
Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 101

Robust lossless data hiding scheme*

Xian-ting ZENG†1,2, Xue-zeng PAN1, Ling-di PING1, Zhuo LI1
(1School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)

(2College of Information Engineering, China Jiliang University, Hangzhou 310018, China)
†E-mail: mico@cjlu.edu.cn

Received Mar. 29, 2009; Revision accepted May 18, 2009; Crosschecked Sept. 29, 2009

Abstract: This paper presents a robust lossless data hiding scheme. The original cover image can be recovered without any
distortion after data extraction if the stego-image remains intact, and conversely, the hidden data can still be extracted correctly if
the stego-image goes through JPEG compression to some extent. A cover image is divided into a number of non-overlapping
blocks, and the arithmetic difference of each block is calculated. By shifting the arithmetic difference value, we can embed bits
into the blocks. The shift quantity and shifting rule are fixed for all blocks, and reversibility is achieved. Furthermore, because the
bit-0- and bit-1-zones are separated and the particularity of the arithmetic differences, minor changes applied to the stego-image
generated by non-malicious attacks such as JPEG compression will not cause the bit-0- and bit-1-zones to overlap, and robustness
is achieved. The new embedding mechanism can enhance embedding capacity and the addition of a threshold can make the al-
gorithm more robust. Experimental results showed that, compared with previous schemes, the performance of the proposed
scheme is significantly improved.

Key words: Watermarking, Lossless data hiding, Reversible data hiding, Robust lossless data hiding, Semi-fragile authentication
doi:10.1631/jzus.C0910177 Document code: A CLC number: TP309.2

1 Introduction

Data hiding is a technique that can embed data
into cover media for the purposes of authentication,
fingerprinting, copyright protection, security, and
secret message transmission, etc. (Swanson et al.,
1998; Hartung and Kutter, 1999; Marvel et al., 1999;
Petitcolas et al., 1999; Katzenbeisser and Petitcolas,
2000; Langelaar et al., 2000). Very robust schemes
(robust watermarking) have been developed, but they
have low embedding capacity and introduce irre-
versible distortions. In contrast, some very high em-
bedding capacity schemes have been proposed, but
they are fragile and most of them experience some
permanent distortions as a result of data hiding.

In some applications, such as medical imaging
systems, law enforcement and military imagery,
where the images must be in their original state for
legal reasons or the images themselves are rare, it is
desirable to reverse the stego-image back to the
original one with no distortion. Some techniques have
been published that satisfy this reversibility require-
ment (Honsinger et al., 2001; Fridrich et al., 2001;
2002; Tian, 2003; Alattar, 2004; Maniccam and
Bourbakis, 2004; Celik et al., 2005; 2006; Ni et al.,
2006; Lee et al., 2008; Lin and Hsueh, 2008). These
are referred to as reversible, distortion-free, lossless
or invertible data hiding techniques. However, they
are fragile in the sense that the hidden data cannot be
extracted correctly after the stego-image goes through
some changes.

For some applications, however, it is desired that
the hidden data will be robust against unintentional
changes such as image compression and occasional
unavoidable addition of random noise below a certain
level, which does not change the content of an image.

* Project supported in part by the Major Science and Technology
Special Project of Zhejiang Province, China (No. 2007C11088) and the
Science and Technology Project of Zhejiang Province, China (No.
2008C21077)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 102

Algorithms with this property are referred to as robust
lossless data hiding algorithms (Ni et al., 2004).
Robustness against image processing can be useful in
the context of reversible data hiding; i.e., robustness
permits conveying embedded information from loss-
less to lossy environments. It might enlarge the scope
of lossless data hiding as it enables the lossless data
hiding to convey information in a lossy environment.
An example is the transmission of a compressed ver-
sion of an image to a family doctor without losing
embedded management information (Vleeschouwer
et al., 2003).

To our knowledge, currently there are only three
robust lossless data hiding schemes that protect
against JPEG compression (Vleeschouwer et al.,
2003; Zou et al., 2006; Ni et al., 2004; 2008). The
scheme of Vleeschouwer et al. (2003) is based on the
patchwork theory (Bender et al., 1996) and modulo-
256 addition. By using a circular interpretation of
bijective transformations, this scheme can achieve
reversibility and robustness against high quality JPEG
compression. One problem with this scheme is
salt-and-pepper noise, and another drawback is that
the PSNR values of the stego-images generated by
this algorithm are very low. In addition, the embed-
ding capacity of this method is very limited when a
low bit error rate (BER) is maintained.

