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Abstract: As e-commerce applications and the underlying public key infrastructure have become more popular over time,
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many e-commerce applications such as e-voting, e-bidding/auction, and privacy-preserving data mining. These two schemes are
existentially unforgeable against chosen-message attacks and chosen-warrant attacks in the random oracle model. Although it is
based on factoring, the threshold Paillier proxy scheme operates without requiring any trusted dealer or combiner. Thus, these two
schemes are practical for integration in modularized secure multi-party protocols.
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1 Introduction

As e-commerce applications and the underlying
public key infrastructure have become more popular over
time, many digital mechanisms emulating traditional
business activities have been developed and deployed,
e.g., the digital signature scheme (Rivest et al., 1978;
ElGamal, 1985; Paillier, 1999; Sun et al., 2008), which
mimics the signing process. The accompanying security
and trust issues have been analyzed extensively. In order
to build a full-fledged secure digital world, secure imple-
mentations of more commercial activities primitives are
required.

In this paper, we present the proxy signature mech-
anism (Mambo et al., 1996) based on the homomorphic
Paillier cryptosystem (Paillier, 1999; Jiang et al., 2008).
Proxy schemes can be used in applications such as e-
voting, contract signing, e-bidding/auction, private infor-
mation retrieval, and privacy-preserving data mining. In
these applications, a party (the original signer) respon-
sible for a task may be preoccupied in some other busi-
ness and wish to delegate his/her signing capacity to a
designated person (the proxy signer) such that both will
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be responsible for the documents approved by the proxy
signer. Over the past several years, there have been many
extensions on the basic proxy scheme. For example, Yi
et al. (2000) enabled multiple signers to delegate their
joint signing capacity to one proxy signer. Shum and
Wei (2002) proposed a scheme that protected the proxy
signer’s identity. Wang and Pieprzyk (2003) proposed
an efficient one-time proxy signature scheme. Lu and
Cao (2004) presented a Schnorr-based proxy signature
scheme based on the discrete logarithm problem over a
conic group. Boldyreva et al. (2003) formalized the se-
curity notion for proxy signature and presented a prov-
ably secure scheme. Schdult et al. (2008) further com-
pleted the security model for a proxy signature scheme
under the proxy key exposure attack. In a proxy scheme,
the original signer has to trust the discerning capability of
the proxy signer for the period of delegation. Although
‘trust’ is so convenient an assumption for running proto-
cols efficiently, it is a double-edged sword that could en-
danger the security of many applications designed based
on assumptions of the good will of participants. To al-
leviate the severity of abused trust, the responsibility is
usually shared over a group of representatives. For ex-
ample, in a threshold proxy signature scheme (Sun et
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al., 1999), a valid proxy signature can be produced only
when a group of proxy signers, satisfying a specific ac-
cess structure, approves the contents of documents.

In the past, threshold proxy signature schemes
based on the factoring problem faced more difficulties
than schemes (Sun et al., 1999; Javier and German,
2004) based on the discrete logarithm problem. For ex-
ample, Hwang’s threshold RSA proxy signature scheme
(Hwang et al., 2003) breaks down when d colluding
proxy signers derive the private key of the original signer
(Wang et al., 2004), where d is the threshold. Later, Lu et
al. (2005) proposed a threshold proxy signature scheme
that required a trusted dealer. Chang and Chang (2007)
also proposed an RSA-based threshold proxy signature
scheme to fix the security flaws of Hwang’s scheme.
However, the latter scheme required a trusted combiner
to avoid the leakage of the secret key. Contrary to the
above unsuccessful approaches, Shoup’s threshold RSA
signature scheme (Shoup, 2000) which requires minimal
trust assumption is provably secure and is efficient in that
every participant can proceed signing a document inde-
pendently. In our previous work (Ting and Huang, 2008),
we developed an efficient RSA threshold proxy scheme
following Shoup’s methodology.

