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Abstract:    This paper presents a robust lossless data hiding scheme. The original cover image can be recovered without any 
distortion after data extraction if the stego-image remains intact, and conversely, the hidden data can still be extracted correctly if 
the stego-image goes through JPEG compression to some extent. A cover image is divided into a number of non-overlapping 
blocks, and the arithmetic difference of each block is calculated. By shifting the arithmetic difference value, we can embed bits 
into the blocks. The shift quantity and shifting rule are fixed for all blocks, and reversibility is achieved. Furthermore, because the 
bit-0- and bit-1-zones are separated and the particularity of the arithmetic differences, minor changes applied to the stego-image 
generated by non-malicious attacks such as JPEG compression will not cause the bit-0- and bit-1-zones to overlap, and robustness 
is achieved. The new embedding mechanism can enhance embedding capacity and the addition of a threshold can make the al-
gorithm more robust. Experimental results showed that, compared with previous schemes, the performance of the proposed 
scheme is significantly improved. 
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1  Introduction 
 

Data hiding is a technique that can embed data 
into cover media for the purposes of authentication, 
fingerprinting, copyright protection, security, and 
secret message transmission, etc. (Swanson et al., 
1998; Hartung and Kutter, 1999; Marvel et al., 1999; 
Petitcolas et al., 1999; Katzenbeisser and Petitcolas, 
2000; Langelaar et al., 2000). Very robust schemes 
(robust watermarking) have been developed, but they 
have low embedding capacity and introduce irre-
versible distortions. In contrast, some very high em-
bedding capacity schemes have been proposed, but 
they are fragile and most of them experience some 
permanent distortions as a result of data hiding. 

In some applications, such as medical imaging 
systems, law enforcement and military imagery, 
where the images must be in their original state for 
legal reasons or the images themselves are rare, it is 
desirable to reverse the stego-image back to the 
original one with no distortion. Some techniques have 
been published that satisfy this reversibility require-
ment (Honsinger et al., 2001; Fridrich et al., 2001; 
2002; Tian, 2003; Alattar, 2004; Maniccam and 
Bourbakis, 2004; Celik et al., 2005; 2006; Ni et al., 
2006; Lee et al., 2008; Lin and Hsueh, 2008). These 
are referred to as reversible, distortion-free, lossless 
or invertible data hiding techniques. However, they 
are fragile in the sense that the hidden data cannot be 
extracted correctly after the stego-image goes through 
some changes. 

For some applications, however, it is desired that 
the hidden data will be robust against unintentional 
changes such as image compression and occasional 
unavoidable addition of random noise below a certain 
level, which does not change the content of an image. 
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Algorithms with this property are referred to as robust 
lossless data hiding algorithms (Ni et al., 2004). 
Robustness against image processing can be useful in 
the context of reversible data hiding; i.e., robustness 
permits conveying embedded information from loss-
less to lossy environments. It might enlarge the scope 
of lossless data hiding as it enables the lossless data 
hiding to convey information in a lossy environment. 
An example is the transmission of a compressed ver-
sion of an image to a family doctor without losing 
embedded management information (Vleeschouwer 
et al., 2003). 

To our knowledge, currently there are only three 
robust lossless data hiding schemes that protect 
against JPEG compression (Vleeschouwer et al., 
2003; Zou et al., 2006; Ni et al., 2004; 2008). The 
scheme of Vleeschouwer et al. (2003) is based on the 
patchwork theory (Bender et al., 1996) and modulo- 
256 addition. By using a circular interpretation of 
bijective transformations, this scheme can achieve 
reversibility and robustness against high quality JPEG 
compression. One problem with this scheme is 
salt-and-pepper noise, and another drawback is that 
the PSNR values of the stego-images generated by 
this algorithm are very low. In addition, the embed-
ding capacity of this method is very limited when a 
low bit error rate (BER) is maintained.  

