
Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 620

A parallel and scalable digital architecture for
training support vector machines*

Kui-kang CAO†1, Hai-bin SHEN†‡1, Hua-feng CHEN2
(1Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China)

(2Zhejiang University of Media and Communications, Hangzhou 310027, China)
†E-mail: {caokk, shb}@vlsi.zju.edu.cn

Received Aug. 14, 2009; Revision accepted Dec. 4, 2009; Crosschecked May 4, 2010; Published online May 24, 2010

Abstract: To facilitate the application of support vector machines (SVMs) in embedded systems, we propose and test a parallel
and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training SVMs. By taking
advantage of the mature and popular SMO algorithm, the numerical instability issues that may exist in traditional numerical
algorithms are avoided. The error cache updating task, which dominates the computation time of the algorithm, is mapped into
multiple processing units working in parallel. Experiment results show that using the proposed architecture, SVM training prob-
lems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be achieved. This architecture
overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications,
and thus is more suitable for embedded use, where scalability is an important concern.

Key words: Support vector machine (SVM), Sequential minimal optimization (SMO), Field-programmable gate array (FPGA),

Scalable architecture
doi:10.1631/jzus.C0910500 Document code: A CLC number: TN79

1 Introduction

Support vector machines (SVMs) are one of the
most powerful and important supervised machine
learning methods (Vapnik, 1998; Schölkopf et al.,
1999). They are effective tools for solving problems
like face detection, speaker identification, text cate-
gorization and so forth (Burges, 1998). Although
SVMs are popular on general-purpose computing
platforms, where very high performance can be
achieved with hardware accelerators such as graphics
processing units (GPUs) (Catanzaro et al., 2008) and
field-programmable gate arrays (FPGAs) (Graf et al.,
2008), their applications in embedded systems are
hindered by the complexity of the algorithm, especially
when the capability for on-line learning is needed.

On-line learning is indispensable for applica-
tions with adaptive capabilities. For these types of
applications, very short training time is usually re-
quired for fast adaptation. For instance, in the appli-
cation of SVM for adaptive channel equalization
(Sebald and Bucklew, 2000), the SVM classifier
needs to be retrained on-line to adapt to a changing
environment. To track fast channel variations, very
low latency SVM training is required. When SVMs
are used to build smart human-computer interfaces
such as the sketch recognizer (Sun et al., 2005), fast
on-line training is also required to adapt to new users
or new user habits swiftly.

To facilitate the application of SVMs in em-
bedded systems where a dedicated and efficient de-
vice is preferred, several digital architectures that
implement SVMs on hardware have been proposed in
recent years. Anguita et al. (2003) proposed a VLSI-
friendly SVM training algorithm, based on which a
digital architecture is presented and implemented on

 Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project (No. 60720106003) supported by the National Natural Sci-
ence Foundation of China
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 621

an FPGA. Wee and Lee (2004) proposed a concurrent
architecture for training SVMs based on the kernel
Adatron (KA) algorithm (Frieß et al., 1998) and
implemented this on an FPGA chip for disease di-
agnosis. Choi et al. (2006) implemented a hardware
SVM training unit and incorporated it into a speaker
verification system. There are some other hardware
implementations of SVMs (Biasi et al., 2005; An-
guita et al., 2006; Manikandan et al., 2009), but only
the less complicated testing phase was implemented.

Unfortunately, the previously proposed digital
architectures for training SVMs lack the necessary
flexibility for embedded applications. The SVM
hardware described by Choi et al. (2006) works only
serially. On the other hand, the architectures of both
Wee and Lee (2004) and Anguita et al. (2003) involve
a lot of processing elements (PEs) that process train-
ing samples in a fully parallel way, and the number of
PEs used in hardware is determined by the size of the
training set. Both of the serial and fully parallel ar-
chitectures are difficult to scale, and thus a trade-off
between performance and hardware costs is not pos-
sible, making these architectures less suitable to be
used in embedded systems, where scalability is an
important concern.