In this paper, we first propose a provably secure
proxy signature scheme for the factoring-based Pail-
lier cryptosystem then extend it to a distributed thresh-
old proxy scheme. The additive homomorphism of the
Paillier system is preserved in both schemes and al-
lows various goals to be accomplished securely in ap-
plications like e-auction (Abe and Suzuki, 2002), e-
voting (Baudron et al., 2001), private information re-
trieval (Chang, 2004), or privacy-preserving data min-
ing (Zhang et al., 2005; Magkos et al., 2008; Li et al.,
2009). The proposed proxy scheme is designed paral-
lel to both the Schnorr signature scheme (Schnorr, 1991)
and the Guillou-Quisquater signature scheme (Guillou
and Quisquater, 1988). The proposed threshold scheme
extends the ideas of Shoup’s threshold RSA scheme
(Shoup, 2000) to the group of quadratic residues QRn2 .
In addition, since a proxy signature scheme has the same
architecture as an identity based signature scheme, both
schemes can be suitably modified for those applications.

2 Paillier signature scheme

In the following, we briefly summarize the Pail-
lier probabilistic signature scheme (Paillier, 1999). The
choice of parameters deviates slightly from the original

scheme due to the proposed extensions to the proxy and
the threshold proxy signature schemes.
Key generation Let the public key of a signer be
(n,g), where n = p ·q, p = 2p′+1, q = 2q′+1 (the con-
straints p = 2p′+1 and q = 2q′+1 are required only in
the threshold proxy signature scheme such that genera-
tors in QRn2 can be easily selected without the knowl-
edge of p or q), p, q, p′, q′ are large prime numbers, and
g ∈ QRn2 (let QRn2 denote the set of quadratic residues
in Zn2 ) satisfies ordn2(g) = n · p′ ·q′. The corresponding
private key is m = p′ ·q′.
Signing Given an arbitrary message M, the corre-
sponding signature (s, t) is computed as follows:

s≡ L(h(M)m mod n2)
L(gm mod n2)

(mod n),

t ≡ (h(M) ·g−s)n−1 (mod m) (mod n),

where L(u) , (u− 1)/n for u ≡ 1 (mod n) and h(·) is
a collision-resistant hash function that maps a message
of arbitrary length to an element in QRn2 . Practically,
one can use a collision-resistant hash function h′(·) that
maps {0,1}∗ to Z∗n and let h(M)≡ h′(M)2 (mod n2) for
a message M.

Verification A verifier checks that h(M)
?≡gs · tn

(mod n2). If this congruence equation is satisfied, the
pair (s, t) is a valid signature for the message M.

Please refer to (Paillier, 1999, Theorems 14 and 15)
for the correctness and security issues of this scheme.
Based on the intractability assumption of breaking the
RSA function, the above Paillier signature scheme is
proven existentially unforgeable against chosen-message
attacks in the random oracle model (Paillier, 1999,
Corollary 18).

3 Paillier proxy signature scheme

3.1 The proposed Paillier proxy signature scheme

In this section, we present the Paillier proxy signa-
ture scheme, the security proof of which will be provided
in Section 5.
Key generation The choices for the public and pri-
vate keys are the same as described in Section 2.
Delegation The public key of the original signer P0

is (n,g) and the corresponding private key is m. The
proxy signer P1 is associated with a unique identification
number ID1. The original signer P0 prepares the warrant
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W1 for the proxy signer P1 and computes the proxy key
(x,y) as follows:

x≡ L(h(0||W1||ID1)
m mod n2)

L(gm mod n2)
(mod n),

y≡ (h(0||W1||ID1) ·g−x)n−1 (mod m) (mod n),

where ‘||’ denotes the concatenation of two strings.
The original signer P0 publishes the warrant W1 and

sends the proxy key pair (x,y) to the proxy signer P1 via a
secure channel. The proxy signer P1 verifies the received
proxy key pair by the following:

h(0||W1||ID1)≡ gx · yn (mod n2),

which is essentially the verification equation of a stan-
dard Paillier signature scheme.
Proxy signing The proxy signer P1 signs a message
M on behalf of the original signer P0 as follows:

1. P1 picks a pair of random numbers (a,b), where
a∈Zn3 ,b∈QRn, and computes and publishes R≡ ga ·bn

(mod n2).
2. P1 computes s and t as follows:

{
s = x ·h(1||M||R)+a,

t ≡ yh(1||M||R) ·b (mod n).
(1)

The proxy signature is (s, t,R).
Verification Anyone can verify the validity of a
proxy signature (s, t,R) of a message M with the pub-
lic key (n,g) of the original signer, the warrant W1, and
the identification ID1 of the proxy signer P1 through the
following congruence:

gs · tn ?≡h(0||W1||ID1)h(1||M||R) ·R (mod n2).