The scheme of Zou et al. (2006) is based on in-
teger wavelet transform. After calculating the mean 
value of the HL1 or LH1 coefficients of each block, a 
bit 1 is embedded by shifting the mean value away 
from 0 by a shift quantity S. If a bit 0 is to be em-
bedded, this block remains unchanged. Since the shift 
quantity S is fixed for all blocks, the original coeffi-
cients can be restored. Furthermore, the mean value of 
the coefficients in a block is a statistical quantity, and 
minor changes to the image caused by unintentional 
attacks such as JPEG compression will not cause the 
mean value to change much. Hence, this scheme is 
robust against high quality JPEG compression but its 
embedding capacity is low. 

To avoid the drawbacks of the scheme of 
Vleeschouwer et al. (2003), Ni et al. (2004; 2008) 
proposed a robust lossless image data hiding scheme. 
This scheme achieves greater robustness and higher 
PSNR values of stego-images than that of Vlee- 
schouwer et al. (2003). However, as a result of some 
error bits being introduced, error correction coding 

(ECC) must be applied for correction even though the 
stego-image remains unchanged. In addition, the 
embedding capacity of this scheme is also very low. 
Thus, a new robust lossless data hiding technique is 
called for that can avoid all these drawbacks. 

In this study, we enhanced the scheme of Ni et al. 
(2004; 2008) by introducing two thresholds and a new 
embedding mechanism. The addition of thresholds 
can make the algorithm more robust, a new embed-
ding mechanism can enhance capacity, and no error 
bits are introduced. Experimental results showed that 
the proposed scheme does not suffer from salt-and- 
pepper noise, and shows a significant improvement 
with respect to previous schemes in terms of embed-
ding capacity and robustness.  

 
 

2  Related studies 
 

Ni et al. (2004; 2008) proposed a robust lossless 
data hiding scheme. In this scheme, the cover image is 
segmented into 8×8 image blocks. For an 8×8 image 
block, two subsets are split; i.e., subset A consists of 
all pixels marked by ‘+’ and subset B consists of all 
pixels marked by ‘−’ (Fig. 1).  

 
 

 
 
 
 
 
 

 
 
A brief overview of this scheme follows: 
1. Calculate the arithmetic average difference of 

block, denoted by α, and given by Eq. (1). 
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where n=32, ai∈A, and bi∈B. 

2. Classify the blocks into four different catego-
ries and use different bit-embedding schemes for each 
category. 

3. For each category, two or three cases are 

Fig. 1  Difference pair pattern 
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considered according to the value of α. In the data 
embedding process, except in cases in which the pixel 
grayscale values of a block are far away from the two 
bounds of the image histogram (0 and 255 for an 8-bit 
grayscale image), error bits may be introduced and 
ECC is then applied to correct them. 

4. Select a threshold K. If α is kept within a 
specified threshold −K and K, a bit 0 is embedded, 
and α is shifted by a shift quantity S beyond the 
threshold −K or K to embed a bit 1. 

Because the shift quantity S is fixed, the original 
arithmetic average difference can be restored. Fur-
thermore, the arithmetic average difference in a block 
is a statistical quantity, and minor changes to the 
image caused by unintentional attacks such as JPEG 
compression will not cause the statistical quantity to 
change much, and robustness is achieved. 

 
 

3  The proposed scheme 

3.1  Foundation of the proposed scheme 

First, an 8-bit grayscale image, denoted by C, is 
divided into a number of non-overlapping blocks each 
of size m×n. Then, by introducing an m×n matrix, 
denoted by M, we can calculate the arithmetic dif-
ference of block. The matrix M is given by 
 

1, mod 2 _ eq( , ) 1,
( , )

1, mod 2 _ eq( , ) 0,
i j

M i j
i j

=⎧
= ⎨− =⎩

      (2) 

 

where i∈[1, m], j∈[1, n], and mod2_eq(i, j) is a func-
tion which returns 1 if both i and j are odd or even and 
returns 0 otherwise. As an example, a matrix M with 
size 8×8 is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 

The arithmetic difference of each block, denoted 
by α, is given by 
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where the superscript ‘(k)’ indicates the kth block, and 
C(k)(i, j) denotes the grayscale value of the pixel at the 
point (i, j) of the kth block. The distribution of α is 
shown in Fig. 3. 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
Next, we introduce two thresholds, denoted by T 

and G, respectively, both of which are positive inte-
gers. Assuming that αmax is the largest absolute value 
among the values of α, we let T=αmax (or T≥αmax), and 
G is used to separate the different zones as described 
below. 