To better address this problem, in this paper we
propose a parallel and scalable digital architecture
based on the widely used sequential minimal opti-
mization (SMO) algorithm for training support vector
machines. The error cache updating task in the SMO
algorithm is mapped into multiple processing units
working in parallel. The number of processing units is
adjustable so that scalability can easily be achieved.
Unlike previously proposed fully parallel architec-
tures, by adjusting the memory size of the hardware,
this architecture can solve SVM training problems of
different sizes.

2 Support vector machine classifier and
sequential minimal optimization

Given a training set { } 1
(,) m

i i i
y

=
x , where xi is an

input pattern and yi∈{±1} is the associated class label,
an SVM classifier predicts the class label of a new
pattern x with the decision function

1
() sgn (,) ,

m

i i i
i

f a y k b
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑x x x (1)

where ai’s are Lagrange multipliers, b is a bias term,
and k(·,·) is the kernel function that maps input pat-
terns into the feature space. One of the most widely
used kernel functions is the Gaussian radial basis
function (RBF):

()2 2(,) exp (2) .i j i jk σ= − −x x x x (2)

The Lagrange multipliers are determined during
SVM training, which amounts to solving the follow-
ing quadratic programming (QP) problem:

1 1 1

1

1max () (,)
2

s.t. 0 and 0 , 1,2,..., ,

m m m

i i j i j i j
i i j

m

i i i
i

L a a a y y k

a y a C i m

= = =

=

= −

= ≤ ≤ =

∑ ∑∑

∑

a x x
 (3)

where C is a predefined regularization constant.
Although many algorithms can be applied to

solve the QP problem Eq. (3), SMO (Platt, 1999) has
proven to be one of the most popular and successful
approaches. SMO is an extreme case of the decom-
position algorithms aimed at solving large scale
problems. By restricting the working set to have only
two elements, SMO can solve the sub-QP problems
analytically, thus avoiding the use of numerical
solvers, which might cause numerical instability is-
sues. To improve the efficiency of the working set
selection method of Platt’s SMO algorithm, Keerthi et
al. (2001) suggested two modified versions of SMO.
The architecture proposed in this paper is based on the
second modification, which is very efficient and is
widely used.

To describe Keerthi’s SMO algorithm, first di-
vide the training samples into five sets: I0={i: |yi|=1,
0<ai<C}, I1={i: yi=1, ai=0}, I2={i: yi=−1, ai=C},
I3={i: yi=1, ai=C}, I4={i: yi=−1, ai=0}. Then define

the error array
1

(,) ,m
i j j i j ij

e a y k y
=

= −∑ x x i=1, 2, ...,

m, the upper and lower bounds bup=min{ei: i∈I0∪
I1∪I2}, blow=max{ei: i∈I0∪I3∪I4}, and their associ-
ated indices up 0 1 2arg min , ii

i e i I I I= ∈ ∪ ∪ and ilow =

arg max ,ii
e i∈I0∪I3∪I4.

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 622

The SMO algorithm optimizes two Lagrange
multipliers at each step according to Eqs. (4) and (5):

new old old old() /p p p q pa a y e e η= − − , (4)
new old old new()q q p pa a s a a= + − , (5)

where p=ilow, q=iup, s=ypyq, η=2k(xp, xq)−k(xp, xp)−
k(xq, xq). new

pa and new
qa are then clipped to [0, C];

i.e., new
pa = min(max(0, new

pa), C), new
qa = min(max(0,

new
qa), C).

After optimizing ap and aq, the error array ei is
updated according to Eq. (6):

new old new old

new old

() (,)

 () (,), 1,2,..., .
i i p p p p i

q q q q i

e e a a y k

a a y k i m

= + −

+ − =

x x

x x
 (6)

Then update blow, ilow, bup, and iup, based on the new ei
array, and start the next iteration of the procedure.

The training process stops if ilow=iup or blow<
bup+2τ (τ is the tolerance, which is usually set to 10−3),
which means all Lagrange multipliers satisfy the
Karush-Kuhn-Tucker (KKT) conditions.

The skeleton of the modified SMO algorithm is
outlined in Table 1. The computations required for
each task are also listed in this table. It is assumed that
an inner product between training pattern vectors is
required for kernel evaluation, which is the case for
the widely used RBF, polynomial and tanh kernels.