Note that

gs · tn ≡ (gx)h(1||M||R) ·ga · (yn)h(1||M||R) ·bn

≡ h(0||W1||ID1)h(1||M||R) ·R (mod n2).

3.2 Threshold extension

In order to derive the threshold version, we further
modify the components of Eq. (1) as follows:





s = x ·h(1||M||R)+a∆,

t ≡ yh(1||M||R) ·b∆ (mod n),
R≡ (ga ·bn)∆ (mod n2),

where ∆ = `! for a (d, `)-threshold scheme and the proxy
signature (s, t,R) satisfies the verification equation

gs · tn ≡ h(0||W ||ID)h(1||M||R) ·R (mod n2).

Since both f1(a) ≡ ∆a (mod mn) and f2(b) ≡
∆ logg b (mod m) are permutations provided that
gcd(∆,mn) = 1 and gcd(∆,m) = 1, the values a∆
(mod mn) and b∆ (mod n) are still randomly distributed
over Z∗mn and QRn, respectively.

In a (d, `)-threshold proxy scheme, we would like
to share secretly the proxy key (x,y) to a set of proxy
signers {Pi}i=1,2,...,` (` << n) such that any subset S of
these signers {Pi}i∈S with ` ≥ |S| ≥ d can jointly sign a
document M on behalf of the original signer P0.

Using Shamir’s polynomial secret sharing (Shamir,
1979), the first part of the proxy key x is shared among
{Pi}i=1,2,...,` as {xi}i=1,2,...,` such that x ≡ ∑

i∈S
xiLi(0)

(mod mn). Each proxy signer Pi later individually cal-
culates the signature share si = xi · h(1||M||R) + ai∆.
The first part of the proxy signature, s, can be recon-

structed later from {si}i∈S, i.e., s∆ =
(

∑
i∈S

siLi(0)
)

∆

= h(1||M||R)
(

∑
i∈S

xiLi(0)
)

∆ + ∆2
(

∑
i∈S

aiLi(0)
)

, where

Li(x) , ∏
j∈S\{i}

x− j
i− j is the ith term of the Lagrange inter-

polation polynomial. In this procedure, the shared secret
xi is not revealed at the time a document is signed and
can be reused later. Note that ∆ introduced here cancels
all those i− j denominators in Li(x) such that the recon-
struction can be done without the secret modulus mn.

On the other hand, the second part of the proxy
key y should not be shared among {Pi}i=1,2,...,` as
{yi}i=1,2,...,` in a similar way such that y ≡ ∑

i∈S
yiLi(0)

(mod n). In that way, each proxy signer would not be
able to produce proxy signature share independently and
the proxy key y is exposed after signing one proxy signa-
ture.

To avoid this problem, we pick an arbitrary el-
ement D ∈ Z∗m as the exponent to be shared among
{Pi}i=1,2,...,` as {Di}i=1,2,...,` such that D ≡ ∑

i∈S
DiLi(0)

(mod m). One calculates the inverse of D (mod m),
i.e., G ≡ D−1 (mod m), calculates C ≡ yG (mod n),
and publishes C as the base. The second part of the
proxy signature becomes t ≡ CD·h(1||M||R) · b∆ (mod n)
and can be reconstructed from individual signature

shares by calculating ∏
i∈S

((
Ch(1||M||R)

)Di ·b∆
i

)∆Li(0)

≡
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(
yh(1||M||R) · ∏

i∈S
b∆Li(0)

i

)∆
(mod n).