The embedding process is as follows: 
Scan each block and examine the arithmetic 

difference α. If a bit 0 is to be embedded, this block 
remains intact, and if a bit 1 is to be embedded, we 
can embed it into the block by shifting the arithmetic 
difference α. The shifting rule is given by 
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where i∈[1, m], j∈[1, n], ( )/( ) ,T G mnβ = +⎡ ⎤⎢ ⎥  and 

the symbol ⎡·⎤ means ‘to the nearest integer towards 
infinity’. 

The resulting distribution of α is shown in Fig. 4. 
The values of α are kept within specified thresholds 
−T and T as a result of embedding 0s, and the range of 

Fig. 2  The matrix M of size 8×8 
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[−T, T] is called the bit-0-zone; the values of α are 
kept in the range of [T+G, 2T+G] or [−(2T+G), 
−(T+G)) as a result of embedding 1s, and the ranges 
of [T+G, 2T+G] and [−(2T+G), −(T+G)) are called 
bit-1-zones. 

 
 
 
 
 
 
 
 
 

 
 
 
 
Note that the pixel values of some blocks need to 

be added or subtracted by β when data bits are em-
bedded into the blocks. The shift quantity β is referred 
to as the embedding level in this paper. In addition, 
we can embed a bit into each block. Hence, if the size 
of a grayscale image is H×W and the block size is m×n, 
the embedding capacity of the proposed scheme is 
⎣H/m⎦×⎣W/n⎦, where the symbol ⎣·⎦ means ‘the larg-
est integer less than or equal to’. For example, given a 
grayscale image of size 512×512, the embedding 
capacity of the proposed scheme is 8192 bits if the 
image is divided into 4×8 blocks. 

Owing to the particularity of α, for any block, no 
matter whether a fixed number is added to or sub-
tracted from the grayscale value of each pixel, the 
value of α of the block remains unaltered; i.e., the 
binary bit embedded into the block remains unaltered. 
Furthermore, since the threshold G is introduced and 
the bit-0-zones and bit-1-zones are separated by a 
distance G (Fig. 4), minor changes applied to the 
stego-image generated by non-malicious attacks such 
as JPEG compression will not cause the value of α to 
change much. In fact, as long as the bit-0-zones and 
bit-1-zones do not overlap, the hidden data can be 
extracted exactly; thus, the hidden data are robust 
against non-malicious attacks such as JPEG  
compression. 

Extraction is the reverse process. Scan the blocks 
of the stego-image and calculate α of each block in the 
same sequential order as that used in the embedding 

phase. If α∈[−T, T], a bit 0 is extracted, and if α>T or 
α<−T, a bit 1 is extracted. In addition, if the stego- 
image has not been altered, the cover image can be 
recovered by Eq. (5), where i∈[1, m], j∈[1, n] and 

( )/( ) .T G mnβ = +⎡ ⎤⎢ ⎥  
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3.2  Prevention of overflow/underflow 

The image histogram has four types (Fig. 5). For 
type A, no pixel has a grayscale value smaller than β 
or larger than 255−β; i.e., all the pixel values are kept 
in the range of [β, 255−β], and our algorithm works 
well in this case. For other types, if measures have not 
been taken, overflow/underflow may occur in the data 
embedding process. For example, for type B, under-
flow may occur, and for type C, overflow may occur. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To prevent overflow/underflow, we need to keep 
the grayscale values of pixels in the range [β, 255−β] 
before data embedding. Hence, we can preprocess the 
cover images as follows. 