The scheme of Zou et al. (2006) is based on in-
teger wavelet transform. After calculating the mean
value of the HL1 or LH1 coefficients of each block, a
bit 1 is embedded by shifting the mean value away
from 0 by a shift quantity S. If a bit 0 is to be em-
bedded, this block remains unchanged. Since the shift
quantity S is fixed for all blocks, the original coeffi-
cients can be restored. Furthermore, the mean value of
the coefficients in a block is a statistical quantity, and
minor changes to the image caused by unintentional
attacks such as JPEG compression will not cause the
mean value to change much. Hence, this scheme is
robust against high quality JPEG compression but its
embedding capacity is low.

To avoid the drawbacks of the scheme of
Vleeschouwer et al. (2003), Ni et al. (2004; 2008)
proposed a robust lossless image data hiding scheme.
This scheme achieves greater robustness and higher
PSNR values of stego-images than that of Vlee-
schouwer et al. (2003). However, as a result of some
error bits being introduced, error correction coding

(ECC) must be applied for correction even though the
stego-image remains unchanged. In addition, the
embedding capacity of this scheme is also very low.
Thus, a new robust lossless data hiding technique is
called for that can avoid all these drawbacks.

In this study, we enhanced the scheme of Ni et al.
(2004; 2008) by introducing two thresholds and a new
embedding mechanism. The addition of thresholds
can make the algorithm more robust, a new embed-
ding mechanism can enhance capacity, and no error
bits are introduced. Experimental results showed that
the proposed scheme does not suffer from salt-and-
pepper noise, and shows a significant improvement
with respect to previous schemes in terms of embed-
ding capacity and robustness.

2 Related studies

Ni et al. (2004; 2008) proposed a robust lossless
data hiding scheme. In this scheme, the cover image is
segmented into 8×8 image blocks. For an 8×8 image
block, two subsets are split; i.e., subset A consists of
all pixels marked by ‘+’ and subset B consists of all
pixels marked by ‘−’ (Fig. 1).

A brief overview of this scheme follows:
1. Calculate the arithmetic average difference of

block, denoted by α, and given by Eq. (1).

1

1 (),
n

i i
i

a b
n

α
=

= −∑ (1)

where n=32, ai∈A, and bi∈B.

2. Classify the blocks into four different catego-
ries and use different bit-embedding schemes for each
category.

3. For each category, two or three cases are

Fig. 1 Difference pair pattern

+
_

+ + +
+ ++ +

+
+

+
+

+
+ +

+
+

+
+

+ +

+
+

+
+ +

+
+

+
+

+
+

_
__

_
_

_
_

_
_ _

_
_

_
_

_
_

_
_

_
_

_

_

_

_
_ _

_

_ _

_

_

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 103

considered according to the value of α. In the data
embedding process, except in cases in which the pixel
grayscale values of a block are far away from the two
bounds of the image histogram (0 and 255 for an 8-bit
grayscale image), error bits may be introduced and
ECC is then applied to correct them.

4. Select a threshold K. If α is kept within a
specified threshold −K and K, a bit 0 is embedded,
and α is shifted by a shift quantity S beyond the
threshold −K or K to embed a bit 1.

Because the shift quantity S is fixed, the original
arithmetic average difference can be restored. Fur-
thermore, the arithmetic average difference in a block
is a statistical quantity, and minor changes to the
image caused by unintentional attacks such as JPEG
compression will not cause the statistical quantity to
change much, and robustness is achieved.

3 The proposed scheme

3.1 Foundation of the proposed scheme

First, an 8-bit grayscale image, denoted by C, is
divided into a number of non-overlapping blocks each
of size m×n. Then, by introducing an m×n matrix,
denoted by M, we can calculate the arithmetic dif-
ference of block. The matrix M is given by

1, mod 2 _ eq(,) 1,
(,)

1, mod 2 _ eq(,) 0,
i j

M i j
i j

=⎧
= ⎨− =⎩

 (2)

where i∈[1, m], j∈[1, n], and mod2_eq(i, j) is a func-
tion which returns 1 if both i and j are odd or even and
returns 0 otherwise. As an example, a matrix M with
size 8×8 is shown in Fig. 2.

The arithmetic difference of each block, denoted
by α, is given by

() ()

1 1

(,) (,),
m n

k k

i j

C i j M i jα
= =

= ×∑∑ (3)

where the superscript ‘(k)’ indicates the kth block, and
C(k)(i, j) denotes the grayscale value of the pixel at the
point (i, j) of the kth block. The distribution of α is
shown in Fig. 3.

