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Abstract: Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and
molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of
metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics.
Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid
chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination
of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of
0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2'-
deoxy-D-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a
comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic
mechanisms in atherosclerotic AAA.
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1 Introduction

Abdominal aortic aneurysm (AAA) is defined as
a localized, permanent, and irreversible dilation of the
abdominal aorta beyond 50% of the normal vessel
diameter (Subcommittee on Reporting Standards for
Arterial Aneurysms et al., 1991). AAA is a complex
disease mainly occurring in the aging population and
associated with a mortality rate of 85% ‒ 90% after
rupture (Alcorn et al., 1996; Kent, 2014). Atherosclerosis
(AS) is well known to contribute to the occurrence of

AAA, which shares common risk factors such as
smoking, increasing age, family history, and male sex
(Ito et al., 2008). The main pathological features of
AAA include chronic inflammation, vascular smooth
muscle cell apoptosis, extracellular matrix degrada‐
tion, and thrombosis (Wassef et al., 2001; Pearce and
Shively, 2006), which are also involved in vulnerable
atherosclerotic plaque formation, illustrating that AS
may be an important driver for AAA (Cornuz et al.,
2004; Palazzuoli et al., 2008). However, genome-
wide sequencing has revealed that although AAA and
AS have similar genetic pathways in lipid metabo‐
lism, smooth muscle cell function, and inflammation
regulation, there are a large number of independent
pathogenic gene loci (Bradley et al., 2013; Harrison
et al., 2013; Jones et al., 2013; Leeper et al., 2013).
Currently, there is no general agreement about the
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relationship between AAA and AS, and thus it is nec‐
essary to explore the differences between these two
diseases from other perspectives.

Recent studies have indicated that dietary pattern
is associated with AAA risk, and diet affects the body
through metabolites (Haring et al., 2018; Kaluza et al.,
2019). Metabolomics is the newest member of the omics
trilogy and has become a powerful tool for functional
genomics research in the post-genomics era (Zampieri
et al., 2017). Metabolomics is commonly divided into
two types, including targeted and untargeted analyses.
Targeted metabolomics is mostly used to identify and
quantify a limited number of known metabolites. In
contrast, untargeted metabolomics can explore far more
species, whether known or unknown. The major advan‐
tage of untargeted metabolomics is the potential iden‐
tification of new metabolites and pathways linked to
pathophysiological processes and disease susceptibility
(Johnson et al., 2016; Schrimpe-Rutledge et al., 2016).

During the past decade, extensive research has
applied untargeted metabolomics to cardiovascular
diseases, including AS (Ussher et al., 2016). Several
metabolites have been shown to affect the progression
of AS. For example, trimethylamine N-oxide (TMAO)
is a small organic compound whose concentration in
blood increases after ingesting dietary L-carnitine and
phosphatidylcholine (Ufnal et al., 2015). An untargeted
metabolomic study identified that TMAO was mech‐
anistically linked with cardiovascular disease risk in
humans (Li et al., 2018). Compared with AS, only a
few metabolomic studies have been carried out on
AAA (Qureshi et al., 2017). A group of linoleic acid-
containing triacylglycerols and diacylglycerols were
shown to be increased in AAA patients (n=161) com‐
pared to patients with peripheral artery disease (n=168)
using targeted metabolomics (Moxon et al., 2014).
However, the research has been restricted to limited
comparisons of lipids. In addition, it is also important
to realize that metabolic fluxes are regulated by envi‐
ronmental stresses in addition to gene expression; in
other words, metabolomics is a level downstream from
transcriptomics (Macel et al., 2010). Gene expression
profiling is conducive to understanding the molecular
mechanisms of complex disorders, including heart dis‐
ease and metabolic disorders (Kim et al., 2010). By
comparing the transcriptomic profiles of AAA patients
and aortic occlusive disease (AOD) patients, Biros et al.
(2015) found that immune-related pathways and several

important genes (such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), natural killer cell trig‐
gering receptor (NKTR), and cluster of differentiation
8A (CD8A)) were involved in AAA pathogenesis. A
recent study further explored the gene expression
patterns for tunica and media. Lipid-related processes
in the adventitia were found to be correlated with
AAA growth rate (Lindquist Liljeqvist et al., 2020).
Integration of transcriptomics and metabolomics can
screen a large number of metabolites so as to identify
the most important metabolites between AAA and AS.