For an image that does not belong to type A, we 
can reset the pixel values of less than β+1 to β+1 and 

Fig. 5  Four types of image histogram 
(a) Type A; (b) Type B; (c) Type C; (d) Type D 
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those larger than 255−(β+1) to 255−(β+1); i.e., we 
can keep the grayscale values of pixels in the range 
[β+1, 255−(β+1)]. The original values and coordi-
nates of the pixels, whose original values are less than 
β+1 or larger than 255−(β+1), are saved as overhead 
information in a predefined format. Next, the over-
head information can be compressed losslessly and be 
embedded back into the cover image by employing a 
lossless data hiding scheme (Li et al., 2009). Finally, 
we can obtain a preprocessed cover image in which 
the grayscale values of pixels are kept in the range [β, 
255−β], and the preprocessed image will act as a 
cover image to embed secret data. 

In this way, our algorithm can work for any type 
of image. Clearly, if a preprocessed cover image is 
used to embed secret data, the restored image gener-
ated by Eq. (5) is not the original cover image even if 
the stego-image has not been altered. Hence, we need 
to recover the original cover image using the lossless 
data hiding scheme (Li et al., 2009). However, if the 
stego-image has been altered by JPEG compression, 
we can extract the hidden data as the cover image 
cannot be restored. 

3.3  Data embedding 

We can embed bits into a cover image (or a 
preprocessed cover image) using the Embed_bits 
function. In this function, we scan the cover image 
and select each block in turn in a predefined order for 
embedding data, assuming that the maximum payload 
is to be embedded into the cover image. 

 
Algorithm 1    Embed_bits(C, B, T, G, m, n, S) 
Input: C, the cover image; B, bit stream to be embedded into 

the cover image; T, a threshold, which is set to an inte-
ger that satisfies T≥αmax; G, a threshold, which is used to 
separate the different zones, such as the bit-0-zone, 
bit-1-zone, etc.; m×n, the block size. 

Output: S, the stego-image. 
 

Generate the matrix M; 
Num_of_Blk←⎣height(C)/m⎦×⎣width(C)/n⎦; 

T G
m n

β +⎡ ⎤← ⎢ ⎥×⎢ ⎥
; S←C; p←1; 

For (k =1 to Num_of_Blk) 
Compute the value of α of the kth block; 
b←B(p); p←p+1; 
If (b=1) then 

If (α≥0) then 
For (i=1 to m; j=1 to n) 

If (mod2_eq(i, j)=1) then S(k)(i, j)←S(k)(i, j)+β; 

If (mod2_eq(i, j)=0) then S(k)(i, j)←S(k)(i, j)−β; 
Endfor 

Endif 
If (α<0) then 

For (i=1 to m; j=1 to n) 
If (mod2_eq(i, j)=1) then S(k)(i, j)←S(k)(i, j)−β; 
If (mod2_eq(i, j)=0) then S(k)(i, j)←S(k)(i, j)+β; 

Endfor 
Endif 

Endif  
Endfor 
 

3.4  Data extraction and original image recovery 

With the unaltered stego-image, we can scan the 
stego-image and calculate the value of α of each block 
in the same predefined order as used in the embedding 
phase. If α lies in the bit-0-zone, i.e., [−T, T], a bit 0 is 
extracted, and if α lies in the bit-1-zone, a bit 1 is 
extracted. Extracting the hidden data and recovering 
the cover image are achieved using the Extract_bits 
function. Some parameters used in the embedding 
phase, such as the block size m×n, the thresholds T 
and G, are also needed for the Extract_bits function. 
 
Algorithm 2    Extract_bits(S, m, n, T, G, B, R) 
Input: S, the stego-image; m×n, the block size; T and G, the 

thresholds, which are used in the embedding phase. 
Output: B, the hidden data (in bits); R, a restored image. 
 

Generate the matrix M; 
Num_of_Blk ←⎣height(S)/m⎦×⎣width(S)/n⎦; 

T G
m n

β +⎡ ⎤← ⎢ ⎥×⎢ ⎥
; B←NULL; R←S; p←1; 

For (k=1 to Num_of_Blk) 
Compute the value of α of the kth block; 
If α∈[−T, T] then {B(p)←0; p←p+1;} 
If (α>T) then {B(p)←1; p←p+1;} 

For (i=1 to m; j=1 to n) 
If (mod2_eq(i, j)=1) then R(k)(i, j)←R(k)(i, j)−β; 
If (mod2_eq(i, j)=0) then R(k)(i, j)←R(k)(i, j)+β; 