4 Threshold Paillier proxy signature
scheme

The setup of this scheme consists of an original
signer P0, ` proxy signers {Pi}i=1,2,...,`, and a verifier.
For a proxy protected threshold scheme, each proxy
signer, Pi, associated with a unique identifier IDi, also
has his/her own secret key mi of a Paillier cryptosystem
with public key (ni,gi).
Key generation The choices of the public and private
keys are the same as described in Section 2.
Delegation P0 computes the proxy key (xi,Di) for
each Pi:

1. P0 calculates the master proxy key (x,y):

x≡ L(h(0||W ||ID)m mod n2)
L(gm mod n2)

(mod n),

y≡ (
h(0||W ||ID)g−x)n−1 (mod m) (mod n),

where ID = ID1||ID2|| · · · ||ID` and W is the group war-
rant.

2. P0 picks a random element D ∈ Z∗m, computes
G ≡ D−1 (mod m), calculates C ≡ yG (mod n), and
publishes C.

3. P0 picks two degree-(d−1) polynomials f (X) =
x+ r1X + r2X2 + · · ·+ rd−1Xd−1 and F(X) = D+R1X +
R2X2 +R3X3 + · · ·+Rd−1Xd−1, where ri ∈Zmn and Ri ∈
Zm are random numbers.

4. P0 sends the proxy key pair xi ≡ f (i) (mod mn)
and Di ≡ F(i) (mod m) to Pi in a secure manner for i =
1,2, · · · , `.

5. P0 computes the public verification key pair
ui ≡ gxi (mod n2) and vi ≡

(
CDi

)n (mod n2) for i =
1,2, · · · , ` and publishes {ui}i=1,2,··· ,` and {vi}i=1,2,··· ,`.
Proxy key verification Pi checks whether the follow-
ing congruences are satisfied:

ui ≡ gxi (mod n2),

vi ≡
(
CDi

)n (mod n2),

h(0||W ||ID)∆ ≡
`

∏
i=1

(ui · vi)
∆Li(0)

(≡ (gx · yn)∆) (mod n2).

Proxy signature share generation A set S of at least
d proxy signers jointly sign a message M as follows:

1. A proxy signer Pi (i ∈ S) picks two random num-
bers (ai,bi) secretly such that ai ∈ Zn3/4, bi ∈QRn.

2. Pi computes and publishes commitments Ai and
Bi as follows:

Ai ≡ gai (mod n2),

Bi ≡ bn
i (mod n2).

3. A public commitment value R is derived from the
set of public commitments {Ai,Bi}i∈S by

R≡∏
i∈S

(Ai ·Bi)
∆Li(0) (mod n2).

4. Pi computes and publishes his/her signature share
(si, ti) as

si = xi ·h(1||M||R)+ai∆,

ti ≡ (Ch(1||M||R))Di ·b∆
i (mod n).

5. If the scheme is proxy protected, each Pi chooses
a collision-resistant hash function Hi(·), which maps
messages of arbitrary length to elements in QR∗ni2

, and
signs Hi(si||ti) with his/her own Paillier secret key mi,

i.e., σi ≡ L(Hi(si||ti)mi mod ni
2)

L(gimi mod ni
2)

(mod ni) and τi ≡

(Hi(si||ti) ·gi
−σi)ni

−1 (mod mi) (mod ni).
Proxy signature share verification Pi’s proxy signa-
ture share (si, ti) should satisfy the following congruence
equations:

gsi ≡ ui
h(1||M||R) ·Ai

∆ (mod n2),

tin ≡ vi
h(1||M||R) ·Bi

∆ (mod n2).

The proxy-signing protocol aborts if the number of valid
signature shares is less than d.
Proxy signature combination The proxy signature
(s, t) is computed from the proxy signature shares as fol-
lows:

1. Calculate s from {si}i∈S as follows:

S1 = ∑
i∈S

si · (∆ ·Li(0)) = (x ·h(1||M||R)+a)∆,

s = S1/∆ = x ·h(1||M||R)+a,

where a , ∑i∈S ai · (∆ ·Li(0)).
2. Calculate t from {ti}i∈S as follows:
(1) Calculate T1 from {ti}i∈S:

T1 ≡∏
i∈S

t∆Li(0)
i (mod n),

(
≡Ch(1||M||R)D∆ ·b∆ ≡

(
yh(1||M||R) ·b

)∆
)
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where b
4≡∏

i∈S
bi

∆Li(0) (mod n). Note that the public com-

mitment value R≡ ∏
i∈S

(Ai ·Bi)
∆Li(0) ≡ ga ·bn (mod n2).

