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Abstract: In multi-criterion decision making applications, a skyline query narrows the search range, as it returns
only the points that are not dominated by others. Unfortunately, in high-dimensional/large-cardinal datasets there
exist too many skyline points to offer interesting insights. In this paper, we propose a novel structure, called the
dominance tree (Do-Tree), to effectively index and retrieve the skyline. Do-Tree is a straightforward and flexible
tree structure, in which skyline points are resident on leaf nodes, while the internal nodes contain the entries that
dominate their children. As Do-Tree is built on a dominance relationship, it is suitable for the retrieval of specified
skyline via dominance-based predicates customized by users. We discuss the topology of Do-Tree and propose the
construction methods. We also present the scan scheme of Do-Tree and some useful queries based on it. Extensive
experiments confirm that Do-Tree is an efficient and scalable index structure for the skyline.
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1 Introduction

1.1 Motivation

Given a d-dimensional dataset and a total order
relationship on each dimension, a point p is said to
dominate another point q if it is better than or equal
to q in all dimensions and better than q in at least
one. A skyline is a subset of points in the dataset
that are not dominated by any other points. A sky-
line query is useful in many decision making applica-
tions involving high-dimensional datasets (Börzsönyi
et al., 2001).
Example 1 Fig. 1 shows a well-known example for
the skyline query. A traveler plans to go to a beach.
The table lists the information of hotels near the
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beach. Obviously, a hotel that is cheaper and nearer
to the beach is preferred. Consequently, the skyline
query returns p2, p4, and p6 as the possible choices.

Unfortunately, in real world applications, the
dataset may be large or high-dimensional. In these
cases, the skyline query becomes less informative,
as it produces too many results. For example, in the
‘household’ dataset (http://www.ipums.com), which
consists of 127 931 six-dimensional data points, a
skyline query produces 5774 points.

Some studies have been done on refining the
skyline set. In general, they are classified into two
categories. The first is ranking the skyline points
according to some inherent properties of the data
(Zhang et al., 2005; Chan et al., 2006a; 2006b; Lin et
al., 2007). As these methods are user-oblivious, they
cannot adequately satisfy various user needs. The
second combines the skyline and top-k semantics by
a user-specific function (Goncalves and Vidal, 2005;
Brando et al., 2007; Lee et al., 2007a; Goncalves and
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Vidal, 2009). Nevertheless, defining an appropriate
function is unfriendly to normal users. Another com-
mon fault of the above methods is that they always
need to repeatedly compute the skyline on the orig-
inal datasets whenever a new query comes. There-
fore they are inefficient on high-dimensional/large-
cardinal datasets.

dist

price
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p4

p5
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p7

id dist ( km) price   (  )¥

p1 6 150
p2 2.5 100
p3 1.6 240
p4 1.4 180
p5 1.1 290
p6 0.8 210
p7 1.0 220

Hotels Skyline

Fig. 1 An example of the skyline

We advocate another approach, which stores the
whole skyline set physically and lets the users cus-
tomize the specific ones themselves. An important
fact here is that in skyline-semantic applications, the
predicate type in the queries is ‘dominance’. Specif-
ically, users always execute ‘better’ predicates on
their preferred dimensions. Therefore, the conven-
tional spatial indices like R-tree (Guttman, 1984) are
not suitable here as they are designed originally for
region-based queries. We will discuss this in Section
3.3 and empirically show the results in Section 6.

1.2 Do-Tree and customized queries

We aim to design a new type of index, which
organizes the skyline based on a dominance rela-
tionship. Consider a simple two-dimensional (2D)
dataset (Fig. 2a), where the skyline points of the
dataset, A, B, C, D, and E, are plotted as black
points. In this diagram, F is the point that can just
dominate A and B, and G is the point dominating C

and D. If we try to combine two neighboring skyline
points together and get a parent dominator for each
pair recursively, we will obtain a hierarchy of dom-
inators (Fig 2b). We refer to this structure as the
dominance tree (Do-Tree).

In the above sample Do-Tree, each skyline point
can be located via the dominance relationship. We
take point D as an example. Initially we visit the
root node I, in which H is the only son who can
dominate D. Then we access H , and take G as the
next visiting point. Finally we get D on leaf node G.

H

A

B
C

D
E
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F, H

F G, E

A, B C, D E

(a) (b) 
Fig. 2 An example of Do-Tree: (a) skyline; (b) Do-
Tree

Intuitively, this is a simple and direct process. On
the other hand, since the tree is built on a dominance
relationship, the specified queries on the original sky-
line can always find a reasonable solution.

As will be demonstrated in Section 3.3, in any
2D dataset, we can build a Do-Tree such that, for
each skyline point p, there exists only one path from
the root to p. When dimensionality is more than 2,
however, the situation is complicated. As an exam-
ple, in a 3D Do-Tree with a node capacity of 2, one
must organize the three skyline points: p1 (1, 1, 3),
p2 (1, 3, 1) and p3 (9, 2, 2). If we distribute them ac-
cording to the distance (just as R-tree does), we will
place p1 and p2 in one node while p3 in another. Then
the parent dominator of p1 and p2 is (1, 1, 1), which
also dominates p3. Therefore, when searching p3, we
may also need to visit the node containing p1 and
p2, which causes an extra access. This indicates that
the topology of a Do-Tree should differentiate with
the conventional spatial indices, which is extremely
suitable for the dominance-based queries.