Endfor 
Endif 
If (α<−T) then {B(p)←1; p←p+1;} 

For (i=1 to m; j=1 to n) 
If (mod2_eq(i, j)=1) then R(k)(i, j)←R(k)(i, j)+β; 
If (mod2_eq(i, j)=0) then R(k)(i, j)←R(k)(i, j)−β; 

Endfor 
Endif 

Endfor 
 

Obviously, when the stego-image has not been 
altered, the hidden data can be extracted correctly and 
the cover image can also be recovered without any 
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distortion by calling the Extract_bits function. Note 
that if a preprocessed cover image is used to embed 
data, the Extract_bits function returns the preproc-
essed cover image, and the original cover image can 
be recovered using the same lossless data hiding 
scheme as used in the preprocessing process. 

In a lossless environment, the stego-image usu-
ally remains unaltered. However, in a lossy envi-
ronment, the stego-image is difficult to retain un-
changed. To verify whether the stego-image has been 
altered, the hash value of a cover image (or a pre-
processed cover image) is embedded into the cover 
image as a part of the hidden data. After the hidden 
data are extracted and a restored cover image is ob-
tained by calling the Extract_bits function, we can 
obtain a new hash value of the restored cover image. 
As any change to the stego-image will result in a 
change to the hash value, the original hash value that 
is included in the extracted data can be compared with 
the new hash value to verify whether the stego-image 
has been altered depending on whether they are 
identical or not. 

3.5  Data extraction for compressed stego-images 

If the stego-image has been altered, the original 
cover image cannot be recovered exactly, so we focus 
on the hidden data extraction.  

The distribution of α will change as a result of 
JPEG compression. One such example is shown in 
Fig. 6, where parts of the bit-0- and bit-1-zones are 
overlapping. When the stego-image has gone through 
JPEG compression to some extent, many α’s change 
their locations and step into the wrong zone, leading 
to a difficult recognition of the right zone before 
compression, and challenging the robustness. Hence, 
to extract the hidden data correctly, a certain adjust-
ment is necessary.  

 
 
 
 
 
 
 
 
 
 

 

In this case, after obtaining the distribution of α 
of the compressed stego-image, we can determine the 
new bit-0- and bit-1-zones by using the numbers of 0s 
and 1s in the hidden data. Hence, the numbers of 0s 
and 1s, which are denoted by N0 and N1, respectively, 
are also needed in this case. 

As shown in Fig. 6, we can obtain an Adj_0 such 
that the number of α’s in the range of [−Adj_0, Adj_0] 
is equal to N0, and can obtain an Adj_1 such that the 
number of α’s in the range of [−Adj_1, Adj_1] is 
equal to (N0+N1). In other words, we can determine 
Adj_0 and Adj_1 by using N0 and N1. With Adj_0 and 
Adj_1, we can obtain new thresholds T and G by 

 
Adj_ 0, Adj_1 2Adj_ 0.T G= = −          (6) 

 
Next, we can call the Extract_bits function de-

scribed above with new thresholds T and G generated 
by Eq. (6), and the hidden data can be extracted cor-
rectly even if the stego-image has gone through JPEG 
compression to some extent. 
 
 
4  Experimental results 

 
Six commonly used grayscale images (Fig. 7), 

each 512×512, were used to evaluate the performance 
of the proposed scheme. The secret data used in our 
experiments were generated by a pseudo-random 
number generator. In robustness testing, all stego- 
images were compressed by JPEG2000. Robustness 
against JPEG compression was measured by three 
parameters: the JPEG compression quality factor, the 
surviving bit rate (bpp) and the bit error rate (BER). 
The first two parameters were used to control image 
quality during lossy compression, and the last denoted 
the percentage of bits that had errors relative to the 
total bits of the hidden data. In general, the lower was 
the surviving bit rate (bpp) (or the lower was the 
JPEG compression quality factor) and the lower was 
the BER, the better was the robustness. The meas-
urement of image quality used in the experiments was 
the peak signal-to-noise ratio (PSNR). Note that all 
the data shown below are the average of test results 
for 100 runs on the test images. 