The aim of the present study is to throw light on
the differential metabolic profiling between AAA and
AS using untargeted liquid chromatography-mass spec‐
trometry (LC-MS), and then to identify potential media‐
tors for distinguishing AAA and AS patients. More‐
over, we combined analysis of differential metabolites
with gene expression profiling from the database to
explore the crucial metabolites and genes in the
progression of atherosclerotic AAA.

2 Materials and methods

2.1 Patient recruitment and clinical data collection

All patients were recruited from the Department
of Vascular Surgery, Peking Union Medical College
Hospital (Beijing, China). Patients with AAA and AS
diagnosed by ultrasound or computed tomography (CT)
were included. Non-atherosclerotic aneurysms (infec‐
tious or inflammatory) were excluded. In order to ensure
the consistency of the AS group, only patients with
carotid atherosclerotic stenosis were selected. The degree
of stenosis was determined according to the North
American Symptomatic Carotid Endarterectomy Trial
(NASCET) standard (NASCET collaborators, 1991),
and all AS patients were at or above 70% of the stan‐
dard. Patients with known history of disease with an
autoimmune component (such as inflammatory bowel
disease), history of malignancy, or any digestive tract
disease and surgery were excluded.

Demographic and clinical data were collected
from patients. The enumeration data were described
in terms of frequency and percentage, and the mea‐
surement data were generally represented by mean±
standard deviation (SD). Normally distributed vari‐
ables between two groups were analyzed by Student’s
t-test. The Mann-Whitney U test was applied for data
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of this type that were not normally distributed. Cate‐
gorical variables were compared by the χ2 test. All
these analyses were carried out with GraphPad Prism
7.04 software (GraphPad Inc., CA, USA). Differences
were considered to be statistically significant when P
was <0.05.

2.2 Sample collection

Peripheral blood samples were collected in the
morning after an overnight fast (≥8 h). Plasma samples
were obtained by centrifugation at 3000 r/min (1692
relative centrifugal force) for 10 min at room tempera‐
ture (ThermoFisher, Sorvall ST 16R, Germany), and then
rapidly frozen and stored at −80 °C until analyzed.

2.3 LC-MS analysis

Plasma samples from the included patients were
prepared for ultra-high-performance liquid tandem
chromatography-quadrupole time of flight mass spec‐
trometry (UHPLC-QTOFMS) analysis by application
of validated protocols (Dunn et al., 2011). The LC-MS
data were analyzed by SMICA (Version 15.0.2; Sarto‐
rius Stedim Data Analytics AB, Umea, Sweden) to
conduct multivariate statistical analysis (MVA). Peak
devolution, alignment, and integration were applied
and the minimum fraction (Minfrac) and cut-off were
set as 0.5 and 0.3, respectively, as the stringency. We
applied an in-house tandem mass spectrometry (MS2)
database which was constructed based on the Human
Metabolome Database (HMDB, https://hmdb.ca), Mass‐
Bank of North America (MoNA, https://mona.fiehnlab.
ucdavis.edu), and METLIN (https://metlin.scripps.edu)
databases for metabolite identification. Differential
metabolites were obtained by comparing AAA and
AS patients using Student’s t-test. We also conducted
Kyoto encyclopedia of genes and genomes (KEGG)
pathway analysis for these differential metabolites.
Receiver operator characteristic curve (ROC) analysis
was performed and linear Support Vector Machine
(SVM) analysis was conducted using the Biomarker
analysis section of MetaboAnalyst (Version 3.0; https://
www.metaboanalyst.ca). The area under curve (AUC)
was calculated to show the potential diagnostic value
for differential metabolites.