Once the Do-Tree is built, either skyline point
search or dominance-based queries can be conducted
on it. We now introduce two useful queries by revis-
iting Example 1. The formalized definitions of them
will be presented in Section 5.
Example 2 In Example 1, if there are many ho-
tels close to the beach, the skyline set retrieved may
be large. In this case, a user might impose some
constraints on the skylines, e.g., ‘the price should
be no more than �150’. In this way, he/she would
obtain p1 and p2 as the answer points. In addition,
another user, who is a millionare, may want to find
the skylines that are ‘less than 0.9 km to the beach,
whatever the price is’. The only skyline hotel that
satisfies the requirement is p6 in that case.
Example 3 Consider Example 1 again. If a user
went to the beach last year and stayed in hotel p7.
This year he/she would like to know whether p7 is
still one of the best choices. Thus, he/she issues a
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query to check if p7 is a skyline. If the answer is
‘false’, he/she is interested in finding the ones that
dominate it. Then the answer skyline hotel is p6.

1.3 Contributions

To sum up, this paper has the following key
contributions:

1. We propose a novel tree structure, namely
Do-Tree, to index skyline points. Compared with
the conventional skyline refinement approaches, the
Do-Tree method supports customized skyline queries
based on dominance relationship, so that users can
access the skyline according to their preferences.

2. We develop several methods for creating and
maintaining the Do-Tree structure.

3. We present several useful dominance-based
queries and discuss how to answer them on Do-Tree
via the general scan scheme.

4. An extensive experiment evaluation shows
that Do-Tree is an efficient index for the skyline on
both space consumption and dominance-based sky-
line retrieval.

2 Related work

Skyline was first introduced into database sys-
tems in Börzsönyi et al. (2001). Some SQL syntaxes
were produced and the criterion of the dataset to the
skyline query, specifically correlated, anti-correlated,
and independent, was defined. A number of algo-
rithms for computing the skyline were then proposed.
Börzsönyi et al. (2001) presented two algorithms,
block-nested-loops (BNL) and divide-and-conquer
(DC). Another variant of BNL is sort-filter-skyline
(SFS) (Chomicki et al., 2003), which pre-sorts the
dataset according to a monotone function and im-
proves the performance of the BNL algorithm. Tan
et al. (2001) proposed two new algorithms: Bitmap
and Index. Kossmann et al. (2002) proposed a near-
est neighbor (NN) method to process skyline queries
progressively. The branch-and-bound skyline (BBS)
(Papadias et al., 2003) is generally considered the
best algorithm because it minimizes the I/O cost
and visits only the internal or leaf nodes that must be
visited. BBS is based on the best-first nearest neigh-
bor algorithm (Hjaltason and Samet, 1999), and it
prunes the useless areas using an R-tree. Another
excellent algorithm for calculating the skyline was
presented in Lee et al. (2007b). A close connec-

tion between the Z -order curve and skyline process-
ing strategies was observed. A new index structure
called ZBtree was proposed to index and store data
points based on the Z -order curve. SubSky (Tao et
al., 2006; 2007) tries to calculate the skyline using a
B+ tree, which is organized by transforming multi-
dimensional points to 1D values. SubSky is also ap-
plicable in subspace skyline calculating. A novel al-
gorithm SalSa (Bartolini et al., 2008) computes the
skyline without scanning the whole dataset, based on
either symmetric or asymmetric sorting functions.

In some applications, users may pay attention
to only a specified subspace. The concept of Sky-
Cube was first proposed in Yuan et al. (2005).
Based on some sharing strategies, two novel algo-
rithms, bottom-up and top-down algorithms, were
proposed to compute SkyCube efficiently. Pei et al.
(2005) provided a fundamental framework for multi-
dimensional subspace skyline analysis. A simple al-
gorithm, Skyey, was proposed by assembling a data
cube algorithm and a sorting-based skyline algo-
rithm. Pei et al. (2007) observed a nice relationship
between the skyline groups formed by full space sky-
line objects only and the skyline groups formed by all
objects. The relationship is that the former lattice
is a quotient lattice of the latter. Then they de-
veloped an efficient method, Stellar, to compute the
full space skyline only and uses the skyline to shape
multi-dimensional skyline groups and their decisive
subspaces. The method avoids searching for sub-
space skylines in all proper subspaces.

When conducting a skyline query in high-
dimensional spaces or large datasets, the most trou-
blesome thing is that we always find too many sky-
line points. A suite of work has been done to refine
the skyline according to some inherent properties of
the data. Chan et al. (2006a) proposed the concept
of skyline frequency, which measures the number of
subspaces in which a point is a skyline point. They
expanded the skyline concept to a wide view called
the k -dominant skyline. k -dominant skyline picks
the points that are not dominated by any point in
any k -dimensional subspace. A top-δ question was
also presented in Chan et al. (2006a) for a demand
of δ points. Three algorithms were proposed to solve
the k -dominant skyline problem, which are One-
Scan, Two-Scan, and Sorted Retrieval. Lin et al.
(2007) investigated the problem called ‘k represen-
tative skyline points’ of computing k skyline points
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such that the total number of (distinct) data points
dominated by the group of the k skyline points is
maximized. Top-k dominating (Yiu and Mamoulis,
2007) is a similar idea, but it searches for the points
that dominate the most points, which means the top-
k dominating query may return some points that are
not skylines. Though these methods could refine the
skyline points according to the rational rule, they are
not flexible enough to satisfy various user needs.

Some other works focused on combining the
skyline query and a user-specified ranking function
to retrieve the top-k skyline points. Brando et al.
(2007) ranked the top k tuples in terms of a user-
defined score function, while the skyline identifies
non-dominated tuples, i.e., tuples for which there
does not exist a better one in all user criteria.
Goncalves and Vidal (2005) proposed a unified ap-
proach that combines paradigms based on ordered
scores, and proposed physical operators for SQLf
considering skyline and top-k features. Goncalves
and Vidal (2009) used discriminatory criteria to in-
duce a total order of the points that comprise the
skyline, and recognized the top-k objects based on
these criteria. Based on the criteria, an index-based
algorithm TKSI was proposed to solve the top-k sky-
line query. Lee et al. (2007a) supported personalized
skyline queries as identifying ‘truly interesting’ ob-
jects based on user-specific preference and retrieval
size k, after which they solved the problem using a
compressed SkyCube.