3 Architecture design

3.1 Algorithm analysis

The SMO algorithm is a sequential algorithm in
its original form. To implement it with parallel
hardware, a parallel version of this algorithm should
be developed first. By analyzing the characteristics of
the SMO algorithm listed in Table 1, we can see that
the computation of task 4 dominates the computation
for large dimensions d of the training pattern vectors.
If d is not large enough (smaller than around 10), task
5 can become a bottleneck. Therefore, it is desirable
that both task 4 and task 5 should be parallelized to
train SVM efficiently.

In order to parallelize task 4, we should first
analyze its data dependency. According to Eq. (6),
each element of array ei is updated independently
with one training sample at a time. Thus, we can first
partition the entire training samples into several
smaller subsets and then update the corresponding
subset of array ei simultaneously. Thus, ei should be
partitioned accordingly. With this technique, the
processing time of task 4 in parallel hardware can be
reduced almost linearly.

The updating of blow, ilow, bup, and iup requires
iterative comparisons over the entire array ei. Based
on the fact that array ei will be partitioned into several
subsets, the local results of blow, ilow, bup, and iup as-
sociated with each subset can be achieved simulta-
neously. The global blow and bup are the maximum and
minimum values of all local blow’s and bup’s respec-
tively, and the corresponding ilow and iup can also be
determined. Thus, task 4 can also be parallelized.

3.2 Scalable architecture

Based on the above analysis, tasks 4 and 5 can be
mapped into multiple processing units to be per-
formed in parallel. This leads to the architecture
shown in Fig. 1. It is characterized by one Lagrange
multiplier optimizer (LMO) and multiple error cache
updating units (ECU), all being connected to the
cache unit controller (CUC). To support parallel
processing, each ECU has its own memory units,
holding a portion of training samples. Operation
phases of this architecture include device configura-
tion, training data loading, SVM training, and out-
putting of the result. The global finite state machine
(FSM) is presented in Fig. 2.

Table 1 Skeleton of the modified SMO algorithm and
computations required for each task

Task Description Computation
1 Initialize: ai=0, ei=−yi, i=1,2,...,m 2m
2 Determine: blow, ilow, bup, and iup 4m
 Repeat

3 Optimize low up
,i ia a (2d+c1)I

4 Update ei, i=1,2,...,m (4dm+c2)I
5 Update blow, ilow, bup, and iup 4mI
6 Until ilow=iup or blow<bup+2τ 4
7 Calculate b=(blow+bup)/2 2

I: number of iterations; m: number of training samples; d: dimen-
sion of the training pattern vectors; c1 and c2 are some constants,
which depend on the kernel used in the algorithm

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 623

The LMO controls the entire process of training.
It updates the Lagrange multipliers lowia and upia and
checks the KKT conditions at each iteration step. The
indices ilow, iup and associated training samples are
input by CUC. Because the Gaussian kernel evaluator
is incorporated in this architecture, a lookup table
(LUT) is contained in this module for exponential
operations.

ECU is the basic parallel processing unit of this

architecture. Tasks 4 and 5 are mapped into ECUs and
performed in parallel during SVM training. The most
important design consideration of this module is
memory organization. To improve the processing
performance, the memory unit of each ECU is divided
into two blocks to support parallel memory accessing.
Before SVM training, the input patterns of training
samples should be stored into the ECUs, each holding
a different portion of the input patterns xj, j=1,2,...,L,
where L is the number of training samples in the cur-
rent ECU. At each iteration step, lowix and upix are
loaded from the corresponding ECUs by CUC and
then stored to all ECUs concurrently before updating
ej, j=1,2,...,L. lowix and upix should be stored in a dif-
ferent memory block other than the one that holds xj’s
to support concurrent memory accessing. With this
design, the ECU is able to perform a multiply-
accumulate (MAC) operation in a single clock cycle,
and the loading and storing of lowix and upix can be
pipelined.