As the pixel values of an image are altered by β 
as a result of data bits embedding, the embedding 
level (i.e., β) will influence the image visual quality 

Fig. 6  Distribution of α of a stego-image that has gone
through JPEG compression to some extent 

Bit-1-zone Bit-1-zone Bit-0-zone Bit-0-zone 

−Adj_1 −Adj_0 Adj_0 Adj_1 
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directly. Assuming that the maximum payload is 
embedded into the cover image, the relationship be-
tween the value of PSNR and the embedding level is 
shown in Fig. 8. The smaller the value of β, the larger 
the value of PSNR. However, the values of αmax of 
some images were sometimes large, i.e., the threshold 
T was large, so the value of β could not be small. As 
an example, for the image Baboon, its αmax was 393 
when the block size was 8×8, which means 

393
8 8

T G G
m n

β + +⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥× ×⎢ ⎥ ⎢ ⎥
>6 as the threshold G≥0. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Considering that the value of PSNR will be 
about 33 dB when the embedding level is 8, we let the 
maximum embedding level be 8 in our experiments. 
Hence, to prevent overflow/underflow, the pixel val-
ues of the test images must be in the range of [8, 247] 
before data embedding. This meant that two images 
(Boat and Baboon) among the six test images needed 
to be preprocessed before data embedding. As men-
tioned above, we could first keep the pixel values of 
the images Boat and Baboon in the range of [9, 246], 
and the original values and coordinates of the pixels, 
whose original values were less than 9 or larger than 
246, were saved as overhead information in the pre-
defined format. Next, the overhead information could 
be compressed losslessly and can be embedded back 
into the cover image by employing the lossless data 
hiding scheme (Li et al., 2009). Finally, we could 
obtain the preprocessed cover images in which the 
grayscale values of pixels were kept in the range of [8, 
247], and the preprocessed images could act as cover 
images to embed secret data. 

To test the robustness of the proposed scheme, 
we first divided all test images into blocks of size 8×8, 
and let T=αmax and β=4 except for the image Baboon 
where β=7. This meant that a message of length 4096 
bits could be embedded into every test image. After 
embedding data, we compressed all the stego-images 
with various compression levels. Finally, we ex-
tracted the hidden data from the compressed stego- 
images, and the results that satisfy BER<1% are 
shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

The robustness (in bpp) in Table 1 is the lowest 
bit rate at which the test images could resist JPEG  
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Fig. 8  Relationship between embedding level and PSNR

Table 1  Performance of the proposed scheme 

Image
PSNR 
(dB)

Payload 
(bits)

T G EL 
Rbna 
(bpp)

BERb 
(%)

Lena 39.11 4096 118 138 4 0.81 0.893
GoldHill 39.11 4096 109 147 4 1.22 0.657
Airplane 39.11 4096 137 119 4 0.91 0.729
Barbara 39.12 4096 155 101 4 1.26 0.687
Boat 39.10 4096 101 155 4 1.05 0.563
Baboon 34.14 4096 393   55 7 1.65 0.839

EL=Embedding level, Rbn=Robustness. a Average robustness=1.15 
bpp, i.e., the average compression ratio is 8/1.15=6.96; b average 
BER=0.73%. T was set to αmax and the threshold G was set to an 
integer that gave an embedding level of 4, except for the image 
Baboon where the embedding level was 7 

 

Fig. 7  Test images: (a) Lena; (b) GoldHill; (c) Airplane; 
(d) Barbara; (e) Boat; (f) Baboon 

(a)                                          (b) 

(c)                                           (d) 

(e)                                           (f) 
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compression at a given BER. The average JPEG 
compression ratio was 6.96 (Table 1), which means 
that the compressed stego-images were on average 
14.38% of the size of the original images while more 
than 99.2% of the hidden data could be extracted 
correctly. This implies that our scheme is very robust. 