Our proposal of Do-Tree offers a novel view that
indexes the skyline points and grants the refinement
to users. Given a Do-Tree, the user could choose a
small set of skylines via their dominance-based pred-
icates on specific dimensions. Differentiated from
others, the topic of this study focuses on a new style
structure and queries based on this.

3 Overview of Do-Tree

This section gives an overview on Do-Tree. We
first present some preliminaries and definitions used
in this paper. Then we look at the data structures
used by Do-Tree. Finally, we define various types of
skyline queries supported by Do-Tree.

3.1 Preliminaries and definitions

Given a d-dimensional space S = {s1, s2, ..., sd},
a set of points P = {p1, p2, ..., pn} is said to be a

dataset on S if every pi ∈ P is a d -dimensional data
point on S. We use pi.sj to denote the j th dimen-
sion value of point pi and d to denote the number of
dimensions of S. The universe on dimension si is [0,
Ui]. For each dimension si, we assume there exists
a total order relationship, denoted by ≺, on its do-
main values. Here, ≺ can be ‘<’ or ‘>’ relationship
according to the user’s preference. For simplicity,
and without loss of generality, we assume the total
order to be ‘<’ in the rest of this paper.

The following definitions are used in this paper:
dominate: A point pi is said to dominate pj , if

and only if ∀sk ∈ S, pi.sk ≤ pj .sk and ∃st ∈ S so
that pi.st < pj.st. We use notation pi � pj if pi
dominates pj. Otherwise, we note pi � pj .

dominator: A point p is said to be a dominator
of a point set Q = {q1, q2, ..., qn} if and only if ∀qi ∈
Q, p � qi. In this case, we note p � Q.

min dominator: A point p is said to be the min
dominator (MD) of a point set Q = {q1, q2, ..., qn} if
and only if p � Q and there does not exist another
point o that satisfies o � Q and p � o. We abbreviate
it as p = MD(q1, q2, ..., qn).

mutex: A point pi and another point pj is said
to be mutex, if and only if pi � pj and pj � pi.

skyline: A point pi is said to be skyline on S if
and only if �pj in S that pj � pi. We use Sky(P ) to
denote the skyline of P .

dominance area: The dominance area (DA) of a
point p is the size of area that p dominates. Formally,
DA(p) = (U1 − p.s1) ∗ (U2 − p.s2) ∗ ... ∗ (Ud − p.sd).

3.2 Data structures in Do-Tree

The Do-Tree is a disk-resident tree structure.
Each node is stored in one fixed-size page, which is
the basic exchange unit between memory and disk.
A node N in the Do-Tree contains a set of entries
{e1, e2, ..., en} and a min dominator md. Each entry
ei is a tuple like

ei =< key, id >,

where key is a multi-dimensional point, and id is
a pointer to another node or a record. The min
dominator md is defined as the min dominator of
all the keys of the entries on the same node: md =

MD{e1.key, e2.key, ..., en.key}. A leaf node entry
stores the spatial attributes of a skyline point and
a pointer (record id) to its data record, while an
internal node entry stores a child node’s md and a
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pointer (node id) to it. Just like the B+ tree, all
nodes (except the root) in the Do-Tree should be at
least half full.

The above definition implies the following
lemmas:
Lemma 1 In a Do-Tree, the key of an internal
entry dominates all the skyline points that lie in its
subtree.
Lemma 2 In a Do-Tree, the key.sj of an internal
entry is determined by the skyline point with the
minimum value on sj in its subtree.
Lemma 3 In a Do-Tree, for each skyline point p

on leaf N , p is dominated by the mds of the nodes
that reside on the path from the root to N .

3.3 Analysis

While searching for the specific skyline points
on Do-Tree, we check the dominance relationship
between the predicate and the mds of the nodes to
judge the path. If we treat one node access as an
I/O cost, the topology structure of the Do-Tree de-
termines the query performance on it. Extra accesses
may occur in a Do-Tree with a bad topology. For ex-
ample, Fig. 3 shows two Do-Trees on a same dataset
with five skyline points A,B,C,D, and E. Here Do-
Tree I is obviously not a good structure compared to
Do-Tree II. As when searching for skyline point B in
tree I, we cannot assert which leaf node is the proper
path. Therefore, an extra access may occur.

A

B
C

D

E

A

B
C

D
E

N1

N2

N1

N2

N1, N2

A,C B, D, E

N1, N2

A, B C, D, E

Do-Tree I

Do-Tree II

Fig. 3 Two Do-Trees on the same dataset

We will first prove that a 2D Do-Tree can avoid
any extra access. Then we will discuss the topol-
ogy of the Do-Tree in high-dimensional spaces and
present the criterion of evaluating it.
Theorem 1 In each 2D dataset, there always exists

a perfect Do-Tree. For every skyline point in the tree,
there exists only one possible visiting path from the
root to it.
Proof Assuming the capacity of the Do-Tree is m
and the dimensions are x and y, we create the Do-
Tree in a bottom-up way. The entries on the leaf
level are the skyline points, and the entries on the
upper level are the mds of their son nodes. On each
level, sort the entries according to their key.x. Then
group the first m entries into the first node, second m
entries into the second node, and so on. Repeating
this process, we build a Do-Tree. Now we will prove
that Do-Tree created in this way is a perfect one.