Next, we introduce two thresholds, denoted by T

and G, respectively, both of which are positive inte-
gers. Assuming that αmax is the largest absolute value
among the values of α, we let T=αmax (or T≥αmax), and
G is used to separate the different zones as described
below.

The embedding process is as follows:
Scan each block and examine the arithmetic

difference α. If a bit 0 is to be embedded, this block
remains intact, and if a bit 1 is to be embedded, we
can embed it into the block by shifting the arithmetic
difference α. The shifting rule is given by

()

()
()

(,) ,
 0 and mod 2 _ eq(,) 1,
 or 0 and mod 2 _ eq(,) 0,

(,)
(,) ,

 0 and mod 2 _ eq(,) 0,
 or 0 and mod 2 _ eq(,) 1,

k

k
k

C i j
i j

i j
S i j

C i j
i j

i j

β
α
α

β
α
α

⎧ +
⎪ ≥ =⎪
⎪ < =⎪= ⎨

−⎪
⎪ ≥ =
⎪

< =⎪⎩

 (4)

where i∈[1, m], j∈[1, n], ()/() ,T G mnβ = +⎡ ⎤⎢ ⎥ and

the symbol ⎡·⎤ means ‘to the nearest integer towards
infinity’.

The resulting distribution of α is shown in Fig. 4.
The values of α are kept within specified thresholds
−T and T as a result of embedding 0s, and the range of

Fig. 2 The matrix M of size 8×8

1 1 1 1

11 1
1

1
1

1
1

1 1
1

1
1

1
1 1

1
1

1
1 1

1
1

1
1

1
1

−1 −1
−1

−1
−1

−1
−1 −1

−1 −1 −1 −1
−1 −1 −1 −1

−1 −1 −1−1
−1 −1 −1

−1 −1
−1 −1

−1−1
−1 −1

1

−1

Fig. 3 The distribution of α

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 104

[−T, T] is called the bit-0-zone; the values of α are
kept in the range of [T+G, 2T+G] or [−(2T+G),
−(T+G)) as a result of embedding 1s, and the ranges
of [T+G, 2T+G] and [−(2T+G), −(T+G)) are called
bit-1-zones.

Note that the pixel values of some blocks need to

be added or subtracted by β when data bits are em-
bedded into the blocks. The shift quantity β is referred
to as the embedding level in this paper. In addition,
we can embed a bit into each block. Hence, if the size
of a grayscale image is H×W and the block size is m×n,
the embedding capacity of the proposed scheme is
⎣H/m⎦×⎣W/n⎦, where the symbol ⎣·⎦ means ‘the larg-
est integer less than or equal to’. For example, given a
grayscale image of size 512×512, the embedding
capacity of the proposed scheme is 8192 bits if the
image is divided into 4×8 blocks.

Owing to the particularity of α, for any block, no
matter whether a fixed number is added to or sub-
tracted from the grayscale value of each pixel, the
value of α of the block remains unaltered; i.e., the
binary bit embedded into the block remains unaltered.
Furthermore, since the threshold G is introduced and
the bit-0-zones and bit-1-zones are separated by a
distance G (Fig. 4), minor changes applied to the
stego-image generated by non-malicious attacks such
as JPEG compression will not cause the value of α to
change much. In fact, as long as the bit-0-zones and
bit-1-zones do not overlap, the hidden data can be
extracted exactly; thus, the hidden data are robust
against non-malicious attacks such as JPEG
compression.

Extraction is the reverse process. Scan the blocks
of the stego-image and calculate α of each block in the
same sequential order as that used in the embedding

phase. If α∈[−T, T], a bit 0 is extracted, and if α>T or
α<−T, a bit 1 is extracted. In addition, if the stego-
image has not been altered, the cover image can be
recovered by Eq. (5), where i∈[1, m], j∈[1, n] and

()/() .T G mnβ = +⎡ ⎤⎢ ⎥

()

() ()

()

(,) ,
and mod 2 _ eq(,) 1,

or and mod 2 _ eq(,) 0,
(,) (,) ,

and mod 2 _ eq(,) 0,
or and mod 2 _ eq(,) 1,
(,), otherwise.

k

k k

k

S i j
T i j

T i j
R i j S i j

T i j
T i j

S i j

β
α
α

β
α
α

⎧ −
⎪ > =⎪
⎪ < − =
⎪⎪= +⎨
⎪ > =⎪

< − =⎪
⎪
⎪⎩

 (5)

3.2 Prevention of overflow/underflow

The image histogram has four types (Fig. 5). For
type A, no pixel has a grayscale value smaller than β
or larger than 255−β; i.e., all the pixel values are kept
in the range of [β, 255−β], and our algorithm works
well in this case. For other types, if measures have not
been taken, overflow/underflow may occur in the data
embedding process. For example, for type B, under-
flow may occur, and for type C, overflow may occur.

