
Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 465

Is playing-as-downloading feasible in an eMule
P2P file sharing system?*

Wen-yi WANG†, Yao-wu CHEN
(Advanced Digital Technology and Instruments Institute, Zhejiang University, Hangzhou 310027, China)

†E-mail: walker_wwy@hotmail.com
Received July 5, 2009; Revision accepted Aug. 4, 2009; Crosschecked May 4, 2010

Abstract: Peer-to-peer (P2P) swarm technologies have been shown to be very efficient for large scale content distribution
systems, such as the well-known BitTorrent and eMule applications. However, these systems have been designed for generic file
sharing with little consideration of media streaming support, and the user cannot start a movie playback before it is completely
downloaded. The playing-as-downloading capability would be particularly useful for a downloading peer to evaluate if a movie is
valuable to be downloaded, and it could also help the P2P content distribution system to locate and eliminate the polluted contents.
In this paper we address this issue by introducing a new algorithm, wish driven chunk distribution (WDCD), which enables the
P2P file sharing system to support the video-on-demand (VOD) function while keeping the P2P native downloading speed. A new
parameter named next-play-frequency is added to the content chunk to strike a replication balance between downloading and
streaming requests. We modify the eMule as the test bed by adding the WDCD algorithm and then verify the prototype imple-
mentation by experiments. The experimental results show that the proposed algorithm can keep the high downloading throughput
performance of the eMule system with a good playing-as-downloading function.

Key words: Peer-to-peer (P2P), Video-on-demand (VOD), Playing-as-downloading, eMule
doi:10.1631/jzus.C0910408 Document code: A CLC number: TN919.8

1 Introduction

Over the last decade, the Internet Protocol (IP)
based video-on-demand (VOD) applications have
grown tremendously and have become the killer ap-
plications. The end user can start a movie playback
without waiting to download the full video by such
VOD applications as the famous Web 2.0 video site of
YouTube (http://www.youtube.com). These systems
provide a good playback quality and a large scale
support for the video content distribution; however,
they normally are closed systems with proprietary
protocols and architectural design. These centralized
VOD systems are designed and implemented as the
server-client mode. The operator needs a great deal of

money and effort to run and maintain these systems
allowing the user base to continue to grow (Liu Y et
al., 2008), owing to the bottleneck of (1) the server’s
disk I/O speeds and (2) the server’s network band-
width (Ghose and Kim, 2000).

Compared to centralized server-client mode
content distribution systems, peer-to-peer (P2P) based
content sharing systems are emerging as cheaper and
more flexible solutions as every peer contributes its
storage and uploading bandwidth while receiving data.
Since the first P2P file sharing application Napster
(Androutsellis-Theotokis and Spinellis, 2004) was
created, several successful P2P applications have
been deployed in the Internet widely, e.g., BitTorrent
(Pouwelse et al., 2005) and eMule (Kulbak and
Bickson, 2005). With these applications and tech-
nologies, the user can share and exchange media
contents in a P2P way without any authorization from
an administrative site or organization. The P2P

 Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project (No. 2005C11001-02) supported by the Science and Tech-
nology Plan of Zhejiang Province, China
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 466

architecture also eliminates the bandwidth and stor-
age requirements for the central server because all
contents are stored in the peer’s storage. Both eMule
and BitTorrent have proven to be very effective P2P
content distribution mechanisms (Vlavianos et al.,
2006); however, they do not have the streaming
support as the traditional VOD systems (Rodriguez et
al., 2006). This limitation is a known design issue of
the P2P file sharing applications. These P2P overlay
networks are mesh based systems and they obtain the
high swarming (downloading) efficiency by repli-
cating the chunks randomly with the rarest first order
(Füllemann, 2005; Koo et al., 2005; Bickson et al.,
2007). However, a streaming application requires the
chunks arrive at the receiving peer in sequential order.
So the challenge here is how we can add the playing-
as-downloading (PAD) service to the P2P file sharing
system without impacting its high downloading
throughput.

Although some of the recent systems such as
BitTos (Vlavianos et al., 2006) and Bass (Dana et al.,
2005) have added streaming support for BitTorrent, it
is still an open issue whether similar P2P technology
can be used for VOD applications. In this paper, we
investigate how to enhance the streaming support for
eMule. As far as we know, this is the first time this
topic has been studied. We propose an enhancement
algorithm named wish driven chunk distribution
(WDCD) based on the original eMule chunks selec-
tion and replication algorithm. The new algorithm
enables the eMule clients to have the playing-as-
downloading capability, thus improving user experi-
ence by less startup time to view a movie, especially
when the movie is polluted or of poor quality. Thus,
end users can protect the resource utilization by can-
celing the downloading request at an earlier stage. We
keep the eMule framework and its protocol and ex-
tend its chunk selection algorithm by adding a new
next-play-frequency parameter to the chunk, indi-
cating how urgent it is for the streaming clients. By
balancing the chunk replication priority between
streaming and downloading clients, our proposal
enables the chunks to arrive at the receiving clients
with (1) the playing order to have the smooth play-
back and (2) the rarest first order to have the maxi-
mum downloading throughput.

2 Related works

The P2P paradigm has been used widely for

VOD systems since it was created for file sharing
applications such as eMule, BitTorrent, Kazza (Lei-
bowitz et al., 2003), GnuTella (GnuTella, 2009), and
Freenet (Sandberg and Wiley, 2000). The P2P VOD
service is more challenging than the P2P file sharing
system because it should allow users to watch the
movie with a short startup time and small playback
jitters. The receiving peers in a P2P VOD system
should obtain the chunks from different parent nodes
in playback order, which will impact the efficiency of
the rarest first swarming protocols used in P2P file
sharing applications.