Between two internal entries e1 and e2 at the
same level of the above tree, if e1.key.x ≤ e2.key.x,
then for each skyline point p in the subtree of e1 and
each skyline point q in the subtree of e2, obviously,

p.x < q.x ∧ p.y > q.y (1)

holds. The fact that there are two possible paths to
a skyline point g means that there exist two entries
at the same level both dominating it. Without loss
of generality, we assume they are e1 and e2, and
e1.key.x < e2.key.x. Assume q is the skyline point
in e2’s subtree satisfying q.x = e2.key.x (Lemma 2).
Then q.x ≤ g.x. According to Eq. (1), q.y < e1.key.y
and e1.key.y ≤ g.y, so q.y < g.y holds. Thus, we
deduce that q dominates g, which contradicts with
the assumption that g is a skyline point. Therefore,
there is only one path to g. Proof completed.

In a high-dimensional space, it is impossible to
produce a perfect Do-Tree in some cases. For exam-
ple, consider a node capacity of 2 and three 3D points
(1, 3, 1), (1, 1, 3), (3, 1, 1). No matter which two
points are placed in one node, there will be an md of
(1, 1, 1), which dominates the left one. In this case
we say an overlap occurs, which may cause extra
accesses. A high-level overlap implies more possi-
ble extra accesses, because it would produce more
possible paths. Theoretically, we have the following
quantized formula:
Formula 1 In a Do-Tree with height h and fan-
out m, for a single skyline point, if there are l leaf
nodes dominating it, the possible worst I/O time t
of accessing it is within

[
l((2/m)K − 1)

2/m− 1
+ (h−K),

(m/2)K − 1

m/2− 1
+ l(h−K)],

where K = 
logm/2 l�.
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Formula 1 could be deduced as follows. The
possible I/O time when accessing l leaves from the
root is decided by the speed of convergency from
the bottom to the top. In the best case, the l leaves
converge in K levels, with the fan-in m/2. Therefore,

t = 1 + 1 + 1 + · · ·
︸ ︷︷ ︸

h−K

+m/2 + (m/2)2 + ...+ l
︸ ︷︷ ︸

K

,

which is the left value of Formula 1. In the worst
case, K represents the highest level at which the
possible paths achieve l. Here,

t = 1 +m/2 + (m/2)2 + · · ·+ l
︸ ︷︷ ︸

K

+ l+ l + ...+ l
︸ ︷︷ ︸

h−K

.

In a perfect Do-Tree, where l=1, the lower
bound of the cost is h. The worst case is when all the
leaf nodes dominate the point, where l = n/(m/2),
the upper bound of the cost is l+ (l− 1)/(m/2− 1),
which equals the size of the tree. According to
Lemma 3, clearly in any case a smaller l means fewer
overlaps, so that the retrievals are more efficient. We
measure the topology structure of Do-Tree via a new
definition, the contained coefficient, which is formal-
ized as follows.

Contained coefficient (C): For a constructed Do-
Tree, the contained coefficient of a skyline point p is
defined as the number of leaves whose mds dominate
p. We denote it as C(p). The contained coefficient
of the whole tree is the arithmetic mean of all the
skyline points, denoted as C(Sky(P)).

The instruction of building the Do-Tree is to
minimize the C(Sky(P)). In a perfect Do-Tree, the
C(Sky(P)) is 1, which indicates that the number of
I/O times for accessing a skyline point is h.

3.4 Comparison with R-tree

From the analysis in Section 3.3, we conclude
that the topology of Do-Tree is different from the
conventional spatial indices. We take the most com-
mon one, R-tree, as an example. Although R-tree
could answer dominance-based queries via the com-
parison between the predicate and the minimum
bounding rectangles (MBRs) (Papadias et al., 2003),
it was designed originally for region-overlapped pred-
icates (Guttman, 1984). When building an R-tree,
the instruction is minimizing the overlapped area be-
tween different nodes. Therefore, the algorithms for
redistributing the entries of R-tree always aim at

clustering the ‘nearer’ entries together. When the di-
mensionality is higher than 2, this will cause a larger
C(Sky(P)) in an R-tree. We illustrate this by an
example.
Example 4 Assume there is a skyline points set P ′

including four points: p1 (1, 1, 3, 5), p2 (4, 5, 1, 1),
p3 (2, 9, 9, 3), and p4 (3, 8, 8, 4). The node capacity
of a tree is 2. If we organize them using an R-tree,
then p1 and p2 are placed into one node N1 and p3,
p4 into another node N2 according to the ‘nearer’
rule. We can compute that their C(P ′) is 1.5, as p3
and p4 may be resident on either N1 or N2.

Example 4 shows that the conventional multi-
dimensional indices built using the distance-based
rule do not fit to the dominance-based queries, which
will be empirically demonstrated in Section 6. In
fact, if we cluster the four points in Example 4 as (p1,
p3) and (p2, p4), then the C(P ′) is 1, which means
there are no potentially extra accesses at all. This
also implies that the splitting strategy of Do-Tree is
important to the topology, which will be described
in Section 4.3.

Additionally, Do-Tree could gain more space ef-
ficiency than R-tree, as it need not store the informa-
tion about the MBR in the internal nodes. Instead,
it maintains only the minimum information for the
dominance relationship.

4 Creation of Do-Tree

Section 3.3 proposes a method for creating a
perfect Do-Tree in 2D space. However, the method
is not scalable when the dimensionality is three or
more. As the topological structure is various with the
conventional spatial indices, the populating methods
for R-tree (Kamel and Faloutsos, 1993; Leutenegger
et al., 1997) are not suitable for the Do-Tree either.
In general, we build the Do-Tree by inserting the
point one by one. To minimize the C(Sky(P)), we
choose the most appropriate leaf node for the point
and design the strategy when a node splits.

4.1 Insertion on Do-Tree

We describe the common process of inserting a
point p into a Do-Tree as follows:

Step 1: Traverse the tree to find a most appro-
priate leaf N to accommodate p.

Step 2: Insert p into N , if md of N is enlarged,
and then update the entry on the parent node. This
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process will be repeated until no enlargement occurs
or the traversal reaches the root node.