2.4 Transcriptomic profiling analysis

To enable more in-depth understanding of the
pathogenetic differences between AAA and AS from

a multi-omics perspective, we also acquired transcrip‐
tomic profiling data for AAA and AS samples from
dataset GSE57691 in the Gene Expression Omnibus
(GEO) database. This dataset contains an indepen‐
dent cohort of patients and includes tissue samples
instead of plasma samples, as we used. We down‐
loaded the series matrix file and annotated the probe
IDs with gene symbols using the GPL10558 plat‐
form data table to obtain a gene expression matrix.
The “limma” R package (Version 3.48.1) was used to
conduct differentially expressed gene (DEG) screen‐
ing and screened DEGs were subjected to gene ontology
(GO) and KEGG pathway analyses using the Data‐
base for Annotation, Visualization, and Integrated
Discovery (DAVID) V6.8 (https://david.ncifcrf.
gov) to obtain the biological functions of these
DEGs.

2.5 Joint analysis of metabolomics and
transcriptomics

To integrate the multi-omics data, we calculated
the Spearman’s correlation indices for differential
omics data and visualized it with a heatmap (Shannon
et al., 2003).

3 Results

3.1 Clinical characteristics of AAA and AS patients

To compare the differences in plasma metabo‐
lites between AAA and AS, 32 AAA and 32 AS
patients were included in this study. The clinical
characteristics of these participants are shown in
Table 1 (Ji et al., 2021). Patients with AAA were
slightly older (P=0.019), but there were no differences
in gender, body mass index (BMI), or underlying
diseases such as hypertension and diabetes, which
would affect metabolism. Plasma concentrations of
C-reactive protein (CRP) and homocysteine (Hcy) did
not differ statistically. In addition, we examined the
blood lipid profile and found that the total cholesterol
(TC) and low-density lipoprotein-cholesterol (LDL-C)
of the AAA group were higher than those of the AS
group, which may be due to the use of lipid-lowering
drugs. For AAA patients, the maximum aneurysm
diameter was (5.3±1.4) cm, and the involved length
was (7.8±3.3) cm.
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3.2 Metabolic profiling and functional analysis

In all the samples from both groups, a total of
1606 metabolites were detected by LC-MS with nega‐
tive ion mode, 299 of which could be qualitatively
matched by MS. In order to visualize group separa‐
tion and find significantly changed metabolites, we
applied supervised orthogonal projections to latent
structures-discriminate analysis (OPLS-DA). As re‐
vealed by OPLS-DA, the differences between the two
groups of samples were quite significant, and the sam‐
ples were basically in the 95% confidence interval (CI)
(Fig. 1a). Furthermore, we obtained the value of vari‐
able importance from the projection (VIP) of the first
principal component in OPLS-DA. This summarized
the contribution of each variable to the model. The me‐
tabolites with VIP>1 and P<0.05 were considered to be
significantly changed metabolites. It is evident from
the volcano plot that there were 104 higher metabolites
(30 qualitative metabolites) and 162 lower metabolites
(20 qualitative metabolites) in the AAA group (Fig. 1b).

The differential metabolites obtained from the
above analysis often have similarity and complemen‐
tarity functions in biology, or are positively or nega‐
tively regulated by the same metabolic pathway,
showing similar or opposite expression characteristics
between the AAA and AS groups. Hierarchical clus‐
tering analysis of these characteristics classified the

metabolites with the same characteristics into one
group (Fig. 1c). Then we classified the different metab‐
olites, calculated the related metabolites by Spearman
analysis, and finally visualized them with a chord
plot. All 50 metabolites were classified as benzenoids,
lipids and lipid-like molecules, organic acids and deriva‐
tives, organic compounds, organoheterocyclic com‐
pounds, organooxygen compounds, or others (Fig. 2).
In addition, commercial databases including KEGG
and MetaboAnalyst were used for pathway enrich‐
ment analysis. We found that cysteine and methionine
metabolism was the most significant pathway after enrich‐
ment analysis (Fig. 3).

3.3 Filtration of differential metabolites between
AAA and AS patients

In order to reduce the number of differential
metabolites for further analysis, the fold change was set
as >1.50 or <0.67. Eighteen metabolites were confirmed:
cysteine-S-sulfate, mevalonic acid, 5-L-glutamyl-L-
alanine, 3-methoxy-4-hydroxyphenylglycol sulfate,
pregnenolone sulfate, glycochenodeoxycholate, 2'-
deoxy-D-ribose (2dDR), glycocholic acid, and adynerin
were expressed more highly in the AAA group, and
nine other metabolites were increased in the AS
group (Fig. 4, Table S1).