P2P VOD systems can be divided into two
categories according to the overlay network structure
(Liao et al., 2007; Magharei et al., 2007; Liu JC et al.,
2008; Liu Y et al., 2008): tree based and mesh based.
Tree based systems use a push method to disseminate
the data over the application level multicast (ALM)
trees (Jannotti et al., 2000; Chu et al., 2002; Castro et
al., 2003; Tran et al., 2003; Guo et al., 2003; 2008;
Do et al., 2004; 2008; Lee et al., 2005). The ALM tree
structure uses the same idea as the multicast tech-
nology, so it is easy to implement and maintain. There
are two kinds of ALM tree overlay structures: one is
the single ALM tree, such as DirectStream (Guo et al.,
2008), OverCast (Jannotti et al., 2000), ESM (Chu et
al., 2002), and ZIGZAG (Tran et al., 2003); the other
is the multiple ALM trees, such as SplitStream (Cas-
tro et al., 2003), Bullet (Kostic et al., 2003), P2VOD
(Do et al., 2004; 2008), and P2CAST (Guo et al.,
2003). In ESM, the peers join in a spanning tree and
the data are forwarded from the root node to the de-
scendant nodes along the tree. Thus, the server load-
ing is reduced and the system service scale is improved.
DirectStream creates an ALM tree at the server for
every stream. When a new peer joins in the stream’s
ALM tree, it will search all the nodes at the indexing
directory server for the best suitable one as the data
forwarding parent node. ZIGZAG divides the peers
into different logical layers, and then generates dif-
ferent clusters among the different logical layers. This
design restricts the ALM tree’s width and depth and
thus shorten the transfer delay between the root node
and the leaf nodes. The single ALM tree structure is

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 467

vulnerable to peers churn. When a peer leaves the
ALM tree, all its descendant nodes must take some
time to find the new parent to fix the ALM tree. This
tree fixing process will obviously increase these
nodes’ playback jitters. Because of the heterogeneity
of P2P network nodes, the end-to-end transfer delay
may sometimes be large, especially when a peer with
low uploading bandwidth is in the data forwarding
path. The multiple ALM trees structure extends the
source node number of the receiving peer to fully
utilize the network resources, and thus it has stronger
system stability. SplitStream (Castro et al., 2003) uses
the multiple description coding (MDC) technology to
encode and transfer the streams. Every MDC stream
uses an ALM tree to forward the data, and the tree
node at one of the ALM trees can also serve as the
parent node for the other ALM tree nodes, so the
uploading bandwidth of every tree’s leaf nodes is
fully utilized. P2VOD designs a fixed length cache
buffer for every peer and defines the R-Block as the
smallest video data unit. The peers with the same
smallest R-Block number are grouped together and
defined as a video session. A peer at P2VOD can
obtain not only the video data from the ALM tree’s
parent node, but also the data from the neighbors at
the same video session. P2CAST uses patching tech-
nology to reduce the server loading, because a newly
joining peer obtains only the video data that have
missed the current playback timestamp from the
server, and then receives the data after that timestamp
from the other peers.

As the researches (Jiang et al., 2003; Dana et al.,
2005; Pai et al., 2005; Zhang et al., 2005; Vlavianos
et al., 2006; Annapureddy et al., 2007; Liao et al.,
2007; Magharei and Rejaie, 2007; Cheng et al., 2008a;
2008b; 2008c; Huang et al., 2008; Mol et al., 2008;
Tian et al., 2008) have discussed, the peers of a mesh
overlay network can obtain data from multiple source
peers and forward data to multiple child peers com-
pared with the tree based structure, so the mesh
structure can support larger scale systems and are
more tolerant to peers churn. CoolStreaming (Zhang
et al., 2005) defines a member list for every peer. The
receiving peer generates a partner list from his/her
member list, receives data from his/her partners, and
runs a scheduler to update the member and partner
lists periodically to select the most suitable parent

node dynamically. GridCast (Cheng et al., 2008a;
2008b; 2008c) and PPLive (Huang et al., 2008) cache
one or multiple files at the peers to improve the VOD
performance. AnySee (Liao et al., 2007) divides the
peers into two sets, the active set and the backup set.
The receiving peer calculates periodically the small-
est transfer path between itself and all the other peers
who have cached the same data, and then updates the
peer of the smallest delay path to the backup set.
When one of the paths at the active set is disconnected,
the receiving peer can build up very quickly a shortest
data forwarding path from the backup set to avoid the
playback jitters. Prime (Magharei and Rejaie, 2007)
designs a two-phase data distribution algorithm. It
uses the ALM trees to distribute the MDC streams in
the diffusion phase. Once the diffusion phase is
completed, the streams are forwarded using swarm
technology and one diffusion ALM tree node can
obtain the other layer’s MDC stream data from the
same or deeper degree nodes of another diffusion
ALM tree. This improves the bandwidth utilization of
the tree’s leaf nodes. The peers at the mesh overlay
network select the source nodes randomly and glob-
ally, so they normally will have longer startup time.
They often need very large cache buffer for a good
VOD playback performance, such as the GridCast
and PPLive, which cache the whole file at the peers
like a P2P file sharing system.

