimental cells; 

(3) Analyzing whether and how SFN would be 
able to suppress mitochondrial dysfunction induced 
by endoplasmic reticulum stress (and vice-versa) in  
in vitro and in vivo experimental cells; 

(4) Evaluating the distribution of SFN and its 
derivatives among organelles, with a focus on the 
mitochondria; 

(5) Testing nanotechnology-associated strate-
gies to increase the availability of SFN to the mito-
chondria of cells undergoing redox and/or bioener-
getic impairment; 

(6) Comparing the effects of SFN-containing 
foods on mitochondrial parameters in experimental 
animals and humans. 
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中文概要 
 
题 目：萝卜硫烷对脑线粒体的影响：机理观点和未来发

展方向 
概 要：有机硫化物萝卜硫烷（SFN）是一种有效的细胞

保护剂，在体外和体内实验模型中均可促进抗氧

化、抗炎、抗糖化和抗菌作用。因为氧化磷酸化

系统的存在，所以线粒体是三磷酸腺苷（ATP）
的主要产生部位。同时，线粒体也是具核人体细

胞中产生活性氧的主要场所。线粒体损伤在多种 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

人类疾病中起着重要作用，包括神经退行性病变

和代谢异常。本文描述和讨论了 SFN 调节哺乳动

物细胞中线粒体功能和动力学的作用和机理，以

及其对肿瘤细胞中线粒体促凋亡途径的促进作

用。SFN 对线粒体的调节作用使得它在一定程度

上被认为是一种细胞保护剂。本文还指出了几个

需要通过进一步实验解决的问题，即未来的可能

研究方向，这可能会对该领域的研究人员具有指

导作用。 
关键词：萝卜硫素；脑；线粒体；抗氧化剂；Nrf2 