3.4 Subgroup analyses of differential metabolites
in AAA patients

The threshold diameter for AAA repair is always
set as 5.5 cm. To further examine the role of differential
metabolites in AAA patients, we performed a sub‐
group comparative analysis between large (maximum
diameter ≥5.5 cm, n=13) and small (maximum
diameter <5.5 cm, n=19) AAAs. As shown in Table 2,
12 significantly differential metabolites were identified.
For both this group of metabolites and the 18 filtered
differential metabolites found when comparing AAA
and AS, 2dDR was the only overlapping one.

3.5 Diagnostic values of differential metabolites
in AAA and AS patients

To test the diagnostic efficiencies of 18 selected
metabolites between AAA and AS, an ROC was gener‐
ated, and the AUC was computed for each incorporated
feature (Fig. 5a). L-Proline had the highest AUC (0.76,
95% CI: 0.63–0.87) among all 18 metabolites, but
was still insufficient to distinguish the two diseases.

Table 1 Clinical characteristics of the two groups

Characteristics
Age (year)

Male

BMI (kg/m2)

Hypertension

Diabetes

CRP (mg/dL)

Hcy (μmol/L)

TC (mmol/L)

TG (mmol/L)

HDL-C (mmol/L)

LDL-C (mmol/L)

Diameter (cm)

Length (cm)

AAA (n=32)
68.6±5.7

26 (81.3%)

24.2±3.5

18 (56.3%)

7 (21.9%)

4.2±10.2

19.0±7.3

4.5±1.3

1.5±0.9

1.0±0.2

2.9±1.1

5.3±1.4

7.8±3.3

AS (n=32)
64.5±6.7

28 (87.5%)

24.7±2.7

12 (37.5%)

6 (18.8%)

1.6±2.4

16.6±6.3

3.2±0.7

1.2±0.6

1.0±0.2

1.8±0.6

N/A

N/A

P-value
0.019*

0.491

0.573

0.133

0.756

0.155

0.182

<0.001*

0.469

0.550

<0.001*

N/A

N/A

Data are expressed as mean±standard deviation (SD) or number
(percentage). * represents the difference was statistically significant.
AAA: abdominal aortic aneurysm; AS: atherosclerosis; BMI: body
mass index; CRP: C-reactive protein; Hcy: homocysteine; TC: total
cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein-
cholesterol; LDL-C: low-density lipoprotein-cholesterol; N/A: not
available.
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With the linear SVM algorithm, the best biomarker
model was obtained by combining synephrine, salicylic
acid, pregnenolone sulfate, 5-L-glutamyl-L-alanine,
3-hexanone, and nitrofurazone with mevalonic acid,
and the peak AUC of the combined model was signifi‐
cantly higher than that of the single-metabolite model
(AUC: 0.93, 95% CI: 0.83–1.00; Fig. 5b).

3.6 DEG screening and integration analysis

We selected 49 AAA samples and 9 AS atheroma
samples from the GEO dataset (GSE57691). The
threshold for DEG screening was set as |log2(fold
change)|>1 and adjusted to P<0.01. In total, 75 DEGs
were screened, of which 72 DEGs were up-regulated
and 3 were down-regulated. The expression patterns of
DEGs are shown in Fig. 6 and Table 3. The results of
GO and KEGG pathway analyses are listed in Table S2.
Spearman’s correlation test was conducted between
differential metabolites and DEGs to investigate the

associations between two omics. Seven metabolites
showed a correlation with transcriptomics, and the
results were visualized as a correlation heatmap
(Fig. 7). Furthermore, since GSE57691 also classified
AAA samples into small AAA and large AAA, we
conducted a subgroup analysis for AAA size inte‐
grating transcriptomics and metabolomics (Fig. S1).