(2) Calculate T2 from W, ID,M,R and s:

T2 ≡ h(0||W ||ID)h(1||M||R) ·R ·g−s

≡ (gxyn)h(1||M||R) · (gabn) ·g−s

≡
(

yh(1||M||R) ·b
)n

(mod n).

(3) Since gcd(∆,n) = 1, there exist two integers c1

and c2 such that c1∆+ c2n = 1. The combined signature
component t is calculated as follows:

t ≡ (T1)c1 · (T2)c2

≡
(

yh(1||M||R) ·b
)∆c1+nc2

≡ yh(1||M||R) ·b (mod n).

3. (M,W, ID,s, t,R) is the proxy signature on mes-
sage M.
Proxy signature verification The proxy signature is
verified through the following congruence:

R ·h(0||W ||ID)h(1||M||R) ≡ gs · tn (mod n2).

In order to protect each proxy signer against a malicious
original signer, a verifier could check for every i ∈ S that

Hi(si||ti) ?≡gi
σi · τi

ni (mod ni
2).

5 Security analysis

In this section, we give a definition of an unforge-
able proxy signature and prove that our proxy signa-
ture scheme is existentially unforgeable under a chosen-
message and chosen-warrant attack.
Definition 1 An adversary F is a probabilistic
polynomial-time algorithm with accesses to a random or-
acle H , a proxy signing oracle Σ for the proxy signer
P1 with identifier ID1 and warrant W1, and a delega-
tion oracle D for the original signer P0. The output
of F is (M,W1, ID1,s, t,R). We say that F successfully
forges a proxy signature of P1 for some message M if its
output (M,W1, ID1,s, t,R) satisfies the verification equa-
tion, gs · tn ≡ h(0||W1||ID1)h(1||M||R) ·R (mod n2), where
(W1, ID1) has not been asked of D and M has not been
asked of Σ. The proxy signature scheme is existen-
tially unforgeable against a chosen-message and chosen-
warrant attack in the random oracle model if for every

adversary F the probability of any successful forgery is
computationally negligible.
Theorem 1 The Paillier proxy signature scheme de-
scribed in Section 3 is existentially unforgeable against
chosen-message attacks and chosen-warrant attacks in
the random oracle model.
Proof Consider the proposed Paillier proxy signature
scheme. Suppose F is an adversary that can forge a Pail-
lier proxy signature with non-negligible success proba-
bility. F is given accesses to a random oracle H , a sign-
ing oracle Σ, and a delegation oracle D . We construct a
probabilistic polynomial-time algorithm Q((n,g),C) us-
ing F as a black box to invert an arbitrary Paillier ci-
phertext C with non-negligible probability, where (n,g)
is the corresponding encryption public key. This in turn
contradicts with the computational composite residuos-
ity assumption that there exists no polynomial-time algo-
rithm for solving the composite residuosity class prob-
lem (Paillier, 1999, Conjecture 13). As F is a chosen-
message and chosen-warrant attacker, Q has to simulate
indistinguishably the hash oracle H , the signing oracle
Σ, and the delegation oracle D for F and invokes F with
warrant W1||ID1 and public key (n,g).

Q simulates the random oracle H as follows:
1. H keeps a list L = {(u1,h1),(u2,h2), · · ·}, where

ui ∈ {0,1}∗ is the query and hi ∈QRn2 is the correspond-
ing hash value.

2. For a query u = 0||W1||ID1, where (u, ·) /∈ L , H
appends (u,C) to L and returns C.

3. For a query u = 0||W ||ID 6= 0||W1||ID1, where
(u, ·) /∈ L , H randomly chooses x ∈ Zn,y ∈ Z∗n and re-
turns gxyn (mod n2). H appends (u,gxyn (mod n2))
to L and keeps (x,y) for answering possible delegation
queries later.