To prevent overflow/underflow, we need to keep
the grayscale values of pixels in the range [β, 255−β]
before data embedding. Hence, we can preprocess the
cover images as follows.

For an image that does not belong to type A, we
can reset the pixel values of less than β+1 to β+1 and

Fig. 5 Four types of image histogram
(a) Type A; (b) Type B; (c) Type C; (d) Type D

0 255

(a) (b)
255

255

0

0

0 255

(c) (d)

Fig. 4 Distribution of α after embedding data

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 105

those larger than 255−(β+1) to 255−(β+1); i.e., we
can keep the grayscale values of pixels in the range
[β+1, 255−(β+1)]. The original values and coordi-
nates of the pixels, whose original values are less than
β+1 or larger than 255−(β+1), are saved as overhead
information in a predefined format. Next, the over-
head information can be compressed losslessly and be
embedded back into the cover image by employing a
lossless data hiding scheme (Li et al., 2009). Finally,
we can obtain a preprocessed cover image in which
the grayscale values of pixels are kept in the range [β,
255−β], and the preprocessed image will act as a
cover image to embed secret data.

In this way, our algorithm can work for any type
of image. Clearly, if a preprocessed cover image is
used to embed secret data, the restored image gener-
ated by Eq. (5) is not the original cover image even if
the stego-image has not been altered. Hence, we need
to recover the original cover image using the lossless
data hiding scheme (Li et al., 2009). However, if the
stego-image has been altered by JPEG compression,
we can extract the hidden data as the cover image
cannot be restored.

3.3 Data embedding

We can embed bits into a cover image (or a
preprocessed cover image) using the Embed_bits
function. In this function, we scan the cover image
and select each block in turn in a predefined order for
embedding data, assuming that the maximum payload
is to be embedded into the cover image.

Algorithm 1 Embed_bits(C, B, T, G, m, n, S)
Input: C, the cover image; B, bit stream to be embedded into

the cover image; T, a threshold, which is set to an inte-
ger that satisfies T≥αmax; G, a threshold, which is used to
separate the different zones, such as the bit-0-zone,
bit-1-zone, etc.; m×n, the block size.

Output: S, the stego-image.

Generate the matrix M;
Num_of_Blk←⎣height(C)/m⎦×⎣width(C)/n⎦;

T G
m n

β +⎡ ⎤← ⎢ ⎥×⎢ ⎥
; S←C; p←1;

For (k =1 to Num_of_Blk)
Compute the value of α of the kth block;
b←B(p); p←p+1;
If (b=1) then

If (α≥0) then
For (i=1 to m; j=1 to n)

If (mod2_eq(i, j)=1) then S(k)(i, j)←S(k)(i, j)+β;

If (mod2_eq(i, j)=0) then S(k)(i, j)←S(k)(i, j)−β;
Endfor

Endif
If (α<0) then

For (i=1 to m; j=1 to n)
If (mod2_eq(i, j)=1) then S(k)(i, j)←S(k)(i, j)−β;
If (mod2_eq(i, j)=0) then S(k)(i, j)←S(k)(i, j)+β;

Endfor
Endif

Endif
Endfor

3.4 Data extraction and original image recovery

With the unaltered stego-image, we can scan the
stego-image and calculate the value of α of each block
in the same predefined order as used in the embedding
phase. If α lies in the bit-0-zone, i.e., [−T, T], a bit 0 is
extracted, and if α lies in the bit-1-zone, a bit 1 is
extracted. Extracting the hidden data and recovering
the cover image are achieved using the Extract_bits
function. Some parameters used in the embedding
phase, such as the block size m×n, the thresholds T
and G, are also needed for the Extract_bits function.

Algorithm 2 Extract_bits(S, m, n, T, G, B, R)
Input: S, the stego-image; m×n, the block size; T and G, the

thresholds, which are used in the embedding phase.
Output: B, the hidden data (in bits); R, a restored image.