As the threshold G is used to separate the bit-0- 
and bit-1-zone, as threshold G increases, the robust-
ness against JPEG compression will strengthen. The 
experimental results (Fig. 9) support this observation, 
where the threshold T was set to an integer that satis-
fied T>αmax. The JPEG compression quality factor 
was the lowest compression quality factor at which 
the test images could resist the JPEG compression 
when the BER was less than 1%. Fig. 9 shows the 
relationship between the JPEG compression level and 
the threshold G. It can be observed that as the 
threshold G increased, the JPEG compression quality 
factor decreased. This implies that to obtain higher 
robustness, we can choose a larger G.  

 
 
 
 
 
 
 
 
 

 
 
 
 

 
To illustrate the relationship between the JPEG 

compression quality factor and the embedding level 
in a more direct way, we conducted a set of experi-
ments on all the test images. In this set of experiments, 
we also used 8×8 block size and different embedding 
levels to observe the robustness against image com-
pression. Clearly, with an increase in the embedding 
level, the robustness against JPEG compression 
strengthens (Fig. 10). For instance, when the embed-
ding level was 7, the lowest compression quality 
factor at which the test images could resist the JPEG 
compression for a BER of <1% was less than or equal 
to 40, and the value of PSNR was larger than 34 dB 
(Fig. 8). This means that the proposed scheme can 
offer high robustness and good image quality. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2 shows the performance of the proposed 

scheme with different block sizes on image Lena. For 
any block size, the threshold T was set to its corre-
sponding αmax, and the threshold G was set to an in-
teger that gave an embedding level of 8, i.e., β=8. 
When the block size was 4×4, the proposed scheme 
had the maximum payload (16 384 bits) but the stego- 
image had the lowest robustness against JPEG com-
pression when maintaining a BER of <1%. The op-
posite was true when the block size was 8×8. This 
implies that a block size of 8×8 is a good candidate to 
be used in a lossy environment. In addition, if we 
want to embed more bits into the cover image while 
maintaining strong robustness, a block size of 4×8 (or 
8×4) is also a good candidate. 
 

 
 
 
 

 
 

 
 
 
 
 

Finally, to compare the performance between Ni 
et al. (2008)’s algorithm and our proposed algorithm 
in a more direct way, we conducted a set of experi-
ments on three images: Lena, Boat and Baboon. In 
this set of experiments, we used a block size of 8×8. A 
comparison of the results for these images is shown in 
Table 3. Although Ni et al. (2008)’s scheme is capable 

Table 2  Performance of the proposed scheme with dif-
ferent block sizes on image Lena 

Block
size 

PSNR
(dB)

Payload
(bits)

T G EL 
Rbn 

(bpp) 
BER
(%) 

4×4 33.08 16 384 120     8 8 0.74 0.832

6×6 33.12   7225 100 188 8 0.53 0.490

4×8 33.07   8192 96 160 8 0.53 0.699

8×4 33.08   8192 128 128 8 0.52 0.558

8×8 33.07   4096 118 394 8 0.49 0.482

EL=Embedding level, Rbn=Robustness 
 

Fig. 10  Relationship between the JPEG compression 
quality factor and the embedding level with a block size
of 8×8 for a BER of <1% 
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Fig. 9  Relationship between the JPEG compression 
quality factor and the threshold G with a block size of 
8×8 for a BER of <1% 
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of providing higher PSNR values, their payload is 
quite limited. The embedding capacity of our pro-
posed scheme is about five times higher than that of 
Ni et al. (2008)’s algorithm, in robustness against 
JPEG compression our scheme outperforms theirs, 
and the PSNR values of larger than 37.1 dB showed 
that the visual quality of the stego-image from our 
scheme is good.  
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
5  Conclusion 
 

A robust lossless data hiding scheme is proposed 
in this paper. The exact original cover image can be 
restored after data extraction if the stego-image has 
not been altered. The hidden data are robust against 
non-malicious attacks such as JPEG compression to 
some extent. In the proposed scheme, no error bits are 
introduced and the addition of a threshold made the 
algorithm more robust and a new embedding mecha-
nism enhanced the embedding capacity. Experimental 
results showed that the proposed scheme does not 
suffer from salt-and-pepper noise, and gives a signifi-
cant improvement with respect to previous schemes in 
terms of embedding capacity and robustness. 
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