In some of the recent researches, besides using
the P2P paradigm to improve the VOD system per-
formance, how to add streaming capability to the P2P
file sharing system is also studied; e.g., Bass adds a
streaming media server to the BitTorrent network for
streaming support. The playing client obtains the
chunks before the playback deadline from the media
server and fetches the chunks after the playback
deadline from BitTorrent peers. Based on Bass, an
improved algorithm is used in BiTos. It is still based
on the BitTorrent system; the difference is that the
streaming media server is removed. It adds the VOD
supporting by directly modifying the BitTorrent pro-
tocol. BiTos is the first research to modify the chunk
replication algorithm used in the P2P file sharing
application for streaming support. BiTos divides the
file chunks into two sets, the high priority set and the
low priority set. The high priority set contains the
chunks that are close to the playback deadline and

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 468

have not yet been downloaded; the low priority set
contains the remaining chunks that have not been
downloaded and are further away from the playback
deadline. A selection process is used to decide which
chunk should be downloaded. A chunk in the high
priority set is downloaded with probability p, and the
one in the low priority set is downloaded with prob-
ability 1–p. By setting the value of p greater than 0.5,
the chunks in the high priority set will be downloaded
earlier than the ones in the low priority set. Intuitively,
the larger value of p offers the better chance for
chunks to arrive at the receiving peer within their
playback time, while a smaller value of p increases
the density of chunks. Thus, it leads to a better overall
downloading throughput.

In short, BiTos is the most similar to our pro-
posed algorithm, but with several differences: (1) Our
test bed is eMule, not BitTorrent. eMule and BitTor-
rent have totally different design at system architec-
ture, chunk distribution, and incentive mechanism.
Compared with BitTorrent, eMule implements a
rough streaming function, called preview, which
makes eMule more suitable to be enhanced for the
streaming application. (2) Our algorithm is based on
the chunk unit level and needs only a small modifi-
cation to the original eMule system, while BiTos is
designed on a chunk sliding window and the per-
formance is decided by the window size. Because it is
hard and complex to fine tune the parameter, BiTos
still leaves it as an open issue about how to adjust the
sliding window size to obtain the best performance.

3 eMule background

In current available P2P file sharing applications,

eMule is the only one with limited streaming support.
This feature is called preview in eMule. In this section,
we present the eMule chunk selection and replication
algorithm and describe how to support the preview
function.

Fig. 1 shows the eMule architecture design. The
eMule network is composed of hundreds of servers
and millions of peer clients. The client obtains P2P
services by connecting to one of the eMule servers.
Although every client is pre-configured with a list of
connectable servers, the client can connect to only
one of them at a given time. An eMule server is run-

ning a central index service to store the connected
clients information and chunks information of their
shared files. eMule is a receiver driven design, so it is
up to the downloading client to select the chunks for
replication.

`

eMule is a structured P2P overlay network. Peer

Pi sends the chunk information of its shared file F to
server S by the TCP protocol, and another peer Pj

searches out this shared file F and its source peer list
from S. In the eMule system, every file is presented
by a globally unique identifier (GUID). This GUID is
generated by a hash function (Kulbak and Bickson,
2005). The file is cut into chunks of the same size.
Like the file presentation, every chunk is also pre-
sented by a hash function generated GUID. If Pj has at
least one chunk of file F, Pj is presented as the source
peer of F. An eMule server uses the term of frequency
to show the chunk’s availability. For example, fi

equals the replicated number of chunks Ci’s at the
eMule peers. A larger fi shows that Ci has a larger
source peer number. Thus, a newly joining peer can
download Ci more quickly.

Fig. 2 presents the eMule’s chunks selection and
replication algorithm. Several criteria are used to
replicate as many file chunks between peers as pos-
sible according to their availability (frequency). The
rarest chunks (with a lower frequency) have a higher
priority to be replicated. Its design goal is to make as
fast overall downloading speed as possible by pro-
viding more sources for every chunk.

To obtain the maximum overall downloading
throughput, the eMule peer follows the four criteria
shown in Fig. 2 to replicate the chunks.

eMule server

TCP TCP

TCP
TCP

TCP
TCP

TCPTCP
TCP

TCP

TCP UDP

UDP UDP

UDP

UDP

UDP

eMule client

eMule client

Fig. 1 eMule architecture overview

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 469

Criterion 1 The chunks with the lowest frequency
(rarest) should be downloaded with the highest prior-
ity (first); it is called rarest-first. This design enables
the newly joining peers to have more available
sources and speeds up the downloading process.
Criterion 2 The chunks used to do preview have the
second priority. In eMule implementation, the first
and last chunks of a file are marked as the preview
ones as players often use them to parse the correct
metadata. The metadata are necessary for the players
to set up and initialize the decoders.
Criterion 3 The rarest chunks that have been in the
downloading process have the third priority. Al-
though these chunks have already been downloaded

at the current receiving peer, their availability is still
very small as their frequency is still in the rare bound.
The receiving peer tries to spread this chunk’s repli-
cation request to each source peer of the file. After
these source peers receive the replication request,
they will put this chunk to their download request
queue. This operation can increase the chunk repli-
cations in the whole network, and thus improve the
overall downloading performance.
Criterion 4 Partially retrieved chunks should be
completed before a peer starts to download the others.

4 The new algorithm

In this section, we describe the proposed WDCD

algorithm, which adds the streaming support to the
original eMule system by enhancing the chunk selec-
tion and replication algorithm. Its design goal is to
make the chunks arrive at the streaming peer’s player
buffer within their playback time while keeping the
swarming efficiency of the chunk replication algo-
rithm among the downloading peers.