4 Discussion

In this study, we performed a comprehensive untar‐
geted metabolomic evaluation to explore the differences
between AAA and AS in plasma metabolites, and
further explored the associations between metabolites
and expressed genes. First, we were able to identify a
total of 18 differential metabolites between the two
groups. Second, we discovered that the combination
of synephrine, salicylic acid, pregnenolone sulfate,

Fig. 1 Differential metabolites screening between AAA and AS patients. (a) The OPLS-DA showed that the samples are
basically in the 95% CI, and AAA and AS patients can be clearly separated. (b) The volcano plot visually showed
detected metabolites between the two groups. (c) The heatmap showed all 50 qualitative metabolites in the samples of
two groups. AAA: abdominal aortic aneurysm; AS: atherosclerosis; VIP: variable importance from the projection;
OPLS-DA: orthogonal projections to latent structures-discriminate analysis; CI: confidence interval.
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5-L-glutamyl-L-alanine, 3-hexanone, nitrofurazone,
and mevalonic acid could potentially serve as a
biomarker for distinguishing between AAA and AS.
Third, five metabolites including mevalonic acid, 3-
methoxy-4-hydroxyphenylglycol sulfate, 2dDR, preg‐
nenolone sulfate, and adynerin were found to be posi‐
tively correlated with DEGs such as FK506-binding
protein 5 (FKBP5), ribosomal protein L31 (RPL31),
and RPL26.

AAA and AS are both complex multifactorial
diseases with known environmental and genetic risk
factors that contribute to disease development. On the
one hand, AS represents an important independent
risk factor for AAA, as patients with AAA often suffer
from AS. The incidence of coronary artery disease in

people with AAA was 53%, highlighting that AS is
not likely to be a causal event in AAA (Ito et al.,
2008). On the other hand, there are still some differ‐
ences in clinical risk factors and deeper mechanisms
between AAA and AS (Golledge and Norman, 2010).
For example, diabetes is a risk factor which can lead
to AS progressing, while some recent studies have
observed that diabetes is independently associated
with lower risk and small aortic diameter of AAA
(Ning et al., 2020). Therefore, the relationships
between AAA and AS remain unclear. More related
studies from various perspectives and novel biomarkers
with better clinical utility are needed. At present,
AAA screening is mainly for men over 65 years old and
offers lower cost effectiveness (US Preventive Services

Fig. 2 Chord plot analysis. All 50 differential metabolites were attributed to seven categories.
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Task Force, 2019). It is valuable for disclosing the
high-risk population for AAA in elderly patients with
AS. In the current study, the AUC values were calculated
for all identified metabolites using univariate ROC
analyses. However, no metabolite was sensitive
enough to be a biomarker, and the AUC values were
between 0.60 and 0.76. Next, we manually selected
combinations of metabolites to create biomarker models
using linear SVM and found that a combination of
synephrine, salicylic acid, pregnenolone sulfate, 5-L-
glutamyl-L-alanine, 3-hexanone, and nitrofurazone
with mevalonic acid could potentially serve as a bio‐
marker to distinguish AAA and AS. It had an AUC
of 0.93 and may set the stage for future research and
clinical translation.

Among DEGs screened in transcriptomic analysis,
RPL31 and RPL26 had the highest log2(fold change).
RPL31 and RPL26 both belong to the ribosomal protein
family. Gan et al. (2015) found that RPL31 was up-
regulated in patients with Takayasu arteritis. RPL26

was found to play an important role in up-regulating
p53 expression (Takagi et al., 2005). Although the
role of p53 in aneurysm formation is not clear yet,
Leeper et al. (2013) suggested that p53-dependent
smooth muscle apoptosis might participate in AAA
formation. In addition to an increase in p53 signaling,
they also found a reduction of transformed mouse
3T3 cell double minute 2 (MDM2) in AAA formation.
Since MDM2 was found to regulate p53 expression
by inhibitory interactions with RPL26 (Ofir-Rosenfeld
et al., 2008), we inferred that MDM2-RPL26-p53 axis
might play a role in AAA formation.