Generate the matrix M;
Num_of_Blk ←⎣height(S)/m⎦×⎣width(S)/n⎦;

T G
m n

β +⎡ ⎤← ⎢ ⎥×⎢ ⎥
; B←NULL; R←S; p←1;

For (k=1 to Num_of_Blk)
Compute the value of α of the kth block;
If α∈[−T, T] then {B(p)←0; p←p+1;}
If (α>T) then {B(p)←1; p←p+1;}

For (i=1 to m; j=1 to n)
If (mod2_eq(i, j)=1) then R(k)(i, j)←R(k)(i, j)−β;
If (mod2_eq(i, j)=0) then R(k)(i, j)←R(k)(i, j)+β;

Endfor
Endif
If (α<−T) then {B(p)←1; p←p+1;}

For (i=1 to m; j=1 to n)
If (mod2_eq(i, j)=1) then R(k)(i, j)←R(k)(i, j)+β;
If (mod2_eq(i, j)=0) then R(k)(i, j)←R(k)(i, j)−β;

Endfor
Endif

Endfor

Obviously, when the stego-image has not been
altered, the hidden data can be extracted correctly and
the cover image can also be recovered without any

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 106

distortion by calling the Extract_bits function. Note
that if a preprocessed cover image is used to embed
data, the Extract_bits function returns the preproc-
essed cover image, and the original cover image can
be recovered using the same lossless data hiding
scheme as used in the preprocessing process.

In a lossless environment, the stego-image usu-
ally remains unaltered. However, in a lossy envi-
ronment, the stego-image is difficult to retain un-
changed. To verify whether the stego-image has been
altered, the hash value of a cover image (or a pre-
processed cover image) is embedded into the cover
image as a part of the hidden data. After the hidden
data are extracted and a restored cover image is ob-
tained by calling the Extract_bits function, we can
obtain a new hash value of the restored cover image.
As any change to the stego-image will result in a
change to the hash value, the original hash value that
is included in the extracted data can be compared with
the new hash value to verify whether the stego-image
has been altered depending on whether they are
identical or not.

3.5 Data extraction for compressed stego-images

If the stego-image has been altered, the original
cover image cannot be recovered exactly, so we focus
on the hidden data extraction.

The distribution of α will change as a result of
JPEG compression. One such example is shown in
Fig. 6, where parts of the bit-0- and bit-1-zones are
overlapping. When the stego-image has gone through
JPEG compression to some extent, many α’s change
their locations and step into the wrong zone, leading
to a difficult recognition of the right zone before
compression, and challenging the robustness. Hence,
to extract the hidden data correctly, a certain adjust-
ment is necessary.

In this case, after obtaining the distribution of α
of the compressed stego-image, we can determine the
new bit-0- and bit-1-zones by using the numbers of 0s
and 1s in the hidden data. Hence, the numbers of 0s
and 1s, which are denoted by N0 and N1, respectively,
are also needed in this case.

As shown in Fig. 6, we can obtain an Adj_0 such
that the number of α’s in the range of [−Adj_0, Adj_0]
is equal to N0, and can obtain an Adj_1 such that the
number of α’s in the range of [−Adj_1, Adj_1] is
equal to (N0+N1). In other words, we can determine
Adj_0 and Adj_1 by using N0 and N1. With Adj_0 and
Adj_1, we can obtain new thresholds T and G by

Adj_ 0, Adj_1 2Adj_ 0.T G= = − (6)

Next, we can call the Extract_bits function de-

scribed above with new thresholds T and G generated
by Eq. (6), and the hidden data can be extracted cor-
rectly even if the stego-image has gone through JPEG
compression to some extent.

4 Experimental results

Six commonly used grayscale images (Fig. 7),

each 512×512, were used to evaluate the performance
of the proposed scheme. The secret data used in our
experiments were generated by a pseudo-random
number generator. In robustness testing, all stego-
images were compressed by JPEG2000. Robustness
against JPEG compression was measured by three
parameters: the JPEG compression quality factor, the
surviving bit rate (bpp) and the bit error rate (BER).
The first two parameters were used to control image
quality during lossy compression, and the last denoted
the percentage of bits that had errors relative to the
total bits of the hidden data. In general, the lower was
the surviving bit rate (bpp) (or the lower was the
JPEG compression quality factor) and the lower was
the BER, the better was the robustness. The meas-
urement of image quality used in the experiments was
the peak signal-to-noise ratio (PSNR). Note that all
the data shown below are the average of test results
for 100 runs on the test images.