Step 3: If N overflows, splits N . Add the entry
of the new node N ′ into the parent node. This pro-
cess will be repeated until no overflow/update occurs
or the traversal reaches the root node.

In step 1, we find the most appropriate leaf node
by iterating from the root to the leaves. In each it-
eration, we use two criteria to choose the child path.
The first criterion is the enlargement of the domi-
nance area. We try to minimize the enlargement of
the entry during the insertion, because a larger dom-
inance area increases the possibility of overlaps. If
the md of an entry dominates the inserted point, the
enlargement is zero, and thus it is the best choice.
The second criterion is the number of the entries. If
there is a tie for the first criterion, we choose the
node with a smallest number of entries to reduce the
possibility of splitting.

In step 2, the insertion of p may enlarge the
md value of N . In these cases we need to update the
entry about N on its parent to keep consistency. This
process will be repeated until no further enlargement
occurs or the structure modification reaches the root
node.

If N overflows after the insertion, we split N into
two nodes and distribute the entries on it averagely.
The corresponding entry of the new node N ′ needs
to be inserted into the parent node, and it may cause
the parent node to overflow. This process will also
be repeated. The strategy for splitting the nodes will
be described in Section 4.3.

4.2 Creation of Do-Tree from the raw dataset

There are two basic methods for creating a Do-
Tree from a dataset. The first method, named direct
creation, pre-computes the skyline first, and then
inserts them into an empty Do-Tree, via the insertion
routine.

We provide another method to create the Do-
Tree from the original dataset. In incremental cre-
ation, a point will be inserted into the Do-Tree only
when there are no points in the tree dominating it.
Meanwhile, all the points in the tree it dominates
need to be removed from the tree. The process is sim-
ilar to that of the BNL algorithm (Börzsönyi et al.,
2001), but instead of a window, a Do-Tree is main-
tained during the process and finally completed.

According to Lemma 1, if an internal entry is

dominated by the candidate point, all the points in
this subtree are excluded from the skyline. Thus, the
subtree could be removed directly. Lemma 2 tells
us if an internal entry and the candidate point are
mutex, then none of the points in its subtree could
dominate the candidate. Thus, the subtree need not
be accessed anymore.

The process of incremental creation needs some
modification on the insert routine. In finding the
most appropriate leaf, only the entries that dominate
p need to be visited and all the entries dominated
by p are pruned immediately. When a leaf entry
dominates p, the traversal stops going to the next
point. If p survives after the traversal, it is inserted
into the Do-Tree as in direct creation. After all the
points are processed, the tree needs to be modified
to accord with the half full rule. The modification
traverses the tree again and distributes all the nodes
lower than half full into their brothers. The tree
created incrementally is slightly different from the
tree created directly. This is because the points that
have resided in the tree, but not the final skyline,
may enlarge the DA of the nodes. Experiments show,
however, that this difference is slight with respect to
the topology of the tree. New points can be inserted
into a completed Do-Tree using the same method.
This indicates that the Do-Tree is a maintainable
structure in support of the insertion.

4.3 Node splitting

When a node splits, the entries on it are dis-
tributed into the two new nodes averagely. For clar-
ity, we use N,N1, N2 to denote the original node and
the two new nodes, respectively. Node splitting is
formulated as follows:

N |{e1, e2, ..., en, [N.md]}
→ N1|{e′1, e′2, ..., e′n/2, [N1.md]}
+N2|{e′′1 , e′′2 , ..., e′′n/2, [N2.md]}.

In high-dimensional indices, the splitting strat-
egy is important because it determines the topology
of the tree. According to Formula 1, the instruction
of building a Do-Tree is to minimize the C(Sky(P)).
When a node splits, we directly specialize this goal
as the following quantification:
Quantification 1 After splitting, the number
of points in {e′1, e′2, ..., e′n/2} dominated by N2.md
should be as small as possible, and vice versa.
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In Section 3.3, we have demonstrated in high-
dimensional space that, it is unavoidable to produce
overlaps during the splitting. It is difficult to utilize
Quantification 1 to evaluate the splitting strategy
directly. Therefore, we propose a loose criterion as
follows:

Criterion 1 After splitting, N1.md and N2.md
should be mutex, if possible.

If the md of one new node is dominated by
another, then all the entries on it are also domi-
nated. Obviously, this is the worst case and should
be avoided. We use Criterion 1 as a primary goal for
the splitting. Some candidate algorithms for node
splitting in Do-Tree are then demonstrated.

4.3.1 Exhaustive algorithm

The most direct way to find the best splitting is
checking all the possible splitting ways and finding
the best one according to Quantification 1. How-
ever, assuming the capacity of a node is n, there are
Cn/2

n /2 possible splitting ways. Obviously, this is an
unacceptable method.

4.3.2 Pick seed algorithm

The pick seed algorithm first picks two entries as
the group seeds, and then distributes the remaining
entries into the two groups. This is similar to the
splitting algorithm in the R-tree (Guttman, 1984).
As our goal is to minimize the overlap between the
new nodes, the algorithm can be described as follows:

Step 1: For the n entries on the node, pick the
two with minimal overlap DA. Assign them into two
groups.

Step 2: If one group has owned n/2 entries,
insert the remaining entries into another group. Al-
gorithm ends.

Step 3: Check the remaining entries and pick
the one that, if being placed into one group, creates
the minimal DA increment. Go to step 2.

The complexity of the pick seed algorithm is
O(n2). A main law is that because of the half full
rule, in the last step all the remaining entries should
be poured into one node. This always breaks Cri-
terion 1 when the dimensionality is high. Thus, we
abandon this method after numerous experiments
and propose a simple but efficient one.