Correlated analysis of transcriptomics data showed
that five metabolites (mevalonic acid, 3-methoxy-4-
hydroxyphenylglycol sulfate, 2dDR, pregnenolone
sulfate, and adynerin) were positively correlated with
differentially expressed genes, which all increased in
AAA. 2dDR had the second largest fold change
(1.71) between AAA and AS and was the only over‐
lapping filtered metabolite in subgroup analysis

Fig. 3 Pathway enrichment analysis. Each bubble represents a metabolic pathway. The position at the abscissa and the
size of the bubble represent the impact of the pathway. The position at the ordinate and the color of the bubble represent
the enriched degree.
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(P=0.048), which deserves more attention. 2dDR is a
deoxy-sugar derived from 2'-deoxy-D-1-phosphorylas,
which also displays chemotactic activity in vitro
(Haraguchi et al., 1994). A strong relationship between
2dDR and vascular endothelial growth factor (VEGF)
was reported in a recent study (Dikici et al., 2020).
VEGF and its receptors have a great pro-angiogenic

effect through promoting the mobilization of inflam‐
matory cells to pathological lesions, inducing the syn‐
thesis of pro-angiogenic factors by smooth muscle cells
and more (Ferrara et al., 1991; Knox et al., 2001;
Murakami et al., 2006; Ucuzian et al., 2010; van Hove
and Benoit, 2015). Meanwhile, the significance of
VEGF and angiogenesis in the development of AAA

Fig. 4 Filtered differential metabolites between AAA and AS patients. * P<0.05, ** P<0.01, *** P<0.001. AAA: abdominal
aortic aneurysm; AS: atherosclerosis.

Table 2 Differential metabolites between large and small AAAs

Metabolite

2dDR

Tridecanoic acid

Cellobiose

Acetohydroxamic acid

D-Ribose

D-Threitol

L-Valine

D-Mannose

L-Tryptophan

L-Methionine

L-Leucine

3-Hydroxyisovaleric acid

Mean

Large AAA

0.071 391 891

0.357 558 348

0.012 745 954

0.028 123 177

0.498 246 565

0.388 525 175

1.501 790 518

1.399 298 578

1.189 142 462

0.075 198 548

2.837 439 159

0.246 970 576

Small AAA

0.033 085 083

0.242 136 708

0.008 677 840

0.020 150 806

0.383 815 504

0.445 448 059

1.725 737 775

1.608 589 801

1.410 047 883

0.093 050 281

3.565 975 188

0.514 297 551

VIP

2.508 852 558

2.845 694 750

2.135 654 099

1.759 087 615

2.515 926 243

1.612 862 776

2.053 685 057

1.773 668 079

2.275 400 929

2.833 742 019

2.651 520 606

1.370 013 092

P-value

0.048 002 981

0.003 612 643

0.029 007 197

0.042 008 168

0.040 888 277

0.047 210 139

0.021 940 332

0.042 645 427

0.019 603 593

0.000 338 634

0.004 620 671

0.041 108 243

Fold change

2.157 827 214

1.476 679 647

1.468 793 321

1.395 635 331

1.298 140 797

0.872 212 073

0.870 231 005

0.869 891 489

0.843 334 809

0.808 149 610

0.795 697 954

0.480 209 512

AAA: abdominal aortic aneurysm; VIP: the value of variable importance from the projection; 2dDR: 2'-Deoxy-D-ribose.
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has already been confirmed. Pharmacological inhibi‐
tion of VEGF substantially mitigates both AAA for‐
mation and further progression of established AAA in
mice (Xu et al., 2019). In addition, 2dDR can induce
cell apoptosis by provoking oxidative stress and reducing
glutathione depletion (Ardestani et al., 2008; Fico et al.,

2008). On the other hand, through integration analysis
with transcriptomics data, FKBP5, a protein implicated
in stress physiology, has been found to be positively
correlated with 2dDR. A recent study revealed that
upregulation of FKBP5 promotes nuclear factor-κB
(NF-κB) signaling, which is a critical pro-inflammatory

Table 3 Differentially expressed genes (DEGs) with top-20 |log2(fold change)|

Gene symbol

RPL31

RPL26

MT1X

RPL24

ITGA8

RPL39

SERPINA3

RPS25

C12orf57

TMEM14B

CCDC72

PRRX2

FKBP5

NDUFS5

RPS21

NOL7

ITGA10

ID3

C14orf156

FCN1

Gene name

Ribosomal protein L31

Ribosomal protein L26

Metallothionein 1X

Ribosomal protein L24

Integrin subunit α8

Ribosomal protein L39

Serpin family A member 3

Ribosomal protein S25

Chromosome 12 open reading frame 57

Transmembrane protein 14B

Translation machinery associated 7 homolog

Paired-related homeobox 2

FKBP prolyl isomerase 5

NADH:ubiquinone oxidoreductase subunit S5

Ribosomal protein S21

Nucleolar protein 7

Integrin subunit α10

Inhibitor of DNA binding 3, HLH protein

SRA stem-loop interacting RNA binding protein

Ficolin 1

log2(fold change)