As the pixel values of an image are altered by β
as a result of data bits embedding, the embedding
level (i.e., β) will influence the image visual quality

Fig. 6 Distribution of α of a stego-image that has gone
through JPEG compression to some extent

Bit-1-zone Bit-1-zone Bit-0-zone Bit-0-zone

−Adj_1 −Adj_0 Adj_0 Adj_1

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 107

directly. Assuming that the maximum payload is
embedded into the cover image, the relationship be-
tween the value of PSNR and the embedding level is
shown in Fig. 8. The smaller the value of β, the larger
the value of PSNR. However, the values of αmax of
some images were sometimes large, i.e., the threshold
T was large, so the value of β could not be small. As
an example, for the image Baboon, its αmax was 393
when the block size was 8×8, which means

393
8 8

T G G
m n

β + +⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥× ×⎢ ⎥ ⎢ ⎥
>6 as the threshold G≥0.

Considering that the value of PSNR will be
about 33 dB when the embedding level is 8, we let the
maximum embedding level be 8 in our experiments.
Hence, to prevent overflow/underflow, the pixel val-
ues of the test images must be in the range of [8, 247]
before data embedding. This meant that two images
(Boat and Baboon) among the six test images needed
to be preprocessed before data embedding. As men-
tioned above, we could first keep the pixel values of
the images Boat and Baboon in the range of [9, 246],
and the original values and coordinates of the pixels,
whose original values were less than 9 or larger than
246, were saved as overhead information in the pre-
defined format. Next, the overhead information could
be compressed losslessly and can be embedded back
into the cover image by employing the lossless data
hiding scheme (Li et al., 2009). Finally, we could
obtain the preprocessed cover images in which the
grayscale values of pixels were kept in the range of [8,
247], and the preprocessed images could act as cover
images to embed secret data.

To test the robustness of the proposed scheme,
we first divided all test images into blocks of size 8×8,
and let T=αmax and β=4 except for the image Baboon
where β=7. This meant that a message of length 4096
bits could be embedded into every test image. After
embedding data, we compressed all the stego-images
with various compression levels. Finally, we ex-
tracted the hidden data from the compressed stego-
images, and the results that satisfy BER<1% are
shown in Table 1.

The robustness (in bpp) in Table 1 is the lowest
bit rate at which the test images could resist JPEG

30
32
34
36
38
40
42
44
46

2 3 4 5 6 7 8
Embedding level

P
S

N
R

 (d
B

)

Fig. 8 Relationship between embedding level and PSNR

Table 1 Performance of the proposed scheme

Image
PSNR
(dB)

Payload
(bits)

T G EL
Rbna
(bpp)

BERb
(%)

Lena 39.11 4096 118 138 4 0.81 0.893
GoldHill 39.11 4096 109 147 4 1.22 0.657
Airplane 39.11 4096 137 119 4 0.91 0.729
Barbara 39.12 4096 155 101 4 1.26 0.687
Boat 39.10 4096 101 155 4 1.05 0.563
Baboon 34.14 4096 393 55 7 1.65 0.839

EL=Embedding level, Rbn=Robustness. a Average robustness=1.15
bpp, i.e., the average compression ratio is 8/1.15=6.96; b average
BER=0.73%. T was set to αmax and the threshold G was set to an
integer that gave an embedding level of 4, except for the image
Baboon where the embedding level was 7

Fig. 7 Test images: (a) Lena; (b) GoldHill; (c) Airplane;
(d) Barbara; (e) Boat; (f) Baboon

(a) (b)

(c) (d)

(e) (f)

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 108

compression at a given BER. The average JPEG
compression ratio was 6.96 (Table 1), which means
that the compressed stego-images were on average
14.38% of the size of the original images while more
than 99.2% of the hidden data could be extracted
correctly. This implies that our scheme is very robust.

As the threshold G is used to separate the bit-0-
and bit-1-zone, as threshold G increases, the robust-
ness against JPEG compression will strengthen. The
experimental results (Fig. 9) support this observation,
where the threshold T was set to an integer that satis-
fied T>αmax. The JPEG compression quality factor
was the lowest compression quality factor at which
the test images could resist the JPEG compression
when the BER was less than 1%. Fig. 9 shows the
relationship between the JPEG compression level and
the threshold G. It can be observed that as the
threshold G increased, the JPEG compression quality
factor decreased. This implies that to obtain higher
robustness, we can choose a larger G.

To illustrate the relationship between the JPEG

compression quality factor and the embedding level
in a more direct way, we conducted a set of experi-
ments on all the test images. In this set of experiments,
we also used 8×8 block size and different embedding
levels to observe the robustness against image com-
pression. Clearly, with an increase in the embedding
level, the robustness against JPEG compression
strengthens (Fig. 10). For instance, when the embed-
ding level was 7, the lowest compression quality
factor at which the test images could resist the JPEG
compression for a BER of <1% was less than or equal
to 40, and the value of PSNR was larger than 34 dB
(Fig. 8). This means that the proposed scheme can
offer high robustness and good image quality.