Fig. 3 gives the overview of the WDCD algo-
rithm. The file chunks list is divided into two win-
dows by a cursor tdeadline (tdeadline is defined in Table 1,
and it is moving along with the player’s wall clock of
the PAD client). If one chunk downloading could not
be finished within tdeadline, this chunk was assumed to
be dropped at the PAD client player, and this will
cause the player jitter and discontinuity. There are
two windows in Fig. 3: (1) Buffering window. The
window size is fixed and the chunk number is used as
the unit. To describe the algorithm in a simple and
easy way, we assume that the media file is a constant
bit rate (CBR) stream and the chunk duration is fixed
as one second. Thus the buffering window size has the
same value as the player’s buffer size in our WDCD
algorithm description. (2) Next-play-window. Its
window size is variable and equals the file duration
minus tdeadline. The window size is changing when
tdeadline is shifting, until it finally reaches zero. The
chunks at this window have larger playback time-
stamps than tdeadline, so they are the next ones to be
played at the player. They should be downloaded with
a higher priority compared with the chunks at the
buffering window. Inside the next-play-window, the

procedure GetNextRequestedChunks(F)
Define three frequency zones by bounds, veryRare-

Bound, and rareBound;
while Ci is F’s chunk

if (Ci is a preview block)
criterion_preview=true;

endif
if (Ci is in downloading state) and (i<veryRareBound)

criterion_requested=true;
endif
if (Ci has been downloaded partially)

criterion_completion=
downloaded size/CHUNK_SIZE;

endif
if (i<veryRareBound)

Ri=i*25 /*Criterion 1*/
+(criterion_preview==true)?0:1 /*Criterion 2*/
+(100−criterion_completion); /*Criterion 4*/

else if (criterion_preview==true)
Ri=(criterion_requested!=true)?10000:30000

/*Criterion 3*/
 +(100−criterion_completion); /*Criterion 4*/

else if (i<rareBound)
Ri=i*25 /*Criterion 1*/

+(criterion_requested!=true)?10101:30101
/*Criterion 3*/

+(100−criterion_completion); /*Criterion 4*/
else if (criterion_requested!=true)

Ri=20000 /*Criterion 3*/
+(100−criterion_completion); /*Criterion 4*/

else
Ri=40000 /*criterion 3*/

+criterion_completion; /*criterion 4*/
endif

end while
Pick the chunk with the smallest Rank value as the one to

be the requested next;
end procedure

Fig. 2 eMule chunk selection algorithm

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 470

chunks with a timestamp closer to tdeadline have a
higher downloading priority. If one chunk could not
finish downloading within its playback time, it would
be marked as ‘missed’ for this PAD client’s playing
request.

In the WDCD algorithm, a new parameter
named next-play-frequency (npf) (Table 1) is added
to the file chunks. The chunk with a larger npf value
has a higher replication priority in the peer’s chunk
selection procedure. The npf value of chunk Ci is
calculated by

deadline

deadline

npf (), ,
npf

npf (), .
i i

i
i i

L i t t
L i t t

− − ≤⎧
= ⎨ + − >⎩

 (1)

In Eq. (1), the PAD client increases the npf value

of the chunk that is behind the player’s playback
deadline. The chunk closer to tdeadline will have a larger
npf value and it is more urgent to be replicated for
streaming requests. For those chunks that have missed
the playback deadline (ti≤tdeadline), the PAD client
needs to restore its npf value using Eq. (1) to indicate
that it is not needed any more for this PAD client’s
streaming request. The main reasons for the condition
ti≤tdeadline branch of Eq. (1) are:

1. For the chunks that have been missed at the
current PAD peer, the streaming request for these
chunks is meaningless and the chunk’s npf value
needs to be decreased. As the npf notion indicates, the
chunk’s npf value will impact its replication priority
at the downloading clients, so the PAD client needs to
revise these chunks’ npf values as soon as possible
once they are not needed by the player. Then, the
chunk with the smallest frequency value (the rarest)
can be ranked higher in the chunk selection procedure.
This rarest-first order chunk replication can guarantee
the overall downloading performance of the eMule
network.

2. For the chunks that have been played at the
current PAD client, their replications have already
been increased by one and their npf values also need
to be reduced. With the increased availability of these
chunks, their replication priorities should be defi-
nitely lowered for both streaming and downloading
requests. This makes the chunk replication algorithm
more efficient for both PAD and downloading clients.

As above described, in the WDCD algorithm
two key parameters are used in the peer’s chunk se-
lection procedure. One is the frequency f and the other
is the next-play-frequency npf. A larger f of the chunk
indicates that there are more copies for this chunk in
the eMule network, so the newly joining peer will get
the chunk more easily and faster. These kinds of
chunks will have the lower downloading priority. A
smaller f means that the chunk is rare or very rare in
the eMule network. It is hard for the other peers to
download this chunk because there are not enough
replications (sources) in the network, and the chunk
will need to have a higher downloading priority. This

Player buffer

1 2 3 4 5 6 7 8 9 10 11 12
Buffering window Next-play-window

eMule server

npfi =npfi–(Li–i)

npfi=npfi+L−i

 tdeadline

Fig. 3 The wish driven chunk distribution algorithm

Table 1 Notations used in the wish driven chunk dis-
tribution (WDCD) algorithm
Term Definition
S One central server of the eMule network
Pi Peer i
Ci The ith chunk of file F
F One file sharing by the eMule network
ƒi The frequency of chunk Ci at the eMule network

indicating this chunk’s availability in eMule
peers

Ri The rank value of chunk Ci. A peer will always
select the chunk with the smallest rank value to
replicate

npfi The next-play-frequency value of chunk Ci,
indicating the streaming requests density for
the chunk Ci. A peer will try to replicate the
chunks with higher npfi values so that these
chunks can arrive at the PAD client’s player
buffer before the playback deadline

L The total chunk size of file F
tdeadline The chunks playback deadline of the PAD client.