4.3.3 Pick dimension algorithm

We know that for each dimension si and each
node N , there exists at least one entry that deter-
mines the md.si of N . After N splits, these points
determine the md.si of the node they are placed on.
Thus, if we distribute them on a different node, the
two new nodes are mutex and Criterion 1 is guaran-
teed. Motivated by this, we develop a pick dimension
algorithm, which works as follows:

Step 1: For each dimension si, calculate the
middle value of all the entries. Initialize a count for
si to zero.

Step 2: For each entry e, if e.key.si = MD.si,
then for each dimension si′ other than si, if e.si′ <
middle.si′ , count.si′++.

Step 3: Pick the dimension s whose count is
nearest to d/2. For each entry e that satisfies
e.key.s >middle.s, place e to N ; else, place e to N ′.

The algorithm evaluates each dimension s by
the following heuristic: If splitting by s, what is the
distribution of [N.md]? The one that distributes
N.md into two new nodes most averagely is chosen.
The complexity of the pick dimension algorithm is
only O(n′d), where n′ is the capacity of the node.

5 Dominance-based queries on Do-
Tree

Generally speaking, queries on the Do-Tree al-
ways start from the root node and traverse the proper
nodes according to the dominance-based predicate
specialized by users. The skyline points on leaf
nodes under the predicate constitute the answer.
The general scheme of the scan is as described in
Algorithm 1.

Some interesting and useful queries are also pro-
posed in this work. We shall define them and present
the solutions to Do-Tree in the following.

Constrained skyline: The constrained skyline
query provides constraint value ci on some specific
dimensions si (i = 1, 2, ..., d) and requests for all the
skyline points p’s that satisfy: ∀si, p.si < ci.si.

According to Lemma 2, for any internal entry
e, if ∃si, e.key.si > ci.si, then we can skip scanning
the subtree of the entry. A constrained skyline query
visits the Do-Tree and discards the entries that break
the constraint. The entries on leaf nodes satisfying
the constraint constitute the final answer.
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Algorithm 1 GeneralScan(root, predicate)
1: HeapInit(h), Set result_set empty;
2: HeapInsert(h, root);
3: while HeapIsNotEmpty(h) do
4: N ← HeapPop(h);
5: if N is an internal node then
6: for each entry e on N do
7: if predicate(e.key) then
8: HeapInsert(h, e.id);
9: else

10: for each entry e on N do
11: if predicate(e.key) then
12: e→ result_set;
13: HeapDestroy(h);
14: return result_set.

The performance of a constrained skyline search
is determined by the constraints. With smaller con-
straints, fewer points are found and fewer nodes are
accessed. If ∀si, ci.si = Ui, then all the nodes of
Do-Tree would be accessed and all the points are the
constrained skyline.

IsSkyline: The IsSkyline query takes a point p

as its input and returns true if p is skyline, or false
otherwise.

According to Lemma 3, we can exclude p from
the skyline immediately if we find a leaf entry that
dominates it. The opposite case is complicated. P is
confirmed to be a skyline only after we are sure there
is no entry that dominates p. That means a point is
confirmed to be a skyline only after all the possible
leaf nodes are visited. Therefore, the traversal stops
and returns false immediately if we find one entry on
a leaf node whose key dominates p. And it returns
true only after the traversal ends normally.

GetDominators: The GetDominators query
takes a point p as its input, and returns the skyline
point set Q that satisfies: ∀q ∈ Q, q � p.

As in the IsSkyline query, we need only to visit
the entries whose values dominate p. The differ-
ence is that GetDominators does not stop until the
traversal ends. During the traversal, all the leaf en-
tries whose keys dominate the input point are saved
into the result set. In the end, the result set is the
answer.

We can also conveniently expand the IsSkyline
query and GetDominators query to any specific sub-
space S′. The algorithms are similar to the original
ones; specifically, the predicates are checked on S′.

SubSkyline: The SubSkyline query gives a spe-

cific subspace S′ of the universe, and requests for the
skyline in S′.

Yuan et al. (2005) proved that any subspace sky-
line must be a skyline in the total space or there ex-
ists at least one skyline point that equals it on each
dimension of the subspace. Therefore, the SubSky-
line query on Do-Tree does not guarantee to return
all the skylines in the subspace, but ensures returning
at least one among those with the same attributes.
We believe this is enough for most applications.

Considering any subspace of the universe, obvi-
ously the following lemma holds:

Lemma 4 In a Do-Tree, the key of an internal
entry dominates all points in its subtree in any
subspaces.

Lemma 4 indicates that a subtree could be dis-
carded if the key of the corresponding entry is domi-
nated by any point in S′. We aim to reduce the num-
ber of nodes to be accessed. The scan scheme needs
to be modified as follows. Each time an internal en-
try is inserted into the heap (line 8 in Algorithm 1),
the heap will be sorted according to the entries’ DA
in decreasing order. The entry with the largest DA
should be popped and visited earlier. Once a leaf
entry e is inserted into the result set, the points in
the result set dominated by e should be removed.
After the traversal ends, the points in the result set
constitute the answer.

6 Experiments

We evaluate the performance of Do-Tree in
terms of both the index size and the query efficiency.
For comparison, we also organize the skyline in three
forms:

A Heap structure which organizes the skyline
points in sequential order. To retrieve the specific
skyline, we execute a sequential scan on it.

An R-tree index built by inserting the skyline
points one by one, on which the splitting strategy
is the linear split (Guttman, 1984). To retrieve a
specific skyline, we traverse the tree according to the
dominance relationship between MBRs, as presented
in Papadias et al. (2003).

An R-tree index which is populated using the
Hilbert curve method (Kamel and Faloutsos, 1993).
We denote it as Hilbert-R-tree.
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6.1 Experiment setting

We conducted experiments on synthetic
datasets with a variable number of dimensions and
distributions. Table 1 lists the parameters used for
controlling the generation of the synthetic datasets.
The Do-Tree was built using the direct creation
method as default.