Table 2 shows the performance of the proposed

scheme with different block sizes on image Lena. For
any block size, the threshold T was set to its corre-
sponding αmax, and the threshold G was set to an in-
teger that gave an embedding level of 8, i.e., β=8.
When the block size was 4×4, the proposed scheme
had the maximum payload (16 384 bits) but the stego-
image had the lowest robustness against JPEG com-
pression when maintaining a BER of <1%. The op-
posite was true when the block size was 8×8. This
implies that a block size of 8×8 is a good candidate to
be used in a lossy environment. In addition, if we
want to embed more bits into the cover image while
maintaining strong robustness, a block size of 4×8 (or
8×4) is also a good candidate.

Finally, to compare the performance between Ni
et al. (2008)’s algorithm and our proposed algorithm
in a more direct way, we conducted a set of experi-
ments on three images: Lena, Boat and Baboon. In
this set of experiments, we used a block size of 8×8. A
comparison of the results for these images is shown in
Table 3. Although Ni et al. (2008)’s scheme is capable

Table 2 Performance of the proposed scheme with dif-
ferent block sizes on image Lena

Block
size

PSNR
(dB)

Payload
(bits)

T G EL
Rbn

(bpp)
BER
(%)

4×4 33.08 16 384 120 8 8 0.74 0.832

6×6 33.12 7225 100 188 8 0.53 0.490

4×8 33.07 8192 96 160 8 0.53 0.699

8×4 33.08 8192 128 128 8 0.52 0.558

8×8 33.07 4096 118 394 8 0.49 0.482

EL=Embedding level, Rbn=Robustness

Fig. 10 Relationship between the JPEG compression
quality factor and the embedding level with a block size
of 8×8 for a BER of <1%

2 3 4 5 6 7 8
Embedding level

Lena GoldHill
Airplane Barbara
Boat Baboon

JP
E

G
 c

om
pr

es
si

on

qu
al

ity
 fa

ct
or

30
35
40
45
50
55
60
65
70
75
80

Fig. 9 Relationship between the JPEG compression
quality factor and the threshold G with a block size of
8×8 for a BER of <1%

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 109

of providing higher PSNR values, their payload is
quite limited. The embedding capacity of our pro-
posed scheme is about five times higher than that of
Ni et al. (2008)’s algorithm, in robustness against
JPEG compression our scheme outperforms theirs,
and the PSNR values of larger than 37.1 dB showed
that the visual quality of the stego-image from our
scheme is good.

5 Conclusion

A robust lossless data hiding scheme is proposed
in this paper. The exact original cover image can be
restored after data extraction if the stego-image has
not been altered. The hidden data are robust against
non-malicious attacks such as JPEG compression to
some extent. In the proposed scheme, no error bits are
introduced and the addition of a threshold made the
algorithm more robust and a new embedding mecha-
nism enhanced the embedding capacity. Experimental
results showed that the proposed scheme does not
suffer from salt-and-pepper noise, and gives a signifi-
cant improvement with respect to previous schemes in
terms of embedding capacity and robustness.

References
Alattar, A.M., 2004. Reversible watermark using the differ-

ence expansion of a generalized integer transform. IEEE
Trans. Image Process., 13(8):1147-1156. [doi:10.1109/
TIP.2004.828418]

Bender, W., Gruhl, D., Morimoto, N., Lu, A., 1996. Tech-
niques for data hiding. IBM Syst. J., 35(3-4):313-336.

Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E., 2005.
Lossless generalized-LSB data embedding. IEEE Trans.
Image Process., 14(2):253-266. [doi:10.1109/TIP.2004.

840686]
Celik, M.U., Sharma, G., Tekalp, A.M., 2006. Lossless wa-

termarking for image authentication: a new framework
and an implementation. IEEE Trans. Image Process.,
15(4):1042-1049. [doi:10.1109/TIP.2005.863053]

Fridrich, J., Goljan, M., Du, R., 2001. Invertible authentication.
Proc. SPIE, 4314:197-208. [doi:10.1117/12.435400]

Fridrich, J., Goljan, M., Du, R., 2002. Lossless data embedding:
new paradigm in digital watermarking. EURASIP J. Appl.
Signal Process., 2002(2):185-196. [doi:10.1155/S111086
5702000537]

Hartung, F., Kutter, M., 1999. Multimedia watermarking
techniques. Proc. IEEE, 87(7):1079-1107. [doi:10.1109/5.
771066]

Honsinger, C.W., Jones, P., Rabbani, M., Stoffel, J.C., 2001.
Lossless Recovery of an Original Image Containing
Embedded Data. US Patent 6 278 791.