If a chunk cannot reach the PAD client’s
player buffer within tdeadline, this packet is as-
sumed to be dropped for the playing request

ti The timestamp of chunk Ci

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 471

rarest-first policy will replicate all chunks of a file to
as many peers as possible so that the newly joining
peer can have as many sources of the file as possible.
In turn, the receiving peer can download the file from
different parallel sources to achieve the maximum
downloading throughput. npf is different from f; the
npf value indicates how urgently the PAD clients are
waiting for the chunk to play it. A chunk with a larger
npf value will be requested more urgently, so it must
have a higher replication priority than the other
chunks. Combining these two parameters, there are
four possible cases to decide a chunk replication pri-
ority for the peer clients (Table 2).

Priority 1 This is the worst chunk of the system and
often happens at a flash crowd scenario. The chunk
has a small number of sources or replications, but
there are many PAD clients sending streaming re-
quests for it. BASS discusses several proposals for
this case. It is obvious that this kind of chunk should
have the highest replication priority because it has the
maximum number of waiting PAD clients but the
rarest copies in the system. For either streaming re-
quests or downloading requests, it should be repli-
cated with the highest priority.
Priority 2 Although there are not too many waiting
PAD clients for the chunk, the network still does not
have enough copies at the peers. This chunk should
have a lower replication priority than the chunk in the
Priority 1 case. For this case, we should increase the
chunk’s availability by replicating it to more peers,
which is the rarest-first replicating algorithm of the
original eMule system. This rarest-first replication
order benefits both the streaming and the download-
ing clients. With the increase of the chunk’s avail-
ability, the later joining PAD clients can have the
shorter startup time and fewer playback jitters. Cer-
tainly, the newly joining downloading clients can also
obtain the faster downloading speed.

Priority 3 In this case, the chunk has a large npf
value, meaning that there are many pending PAD
clients streaming requests for it. But there are also
enough replications of this chunk at the network be-
cause its frequency f is large. Thus, the third priority
is given to this chunk’s replication request although it
is requested by the PAD clients very urgently. It is
because the network has provided enough sources for
this chunk.
Priority 4 It is similar to the case of Priority 3, but
there are fewer PAD clients waiting for the chunk.
Thus, we assign the lowest replication priority to it.

Based on the rules described in the above four
cases, our WDCD algorithm proposes an enhanced
chunk selection and replication procedure by com-
bining the chunk’s replication availability (defined by
the f value) and the streaming request’s density (de-
fined by the npf value). This enhancement can add the
streaming capability to the eMule network and has
little impact on its downloading performance.

5 Experiment evaluation

Our algorithm is aimed to add streaming support
to the eMule file sharing system, so we need to
evaluate the performance for both streaming and
downloading features. We use the startup time and
playback jitters to evaluate the streaming perform-
ance. The startup time is defined as the time that one
peer needs to wait to view a movie since the playback
request is sent. A well-designed P2P VOD system
must have a very short startup time to meet the user
experience. In our experiments, the continuity index
(CI) proposed in the CoolStreaming, defined as the
number of pieces that arrive before the playback
deadline compared to the total number of pieces, is
used to measure the playback jitters. A larger CI
means a better playback performance. Besides the
streaming performance, the WDCD algorithm should
still be able to keep the original eMule system’s
downloading throughput.

To verify the WDCD algorithm performance, we
use the NTCUns (NCTUns, 2009) simulator to run
and check the prototype implementation. The
NCTUns is a Linux kernel based network simulator.
It can run real applications directly from the simulated
network node. It can provide the same P2P network

Table 2 The chunk’s replication priority assignment
of the WDCD algorithm
Replication priority npf f

Priority 1 High Low
Priority 2 Low Low
Priority 3 High High
Priority 4 Low High

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 472

running environment as the real Internet based P2P
framework. The prototype implementation is based
on the aMule (aMule, 2009) open source project; we
modify the aMule framework by adding our new
algorithm. Because the NCTUns can run the aMule
application as a normal Linux application from the
simulated network node inside, it is very easy for us to
design and implement our experiments. Since we can
run the aMule applications directly in both the
NCTUns simulator and the real Linux environment
without any modification, we believe the experiment
results achieved by NCTUns are the same as in the
case of running over the real Internet.

In our experiments, the NCTUns is running on a
Dell PC with Intel DuoCore and 2 GB DDR. Because
NCTUns can support only a maximum of 64 network
nodes at one PC, we set up an autonomous system
(AS) network model with 64 nodes. One of them runs
the aMule server, three are configured to run the
aMule client as the seeder, and the remaining 60
nodes run the downloading clients or PAD clients.
Every peer has a symmetrical network bandwidth and
the upload and download bandwidths are both 512
kb/s. The seed file is a CBR movie encoded with a bit
rate of 512 kb/s, and its total playback duration is
120 s. To make the experiment simpler and easier, we
cut the file into pieces of chunk with 64 KB size, so
every chunk has a playback duration of 1 s. Our model
is evaluated in a synthetic scenario where all peers
send the playback or downloading requests simulta-
neously. This is the classic flash crowd case in a VOD
system. Every experiment lasts 200 s. The 60 peer
clients send the requests at the same time for every
experiment with different percentages of PAD clients.
A total of 20 experiments were carried out.

In the evaluation experiments, the performance
results of the eMule rarest-first algorithm are com-
pared with those of the WDCD algorithm. In our
experiments, we focus mainly on the results of Prior-
ity 3 and Priority 4 cases in Table 2 to analyze the
streaming performance improvement and the impact
of the downloading performance.