4. If a query u has already been asked of such that
(ui = u,hi) ∈ L , H returns the corresponding hi.

Because Q is in full control of the random oracle H ,
Q simulates the proxy signing oracle Σ together with H
to answer F’s signing queries as follows:

1. When a message M is queried of, Σ randomly
picks s ∈ Zn3 (in Eq. (1), s = x · h(1||M||R)+ a, where
x ∈ Zn, h(1||M||R) ∈ QRn2 , a ∈ Zn3 . To simulate the
distribution of a real s, we randomly pick a number in
Zn3 ), t ∈ QRn, and h ∈ QRn2 , queries H of 0||W1||ID1

to obtain C, and computes R≡ gstn ·C−h (mod n2).
2. Σ checks if (1||M||R, ·) /∈L , appends (1||M||R,h)

to L , and returns (s, t,R); otherwise, if (1||M||R, ·) ∈ L ,
aborts.

Similarly, Q simulates the delegation oracle D with
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full control of the random oracle H as follows:
Let W ||ID denote the query to D . If (0||W ||ID, ·) ∈

L , D returns the corresponding (x,y) such that gxyn =
H (0||W ||ID) as in Step 3 of the simulation of H ; else if
(0||W ||ID, ·) /∈ L , D randomly chooses x ∈ Zn,y ∈ Zn

∗,
returns (x,y), and appends (0||W ||ID,gxyn (mod n2)) to
L for the random oracle query.

Assume that, with non-negligible probability, F
outputs for a message M the valid proxy signature
(s, t,R), satisfying R · h(0||W1||ID1)h(1||M||R) ≡ gs · tn

(mod n2). F must have asked the queries 0||W1||ID1

and 1||M||R of the random oracle H . Let (1||M||R,h)
be the βth (query, response) pair in L . By the oracle
replay attack (Pointcheval and Stern, 2000), Q invokes
F again with the same random tape, the same input, the
same responses of the random oracle H , the signing or-
acle Σ, and the delegation oracle D up to the (β− 1)th
random oracle query. Q replaces the βth response of H
by randomly choosing an h′ ∈ QRn2 such that h′ 6= h,
and continues to simulate randomly H , Σ, and D there-
after. Thus, F succeeds with non-negligible probabil-
ity in forging another signature (s′, t ′,R) with respect to
the same commitment R according to the forking lemma
(Pointcheval and Stern, 2000). These two signatures
(s, t,R) and (s′, t ′,R) satisfy

R≡ gs · tn ·h(0||W1||ID1)−h ≡ gs · tn ·C−h, (2)

R≡ gs′ · (t ′)n ·h(0||W1||ID1)−h′ ≡ gs′ · (t ′)n ·C−h′ , (3)

where h(0||W1||ID1) = C is guaranteed by the H oracle.
From Eqs. (2) and (3), we obtain:

gs · tn ·C−h ≡ gs′ · (t ′)n ·C−h′ (mod n2),

⇒Ch−h′ ≡ gs−s′ · (t · (t ′)−1)n (mod n2).

As mn = p · q · p′ · q′, gcd(h− h′,mn) = 1 with over-
whelming probability, (h− h′)−1 (mod mn) exists. The
above congruence can be rewritten as

C ≡ gM′ · (T ′)n (mod n2),

where M′ ≡ (s − s′)(h − h′)−1 (mod mn),

T ′ ≡ (
t · (t ′)−1

)(h−h′)−1
(mod n), M′ ∈ Zmn, and

T ′ ∈ Zn. Let M ≡ (s− s′)(h− h′)−1 (mod n), where
M ∈ Zn. It is clear that M ≡ M′ (mod n). Also, this
means that there exists a unique integer b such that
M′ = M +bn. Therefore,

C ≡ gM+bn(T ′)n ≡ gM(gbT ′)n (mod n2).