Table 1 Parameters used in the experiments

Parameter Description Default value

d Dimensionality 10
n Cardinality 100k

Dist Distribution Independent
Univ Universe 10 000
NS Node size 4 KB

d: number of attributes of the points; n: size of the dataset.
NS: node size of all the structures

The datasets included three classical distribu-
tions, namely independent, correlated, and anti-
correlated (Börzsönyi et al., 2001). In the correlated
dataset, all dimensions were positively correlated to
each other. As such, there were few skyline points.
In contrast, in the anti-correlated dataset, dimen-
sions were negatively correlated, so that all points
were skyline in this type of dataset. The points in
the independent dataset were produced uniformly.
Each dataset we used is denoted by a string ‘type-
dimensions cardinality’, where the type can be ‘I’ (in-
dependent), ‘A’ (anti-correlated), or ‘C’ (correlated),
and ‘dimensions’ indicates the number of dimensions
of the data. For example, dataset ‘C-20d500k’ in-
dicates a correlated dataset of 500k points in a 20-
dimensional space.

6.2 Space consumption

We evaluated the space consumption of the
above structures on various datasets. Fig. 4 demon-
strates two facts. First, as the dimensionality or car-
dinality increased, the four data structures enlarged
as there were more skyline points to be stored. Sec-
ond, on all the datasets, Heap was always the small-
est because it contained no extra information except
the skyline points. In the three indices, Do-Tree
was about 60% and 100% smaller than the Hilbert-
R-tree and R-tree, respectively. This is obviously
correct because, compared with the MBR, the size
of the entry in Do-Tree is smaller.

Then we studied the size of the Do-Tree on var-

ious node sizes. Fig. 5 shows that in most datasets,
the size of Do-Tree was smaller with a larger node
size, except for the I-12d100k dataset and C-20d700k
dataset, in which the 8 KB node tree was the small-
est. However, the sizes were very similar in the same
dataset. We will show that the topologies of the trees
with various node sizes were similar in Section 6.4.

6.3 Query performance

To demonstrate the efficiency of Do-Tree on
dominance-based queries, we conducted the queries
as mentioned in Section 5 on the four structures.
The datasets used here are independent and anti-
correlated because there are few skylines in the cor-
related datasets. In all the experiments, the perfor-
mance is determined by the number of I/Os, as the
data structures are stored on the disk initially.

For constrained skyline queries, the perfor-
mance was correlated to the constraint we used. We
quantified it by a parameter ‘selectivity’, which rep-
resents the percentage of the result to the original
skyline size. We evaluated the performance of differ-
ent structures on various dimensionality, cardinality,
and selectivity. Figs. 6a and 6b illustrate the perfor-
mance on various dimensionality. We can see in both
independent and anti-correlated datasets that, the
performance of R-tree declined quickly as the dimen-
sionality increased. When the number of dimensions
was larger than 6, the performance of R-tree was
even worse than that of the sequential scan on the
heap. This shows that the conventional structure R-
tree is not suitable for the dominance-based queries
on high-dimensional datasets. Do-Tree showed the
best performance and perfect scalability on various
dimensionality.

When the cardinality increased, Do-Tree showed
better scalability than the other three structures, es-
pecially on anti-correlated datasets (Figs. 6c and 6d).
The reason is that the number of skyline points in-
creases rapidly when the anti-correlated datasets be-
come larger, so that the other three structures need
more node accesses. Figs. 6e and 6f illustrate that
the performance of R-tree declined quickly when the
constraint became weaker. In fact, when the selec-
tivity was larger than 1, almost all the nodes of the
R-tree needed to be accessed. The performance of
Heap was constant with a various selectivity because
we always needed to scan the whole heap. However,
Do-Tree was much better than the other structures



72 Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(1):62-75

 0

 2000

 4000

 6000

 8000

 10000

 12000

4d80k 6d100k 8d100k 10d100k

S
iz

e 
(K

B
)

Datasets 

Heap
R-tree

Hilbert-R-tree
Do-tree

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

8d100k 10d100k 12d100k 15d100k

S
iz

e 
(K

B
)

Datasets

Heap
R-tree

Hilbert-R-tree
Do-Tree

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

20d500k 20d700k

S
iz

e 
(K

B
)

Datasets

Heap
R-tree

Hilbert-R-tree
Do-Tree

(c)

Fig. 4 Space consumption on anti-correlated (a), independent (b), and correlated (c) datasets
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Fig. 5 Space consumption on various node sizes for anti-correlated (a), independent (b), and correlated (c)
datasets

under any selectivity.

Fig. 7 illustrates the IsSkyline query on differ-
ent data structures. In this experiment, we produced
1000 points uniformly as the candidates and checked
whether it is skyline in different datasets. Figs. 7a
and 7b indicate that, while the performance of other
structures deteriorated rapidly when the dimension-
ality increased, Do-Tree was efficient in answering
the IsSkyline query. Fig. 7c indicates the perfor-
mance of unique skyline queries varying on the di-
mensionality of subspace. With the decrease of the
dimensionality of subspace, the performance of the
IsSkyline query improved on all the four structures
because the probability that the candidates are dom-
inated by others increased. However, Do-Tree was
still more efficient than others when requiring IsSky-
line on all subspaces.

Fig. 8 illustrates the GetDominators query on
different data structures. The R-tree index showed
poor performance on the high-dimensional datasets,
as in the constrained query (Figs. 8a and 8b). When
the number of the dimensions decreased, the perfor-
mance of Do-Tree declined (Fig. 8c). The reason
is that more points will be returned under lower di-
mensions, which causes more nodes to be accessed.
The performance of the Heap was constant because
we always scanned the whole heap to retrieve all the
dominators. Fig. 8 demonstrates that Do-Tree was

efficient and scalable for the GetDominators query.