5.1 Startup time evaluation

We compare the startup time performances be-
tween the original eMule and the enhanced eMule
with WDCD. The results (Fig. 4) indicate that the

WDCD algorithm has significantly improved the
peer’s startup time; most of the peers can start the
streaming within 30 s. Considering that the peer’s
initial buffering time is fixed as 10 s and all peers are
requesting for the video stream from the seed nodes in
flash crowd mode, this startup time performance is
quite a large improvement. The original eMule im-
plementation has a larger startup time delay because
the chunks at the movie head do not have a higher
priority than the chunks in other positions to arrive at
the receiving peer’s player buffer. In the original
eMule system, a receiving peer obtains the chunks in
the rarest first order, so there are chances by which the
head chunks arrive at the player behind the tail chunks.
Then the peer cannot start the playback until these
head chunks are received. This chunk downloading
order will greatly increase the peer’s startup time. The
worst cases are when the head chunks are received
behind all the other chunks of the movie, and then the
peer almost needs to wait for the playback until the
full movie is downloaded completely. For the WDCD
algorithm, the head chunks have higher priority to be
replicated and can arrive at the streaming receiving
peer before the playback deadline. At the beginning
of the experiment, the PAD clients start to request the
head chunks sequentially, and then the eMule server
will increase these chunks’ npf values to indicate
these urgent streaming requests. When the seeding
peers try to replicate the chunks to the whole eMule
network, they will assign a higher replication priority
to the chunk with a higher npf value. Thus, the movie

0 10 20 30 40 50
Startup time (s)

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fra
ct

io
n

of
 p

ee
rs

0

Fig. 4 Cumulative distribution of the startup time for the
two different algorithms of all runs
The vertical line represents the earliest possible startup time
when a peer could start the playback

Modified eMule
Original eMule

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 473

head chunks will have some copies between the peers,
and then the PAD clients have more chances to obtain
the head chunks before the playback deadline in the
enhanced eMule system and can have better startup
time performance.

5.2 Playback jitter performance evaluation

Fig. 5 shows the CI as a function of PAD client’s
percentage. When the PAD clients’ percentages are
less than 60%, the streaming peers in the WDCD
enhanced system have a larger CI and show a better
playback performance. In the WDCD algorithm, the
chunks with higher npf values have higher replication
priorities, so the PAD client has more chances to
obtain these chunks before the playback deadline. For
the chunks with a zero npf value, their replication
priority is decided by the frequency value. This is also
helpful in smoothing the PAD client’s playback be-
cause there are chances by which these chunks are
downloaded at the next-play-window. When the PAD
client number is increasing and the downloading
client number is decreasing at the same time, it is
harder for PAD clients to obtain the chunks before
their playback deadlines. This is because we use the
flash crowned model to simulate the peers’ arrivals,
and all the PAD streaming clients are requesting for
the movie head chunks from the limited three seeders.
At the beginning, only the head chunks are replicated
between the peers because they have the highest pri-
ority, and there are limited sources for these chunks,
so the PAD clients will face the content bottleneck at
the player. This case is very much like the centralized
client/server architecture. It will increase the initial
startup time and the playback jitters.

We can conclude from the above results and
analyses that the WDCD algorithm can achieve a good

streaming performance when the PAD client per-
centage is lower than that of the downloading client.
This scenario is the default behavior of the eMule
system where most of the clients are the downloading
ones who are just downloading the contents in the
background without simultaneous streaming activi-
ties. Nowadays, more and more devices are available
with the eMule downloading capability, such as the
network attached storage (NAS) devices, which pro-
vide only the downloading function and do not sup-
port a streaming user interface. With the increase of
these kinds of downloading only devices, the WDCD
algorithm can enable the PAD clients of eMule to
obtain better streaming preview experiences.

5.3 Downloading speed performance evaluation

Besides the streaming playback performance, we
also need to evaluate whether the WDCD algorithm
reduces the overall eMule downloading throughput.
We compare the downloading speed of the original
eMule implementation and the WDCD algorithm
enhanced eMule system. The peer’s downloading
throughput value is very stable for the original eMule
rarest-first algorithm as the percentage of PAD clients
varies (Fig. 6). This is because the increasing
streaming clients do not change the chunk’s fre-
quency value or replication priority. As for the
WDCD algorithm, the peer’s downloading speed
decreases as the PAD client percentage increases. In
our experiments the flash crowd mode is adopted, so
all the peers are requesting for the chunks in playback
timestamp order from the three seed nodes at the
beginning. When the number of PAD clients is in-
creasing, the head chunks of the file have higher rep-
lication priorities, and the tail chunks have little
chance to be replicated. Thus, the peer must wait for a
longer time to finish the downloading of the tail
chunks. The overall downloading performance will
not be recovered until all chunks’ npf values reach
zero after the 120 s playback duration. Finally the
peers select and replicate the chunks in rarest-first
order again.

The results in Fig. 6 support the same conclusion
as drawn from Fig. 5 that the WDCD algorithm can
have a better streaming playback performance while
keeping a good overall downloading throughput when
the PAD clients have a low percentage over the total
clients.

0 20 40 60 80 1000.5

0.6

0.7

0.8

0.9

1.0

PAD clients as a percentage of total clients (%)

C
I

Fig. 5 Continuity index (CI) versus the PAD client
number (all runs)

 Modified eMule

Original eMule

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 474

6 Conclusions and future work

In this paper, we show a simple enhanced chunk
selection and replication algorithm to add the playing-
as-downloading capability to the eMule system. This
algorithm is based on the original eMule rarest-first
algorithm. It needs only a small modification and is
easy to implement. We have deployed this modifica-
tion at aMule source code and evaluated the prototype
with the real application level simulators of NCTUns.
The results show that the peer could achieve a good
streaming playback performance and will not degrade
the system’s overall downloading throughput if the
number of streaming clients is much smaller than that
of the downloading clients.