Katzenbeisser, S., Petitcolas, A.P., 2000. Information Hiding
Techniques for Steganography and Digital Watermarking.
Artech House Inc., Norwood, MA, USA.

Langelaar, G.C., Setyawan, I., Lagendijk, R.L., 2000. Wa-
termarking digital image and video data. IEEE Signal
Process. Mag., 17(5):20-46. [doi:10.1109/79.879337]

Lee, C.C., Wu, H.C., Tsai, C.S., Chu, Y.P., 2008. Adaptive
lossless steganographic scheme with centralized differ-
ence expansion. Pattern Recogn., 41(6):2097-2106.
[doi:10.1016/j.patcog.2007.11.018]

Li, Z., Chen, X.P., Pan, X.Z., Zeng, X.T., 2009. Lossless Data
Hiding Scheme Based on Adjacent Pixel Difference. Proc.
Int. Conf. on Computer Engineering and Technology,
1:588-592. [doi:10.1109/ICCET.2009.40]

Lin, C.C., Hsueh, N.L., 2008. A lossless data hiding scheme
based on three-pixel block differences. Pattern Recogn.,
41(4):1415-1425. [doi:10.1016/j.patcog.2007.09.005]

Maniccam, S.S., Bourbakis, N., 2004. Lossless compression
and information hiding in images. Pattern Recogn., 37(3):
475-486. [doi:10.1016/j.patcog.2003.08.010]

Marvel, L.M., Boncelet, C.G.Jr., Retter, C.T., 1999. Spread
spectrum image steganography. IEEE Trans. Image
Process., 8(8):1075-1083. [doi:10.1109/83.777088]

Ni, Z., Shi, Y.Q., Ansari, N., Su, W., Sun, Q., Lin, X., 2004.
Robust Lossless Image Data Hiding. IEEE Int. Conf. on
Multimedia and Expo, 3:2199-2202.

Ni, Z., Shi, Y.Q., Ansari, N., Su, W., 2006. Reversible data
hiding. IEEE Trans. Circ. Syst. Video Technol., 16(3):
354-362. [doi:10.1109/TCSVT.2006.869964]

Ni, Z., Shi, Y.Q., Ansari, N., Su, W., Sun, Q., Lin, X., 2008.
Robust lossless image data hiding designed for semi-
fragile image authentication. IEEE Trans. Circ. Syst.
Video Technol., 18(4):497-509. [doi:10.1109/TCSVT.
2008.918761]

Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G., 1999. Infor-
mation hiding: a survey. Proc. IEEE, 87(7):1062-1078.
[doi:10.1109/5.771065]

Swanson, M.D., Kobayashi, M., Tewfik, A.H., 1998. Multi-
media data embedding and watermarking technologies.
Proc. IEEE, 86(6):1064-1087. [doi:10.1109/5.687830]

Table 3 Performance comparison between the algo-
rithm of Ni et al. (2008)’s and our proposed scheme on
three commonly used images*

Scheme Image
PSNR
(dB)

Capacity
(bits)

Robustness
(bpp)

BER
(%)

Lena 40.2 792 0.8 0
Boat 40.5 560 1.0 0

Ni et al.
(2008)

Baboon 38.7 585 1.6 0
Lena 37.16 4096 0.70 0.477
Boat 37.16 4096 0.92 0.273

Proposed

Baboon 37.21 2000 1.60 0.396
* Image size 512×512

Zeng et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(2):101-110 110

Tian, J., 2003. Reversible data embedding using a difference
expansion. IEEE Trans. Circ. Syst. Video Technol., 13(8):
890-896. [doi:10.1109/TCSVT.2003.815962]

Vleeschouwer, C.D., Delaigle, J.F., Macq, B., 2003. Circular
interpretation of bijective transformations in lossless
watermarking for media asset management. IEEE Trans.

Multimedia, 5(1):97-105. [doi:10.1109/TMM.2003.809729]
Zou, D., Shi, Y.Q., Ni, Z., Su, W., 2006. A semi-fragile loss-

less digital watermarking scheme based on integer
wavelet transform. IEEE Trans. Circ. Syst. Video Tech-
nol., 16(10):1294-1300. [doi:10.1109/TCSVT.2006.881
857]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