For the SubSkyline query, we conducted the
query on various dimensionality of subspace on both
I-10d100k and A-10d100k datasets. Fig. 9 indicates
that the performance of the Heap was consistent on
varying subspaces as it needed to scan all the nodes
to answer the query. In our experiments, R-tree
was unsuitable for searching the subspace skyline in
most cases. The performance on Do-Tree was a little
higher than that of the Heap when the dimensional-
ity of subspace was near that of the total space. In
these cases it pruned few nodes, and almost all the
leaves needed to be visited. When the dimension-
ality was low, Do-Tree was efficient for retrieving
skyline in subspaces. Therefore, Do-Tree is suitable
for retrieving SubSkyline if the dimensionality of the
specified subspace is low, and Heap structure is pre-
ferred for high-dimensional subspaces.

The reason why Do-Tree outperforms the con-
ventional spatial indices like R-tree is that its topol-
ogy is more suitable to the dominance-based queries.
To demonstrate this, we picked a subset of skyline
points P ′ randomly and checked the C(P ′) on both
indices. The cardinality of P ′ was 100. In Do-Tree
the leaves that can dominate the skyline points were
much less than in R-tree, especially for the anti-
correlated datasets (Table 2).
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Fig. 6 Performance evaluation of the constrained skyline queries: (a) vs. dimensionality, independent datasets,
n=100 KB, selectivity=1; (b) vs. dimensionality, anti-correlated datasets, n=100 KB, selectivity=1; (c) vs.
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Fig. 7 Performance evaluation of the IsSkyline query on independent datasets with n=100 KB (a), on
anti-correlated datasets with n=100 KB (b), and of subspaces for the I-10d100k dataset (c)
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Fig. 8 Performance evaluation of the GetDominators query on independent datasets with n=100 KB (a), on
anti-correlated datasets with n=100 KB (b), and of subspaces for the I-10d100k dataset (c)

6.4 Creation of Do-Tree

We first evaluated the performance of creating
the Do-Tree using different methods. The number
of I/Os increased when the dimensionality became
larger (Fig. 10). On the independent datasets, the di-
rect creation method was always more efficient than

the incremental creation method. The reason is that
the skyline points are only a small part of the orig-
inal dataset. On the anti-correlated datasets this
difference disappeared, as almost all the points were
skyline. Therefore, the incremental creation method
is preferable for anti-correlated datasets because it
reduces the cost of pre-computing the skyline.
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Table 2 Contained efficients of the same datasets on
different indices

Dataset C(P ′)

R-tree Hilbert-R-tree Do-Tree

A-6d100k 1134.8 1139.0 26.6
A-8d100k 1515.6 1521.3 24.4
A-10d100k 1585.1 1599.1 23.5
I-8d100k 166.7 181.2 51.1
I-10d100k 507.0 519.9 83.9
I-12d100k 1032.6 1070.1 118.6
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Fig. 9 Performance evaluation of the SubSkyline
query on independent datasets, I-10d100k (a) and
anti-correlated datasets, A-10d100k (b)

We are also interested in the topology difference
between the Do-Tree created using different meth-
ods. To evaluate it, we conducted the IsSkyline query
on Do-Trees created with different parameters and
compared the numbers of I/Os.

The first experiment was conducted on Do-Tree
with the same datasets, but using different methods
as mentioned in Section 4. In most cases, the Do-
Tree created using the incremental method was a
little worse than the one created using the direct
method (Figs. 11a and 11b). The difference was very
small, indicating that their topologies are similar.

Fig. 11c compares the Do-Tree created with dif-
ferent node sizes. We can see that, the situation was
different for the three datasets. For the I-10d100k
and C-20d700k datasets, the performance on the tree
with 4 KB node size was much worse than the other
two. For the A-6d100k dataset, the tree with 16 KB
node size was more efficient than the other two. This
can be explained by the height of Do-Tree. For the
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Fig. 10 Performance of creating Do-Tree using direct
and incremental creation methods for independent
(a) and anti-correlated (b) datasets

A-6d100k dataset, the height of the tree with 16 KB
node was 3, while the other two were 2. In the other
two datasets, the height of the tree with 4 KB node
was 3, while the other two were 2. This indicates
that the tree with a lower height always performs
better, despite the node size.

To summarize, Do-Tree is an efficient index
structure for skyline points on high-dimensional data
spaces. It consumes less space than the conven-
tional spatial indices like R-tree. For dominance-
based queries, Do-Tree shows good performance and
scalability on various dimensionality and cardinality.
The topology test indicates that the performance of
Do-Tree is sensitive to the height of the tree, but not
to the creation method or the node size.

7 Conclusions

Although skyline has become one of the most
important operators in multi-dimensional data anal-
ysis, there is still no prior work on devising an ef-
ficient and flexible structure to manage the skyline
points. In this paper we propose the Do-Tree struc-
ture to index skyline points in a tree structure based
on dominance relationship. We formalize the defini-
tion of Do-Tree and present a cost model according
to the access type of the tree. We discuss the node
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Fig. 11 Performance evaluation of the IsSkyline query on I-10d100k with different creation methods (a),
A-10d100k with different creation methods (b), and various node sizes (c)

splitting and propose several algorithms for building
Do-Tree from either the skyline set or the original
dataset. A suite of dominance-based skyline queries
on Do-Tree are discussed as well. Extensive experi-
ments on synthetic datasets show that Do-Tree is an
efficient and scalable index structure for skyline.

In the future, we plan to investigate new algo-
rithms for Do-Tree creation. To make Do-Tree more
usable, we intend to extend Do-Tree to support dele-
tion and updating actions on the original dataset.
Another promising direction is to use Do-Tree to
manage skyline in stream data, or in a frequently
updated application.
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