2.947 149

2.841 221

2.424 021

2.337 415

2.208 935

2.007 809

1.626 579

1.554 147

1.523 047

1.407 274

1.341 165

1.337 391

1.325 069

1.307 802

1.271 324

1.258 512

1.253 124

1.244 650

1.230 766

−1.211 590

P-value

8.12×10−9

0.020 029

0.000 933

0.006 584

0.002 434

0.019 766

0.006 732

0.007 467

0.000 357

0.033 631

0.001 206

2.48×10−6

0.000 432

0.018 787

0.007 063

0.031 010

0.000 379

0.001 011

0.042 435

0.044 670

FKBP: FK506-binding protein; NADH: nicotinamide adenine dinucleotide; HLH: helix-loop-helix; SRA: steroid receptor RNA activator protein.

Fig. 5 ROC analysis for diagnostic values of differential metabolites. (a) Single variate analysis. Columns with blue color
represent metabolites filtered by SVM algorithm. (b) Multivariate model using linear SVM algorithm (synephrine,
salicylic acid, pregnenolone sulfate, 5-L-glutamyl-L-alanine, 3-hexanone, and nitrofurazone with mevalonic acid). AUC:
area under the curve; ROC: receiver operator characteristic curve; SVM: support vector machine.
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factor in AAA (Ma et al., 2018), by strengthening the
interaction of key regulatory kinases, and NF-κB bind‐
ing to the FKBP5 enhancer can in turn stimulate FKBP5
expression. The positive feedback loop eventually

contributes to inflammation and cardiovascular risk
(Zannas et al., 2019). It is plausible to hypothesize
that 2dDR may promote the formation of AAA via an‐
giogenesis and inflammation induced by upregulation

Fig. 6 Heatmap showed DEGs between AAA and AS patients. AAA: abdominal aortic aneurysm; AS: atherosclerosis;
DEG: differentially expressed gene.
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of VEGF and NF-κB, as well as apoptosis of some key
cells.

As this is a pilot study, there are several limi‐
tations in our work. First, the transcriptomics and
metabolomics data were from different patients and
samples. The integration analysis of the data for these
two omics data can only be exploratory, because
paired analysis using samples from the same patients
would be more optimal. Second, the enrolled pa‐
tients were from a single Chinese center, which had
obvious regional characteristics. Third, in order to
ensure consistency of the samples, all patients en‐
rolled in the AS group suffered from carotid artery
stenosis, and thus could not fully represent AS.
Fourth, there are various factors that may have
affected the plasma metabolites, such as diet and envi‐
ronment, and the AAA patients were also older than
the AS patients ((68.6±5.7) vs. (64.5±6.7) years, P=
0.019). We found that aging was associated with al‐
tered plasma triglyceride metabolism, for example in
the mammalian target of rapamycin (mTOR) and ad‐
enosine 5'-monophosphate (AMP) -activated protein
kinase (AMPK) pathways (Sharma and Ramanathan,
2020; Spitler and Davies, 2020) and our study did
not take all these potential variations into consider‐
ation. Last but most important, the results need to be
verified with a larger independent cohort of patients,
the metabolites should be confirmed with their chem‐
ical standards, and all findings should be further con‐
firmed by experimental models.

5 Conclusions

We carried out an untargeted metabolomic study
with plasma samples from patients with AAA and AS,
achieving identification of 18 metabolites that could
be different in the progression of these two diseases.
Filtered metabolites accurately distinguished AAA
from AS with an AUC value of 0.93. In addition,
combined with transcriptomics and a review of the
literature, we found that 2dDR may be an important
pathogenetic metabolite in the development of ath‐
erosclerotic AAA, which merits further research.
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