In the future, we will modify the peer’s arrival
model in our experiment to learn more about the
WDCD performance. The flash crowd arrival model
is currently used for simplicity, but it is more often for
the P2P system to use the Poisson distribution model
to simulate the peer’s arrival. An attempt will be made
to compare the implementation and the architecture
between the eMule and BitTorrent systems to study
their suitability for the PAD feature.

Acknowledgements

The authors would like to thank Albert S. Wang

(e-mail: albert_s_wang@yahoo.com), previously with
Agilent Technologies and now a visiting fellow at the
Advanced Digital Technology and Instrument Insti-
tute of Zhejiang University, for his contribution to
this manuscript.

References
aMule, 2009. The aMule Open Source Project. Available from

http://www.amule.org/ [Accessed on July 11, 2009].
Androutsellis-Theotokis, S., Spinellis, D., 2004. A survey of

peer-to-peer content distribution technologies. ACM
Comput. Surv., 36(4):335-371. [doi:10.1145/1041680.
1041681]

Annapureddy, S., Guha, S., Gkantsidis, C., Gunawardena, D.,
Rodriguez, P.R., 2007. Is High-Quality VOD Feasible
Using P2P Swarming? Proc. 16th Int. Conf. on World
Wide Web, p.903-912. [doi:10.1145/1242572.1242694]

Bickson, D., Dolev, D., Weiss, Y., 2007. Efficient Peer-to-Peer
Content Distribution. Available from http://leibniz.cs.
huji.ac.il/tr/858.pdf [Accessed on July 11, 2009].

Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Row-
stron, A., Singh, A., 2003. SplitStream: High-Bandwidth
Multicast in Cooperative Environments. Proc. 19th ACM
Symp. on Operating Systems Principles, p.298-313.
[doi:10.1145/945445.945474]

Cheng, B., Stein, L., Jin, H., Zhang, Z., 2008a. A Framework
for Lazy Replication in P2P VoD. Proc. 18th Int. Work-
shop on Network and Operating Systems Support for
Digital Audio and Video, p.93-98. [doi:10.1145/1496046.
1496068]

Cheng, B., Stein, L., Jin, H., Liao, X., Zhang, Z., 2008b.
GridCast: improving peer sharing for P2P VoD. ACM
Trans. Multimedia Comput. Commun. Appl., 4(4), No. 26.
[doi:10.1145/1412196.1412199]

Cheng, B., Stein, L., Jin, H., Zhang, Z., 2008c. Towards
Cinematic Internet Video-on-Demand. Proc. 3rd ACM
SIGOPS/EuroSys European Conf. on Computer Systems,
p.109-122. [doi:10.1145/1352592.1352605]

Chu, Y.H., Rao, S.G., Seshan, S., Zhang, H., 2002. A case for
end system multicast. IEEE J. Sel. Areas Commun.,
20(8):1456-1471. [doi:10.1109/JSAC.2002.803066]

Dana, C., Li, D., Harrison, D., Chuah, C., 2005. Bass: Bit-
Torrent Assisted Streaming System for Video-on-De-
mand. Proc. IEEE 7th Workshop on Multimedia Signal
Processing, p.1-4. [doi:10.1109/MMSP.2005.248586]

Do, T.T., Hua, K.A., Tantaoui, M.A., 2004. P2VoD: Providing
Fault Tolerant Video-on-Demand Streaming in Peer-to-
Peer Environment. IEEE Int. Conf. on Communications,
p.1467-1472. [doi:10.1109/ICC.2004.1312755]

Do, T.T., Hua, K.A., Tantaoui, M.A., 2008. Robust video-on-
demand streaming in peer-to-peer environments. Comput.
Commun., 31(3):506-519. [doi:10.1016/j.comcom.2007.
08.024]

Füllemann, L., 2005. P2P Mechanism Design. Available from
http://dcg.ethz.ch/theses/ss05/p2pmd_report.pdf [Accessed
on July 11, 2009].

Ghose, D., Kim, H.J., 2000. Scheduling video streams in
video-on-demand systems: a survey. Multimedia Tools
Appl., 11(2):167-195. [doi:10.1023/A:1009681521536]

GnuTella, 2009. The Annotated Gnutella Protocol Specifica-
tion v0.4. Available from http://rfc-gnutella.sourceforge.

 PAD clients as a percentage of total clients (%)

Fig. 6 Download speed versus the PAD client number (all
runs)

0 20 40 60 80 100
0

256

512

D
ow

nl
oa

d
sp

ee
d

(k
b/

s)

Modified eMule
Original eMule

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(6):465-475 475

net/developer/stable/index.html [Accessed on July 11,
2009].

Guo, Y., Suh, K., Kurose, J., Towsley, D., 2003. P2Cast: Peer
to Peer Patching Scheme for VOD Services. Proc. 12th
Int. Conf. on World Wide Web, p.301-309. [doi:10.1145/
775152.775195]

Guo, Y., Suh, K., Kurose, J., Towsley, D., 2008. DirectStream:
a directory-based peer-to-peer video streaming service.
Comput. Commun., 31(3):520-536. [doi:10.1016/j.com-
com.2007.08.022]

Huang, Y., Fu, T.Z.J., Chiu, D.M., Lui, J.C.S., Huang, C., 2008.
Challenges, design and analysis of a large-scale P2P-VoD
system. ACM SIGCOMM Comput. Commun. Rev.,
38(4):375-388. [doi:10.1145/1402946.1403001]

Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, F.M.,
O′Toole, J.W.Jr., 2000. Overcast: Reliable Multicasting
with an Overlay Network. Usenix Operating System De-
sign & Implementation Symp., p.197-212.