As any Paillier ciphertext C ∈ Zn2 can be uniquely de-
crypted, the decrypted message corresponding to C is M

from the above equation. Thus, the algorithm Q has suc-
cessfully found the corresponding plaintext M of C. This
contradicts with the computational composite residuosity
assumption.

In the following, the above is extended to prove the
security of the (d, `)-threshold Paillier proxy signature
scheme.
Theorem 2 The (d, `)-threshold Paillier proxy signa-
ture scheme is existentially unforgeable against a chosen-
message and chosen-warrant attack.
Proof (Sketch) A construction of algorithm Q to
break the underlying Paillier cryptosystem similar to the
previous one is used to prove that the (d, `)-threshold
Paillier proxy signature scheme is existentially unforge-
able against a chosen-message and chosen-warrant at-
tack. The primary difference of the adversary F ′,
which breaks the (d, `)-threshold Paillier proxy signa-
ture scheme, from the previous adversary F is that F ′

knows the set S− of proxy signing keys of the corrupted
signers in the threshold scheme, where the number of
corrupted signers is less than d. We describe how the
algorithm Q chooses S− for F ′ and the remaining parts
of Q are the same as the previous construction. Without
loss of generality, let {Pi}i=1,2,··· ,d−1 be the set of cor-
rupted signers. In a real protocol, the proxy key (xi,Di)
of a proxy signer Pi is uniformly distributed in the sets
{0,1, · · · ,mn − 1} and {0,1, · · · ,m − 1}, respectively.
However, since m is unknown to Q, Q can pick only from
the sets {0,1, · · · ,bn2/4c− 1} and {0,1, · · · ,bn/4c− 1}
two random numbers xi,Di as the proxy keys for Pi. Let
S− = {(xi,Di)}i=1,2,··· ,d−1 be the proxy keys for the cor-
rupted set of signers and be part of the input of F ′. The
statistical distances between simulated and real (xi,Di)
are both O(n−

1
2 ), which are polynomially negligible,

since

n2

4
−mn = (

p′+q′

2
+

1
4
)n≈ O(n

3
2 ),

n
4
−m =

p′+q′

2
+

1
4
≈ O(n

1
2 ).

Because the dth proxy key (xd ,Dd), given the informa-
tion {(xi,Di)}i=1,2,··· ,d−1, is completely unconstrained,
the adversary F ′ gains from S− insignificant advantage.
Hence, as in the previous proof, we construct Q using
F ′ as a black box: If F ′ is given S− and F ′ forges with
non-negligible probability a set of proxy signature shares
{si, ti}i=1,2,··· ,d corresponding to a commitment R, Q ob-
tains a proxy signature (s, t,R) through the proxy signa-
ture combining protocol. By the oracle replay attack, Q
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invokes F ′ again with a similar setting as in the previ-
ous proof and F ′ forges with non-negligible probability
another set of proxy signature shares {s′i, t

′
i}i=1,2,··· ,d for

the same commitment R. Then Q obtains another proxy
signature (s′, t ′,R). These two proxy signatures (s, t,R)
and (s′, t ′,R) satisfy Eqs. (2) and (3). By using the same
method as in the previous proof, the Paillier ciphertext C
can be inverted again. This contradicts the computational
composite residuosity assumption.

6 Conclusion

In this paper, we present a secure Paillier proxy
signature scheme and its threshold version. These two
schemes are proven existentially unforgeable against a
chosen-message and chosen-warrant attack in the ran-
dom oracle model. Although it is based on the integer
factoring problem, the round efficiency of the threshold
scheme is comparable with a discrete-log based scheme
without requiring a trusted dealer or combiner. Thus,
both schemes are practical in modularized secure multi-
party protocols.

In the presented proofs, the efficiency of reduction
(Bellare and Rogaway, 1996) of both schemes is omit-
ted. In general, the application of the forking lemma
(Pointcheval and Stern, 2000) in a security proof de-
creases the ‘exactness of security’ being proven for the
target scheme. Nonetheless, the proofs presented above
still provide a lower bound for the security of the pro-
posed scheme and provide direction for further exten-
sions and applications of the proposed schemes.
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