Jiang, X.X., Dong, Y., Xu, D.Y., Bhargava, B., 2003. GnuS-
tream: a P2P Media Streaming System Prototype. Proc.
Int. Conf. on Multimedia and Expo, 2:II-325-8. [doi:10.
1109/ICME.2003.1221619]

Koo, S.G.M., Lee, C.S.G., Kannan, K., 2005. A Re-
source-Trading Mechanism for Efficient Distribution of
Large-Volume Contents on Peer-to-Peer Networks. Proc.
14th Int. Conf. on Computer Communications and Net-
works, p.428-433. [doi:10.1109/ICCCN.2005.1523902]

Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A., 2003.
Bullet: high bandwidth data dissemination using an
overlay mesh. ACM SIGOPS Oper. Syst. Rev., 37(5):282-
297. [doi:10.1145/1165389.945473]

Kulbak, Y., Bickson, D., 2005. The eMule Protocol Specifi-
cation. Available from http://www.cs.huji.ac.il/labs/
danss/p2p/resources/emule.pdf [Accessed on July 11,
2009].

Lee, G.J., Choi, C.K., Choi, C.Y., Choi, H.K., 2005. P2Proxy:
Peer-to-Peer Proxy Caching Schema for VOD Services.
Proc. 6th Int. Conf. on Computational Intelligence and
Multimedia Applications, p.272-277. [doi:10.1109/IC-
CIMA.2005.42]

Leibowitz, N., Ripeanu, M., Wierzbicki, A., 2003. Decon-
structing the Kazaa Network. Proc. 3rd IEEE Workshop
on Internet Applications, p.112-120. [doi:10.1109/
WIAPP.2003.1210295]

Liao, X., Jin, H., Liu, Y., Ni, L.M., 2007. Scalable live
streaming service based on interoverlay optimization.
IEEE Trans. Parall. Distr. Syst., 18(12):1663-1674.
[doi:10.1109/TPDS.2007.70708]

Liu, J.C., Rao, S.G., Li, B., Zhang, H., 2008. Opportunities and
challenges of peer-to-peer Internet video broadcast. Proc.
IEEE, 96(1):11-24. [doi:10.1109/JPROC.2007.909921]

Liu, Y., Guo, Y., Liang, C., 2008. A survey on peer-to-peer
video streaming systems. Peer-to-Peer Network. Appl.,
1(1):18-28. [doi:10.1007/s12083-007-0006-y]

Magharei, N., Rejaie, R., 2007. PRIME: Peer-to-Peer Re-
ceiver-Driven Mesh-Based Streaming. INFOCOM 26th
IEEE Int. Conf. on Computer Communication,
p.1415-1423. [doi:10.1109/INFCOM.2007.167]

Magharei, N., Rejaie, R., Guo, Y., 2007. Mesh or Multiple-
Tree: a Comparative Study of Live P2P Streaming Ap-
proaches. 26th IEEE Int. Conf. on Computer Communi-
cations, p.1424-1432. [doi:10.1109/INFCOM.2007.168]

Mol, J.J.D., Pouwelse, J.A., Meulpolder, M., Epema, D.H.J.,
Sips, H.J., 2008. Give-to-get: free-riding resilient video-
on-demand in P2P systems. SPIE, 6818:681804. [doi:10.
1117/12.774909]

NCTUns, 2009. The NCTUns Network Simulator. Available
from http://nsl.csie.nctu.edu.tw/nctuns.html [Accessed on
July 11, 2009].

Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr,
A., 2005. Chainsaw: eliminating trees from overlay mul-
ticast. LNCS, 3640:124-140. [doi:10.1007/11558989]

Pouwelse, J.A., Garbacki, P., Epema, D.H.J., Sips, H.J., 2005.
The BitTorrent P2P file-sharing system: measurements
and analysis. LNCS, 3640:205-216.

Rodriguez, P., Tan, S., Gkantsidis, C., 2006. On the feasibility
of commercial, legal P2P content distribution. ACM
SIGCOMM Comput. Commun. Rev., 36(1):75-78. [doi:10.
1145/1111322.1111339]

Sandberg, O., Wiley, B., 2000. Freenet: a Distributed
Anonymous Information Storage and Retrieval System.
Proc. Workshop on Design Issues in Anonymity and
Unobservability, p.311-320.

Tian, Y.,Wu, D., Ng, K.W., 2008. A novel caching mechanism
for peer-to-peer based media-on-demand streaming. J.
Syst. Archit., 54(1-2):55-69. [doi:10.1016/j.sysarc.2007.
03.008]

Tran, D.A., Hua, K.A., Do, T., 2003. ZIGZAG: an Efficient
Peer-to-Peer Scheme for Media Streaming. 22nd Annual
Joint Conf. of IEEE Computer and Communications So-
cieties, 2:1283-1292.

Vlavianos, A., Iliofotou, M., Faloutsos, M., 2006. BiTos:
Enhancing BitTorrent for Supporting Streaming Appli-
cations. Proc. IEEE 25th Int. Conf. on Computer Com-
munications, p.1-6. [doi:10.1109/INFOCOM.2006.43]

Zhang, X., Liu, J., Li, B., Yum, T.S.P., 2005. CoolStreaming/
DONet: a Data-Driven Overlay Network for Peer-to-Peer
Live Media Streaming. Proc. 24th Annual Joint Conf. of
IEEE Computer and Communications Societies, 3:2102-
2111. [doi:10.1109/INFCOM.2005.1498486]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