dout
din
addr

...ECU

CUC

ECU

ECU ECU

EXP LUT

Sj, j=1,2,...,L

EXP LUT

ai, i=1,2,...,m

xj, j=1,2,...,L
ej, j=1,2,...,L

yi, i=1,2,...,m

ctrl

Computing
logic

Computing
logic

Training data loading and
dispatching

Update global blow, ilow, bup, iup

ECU configuration
Update local blow, ilow,
bup, iup

Update Sj, j=1,2,...,L

Update ej, j=1,2,...,L

Check KKT
conditions

Update i ia a
low up

,

Computing
logic

FSM

FSM

FSM

LMO

Mem

Mem0

Mem

Mem1

Data transfer
engine

clk
rst
ce

i ilow up
,x x

LMO: Lagrange multiplier optimizer
FSM: finite state machine
CUC: cache unit controller
ECU: error cache updating unit

Fig. 1 Scalable digital architecture for training SVMs

Finish training Start training

Training
data

loading

SVM
training

Device
configuration/
Outputting of

the result

Finish loading data Load data

Fig. 2 Global finite state machine of the architecture

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 624

Apart from task 4, task 5 is processed in parallel
with multiple ECUs. The array Sj (Sj=k for j∈Ik,
j=1,2,...,L; k=0,1,...,4) is used to denote which set the
training sample belongs to, and it should be updated
after updating array ej. After arrays ej and Sj are up-
dated, blow, ilow, bup, and iup are determined locally
with the training samples in the current ECU and then
submitted to CUC. Arrays Sj and ej should also be
stored in different memory blocks to support con-
current memory accessing.

CUC manages the data transfer among different
modules. After all ECUs finish their updating tasks in
the current iteration step, the CUC determines the
final blow, ilow, bup, and iup by merging the partial re-
sults achieved in each ECU. These values are then
passed to the LMO module to start the next iteration
step. The interconnection between CUC and ECUs is
based on a bus-like structure with broadcasting abil-
ity. The CUC is the only master device on the bus,
while all ECUs act as slave devices, and thus no ar-
biter is needed for the bus, making it simple, efficient,
and easy to extend.

The task mapping and clock cycles required by
each task with this architecture are presented in
Table 2. The clock cycles are a combination of time
for both computation and IO, with overlapped cycles
removed.

Note that currently only the Gaussian kernel is
implemented in the hardware, but other kernels can be
incorporated into the architecture easily as well. More-

over, to reduce the hardware cost and power dissipa-
tion, fixed-point arithmetic is used in the architecture.

4 Experiment results and comparisons

Experiments were conducted to test the effec-

tiveness, scalability, and other characteristics of the
architecture, such as the required LUT size and word
length. The first set of experiments was based on a
benchmarking dataset, the Sonar dataset, and the
second was based on the dataset from a telecommu-
nication problem, using SVM for the purpose of
adaptive channel equalization, where a dedicated
hardware can be very useful.

A bit-true and cycle-accurate model of the digital
architecture was first implemented with Simulink
Stateflow®, which is an efficient tool to model and
simulate event-driven systems. The synthesizable
Verilog code was then generated automatically from
the Stateflow model with Simulink HDL Coder®.
Architectural properties such as scalability and per-
formance were evaluated based on simulation results
with the Stateflow model. The Verilog code was then
adapted and synthesized for FPGA to obtain the
hardware related information, such as the clock rate
and hardware cost.

4.1 Application to the Sonar dataset

The Sonar dataset consists of 208 patterns, each
with 60 features. The task is to predict whether an
object is a mine or a rock based on the features of the
Sonar signals. The dataset is usually subdivided
evenly into the training set and the testing set. In our
experiments, the variance σ2 of the Gaussian kernel
was set to 0.5 and the regularization constant C was
set to 10.

As mentioned before, the hardware was imple-
mented with the LUTs and fixed-point arithmetic.
Thus, classification performance could be affected by
the LUT size and word length. Table 3 shows how
classification error rates change with the LUT size
and word length. The same classification error rates
as those with floating-point arithmetic were obtained
when the LUT size was not less than 1024 entries and
the word length was not less than 16 bits, which were
much less than the requirements proposed in Wee and
Lee (2004).

Table 2 Task mapping and clock cycles required by each
task

Task Description Clock
cycles

Processing
unit(s)

1 Initialize: ai=0, ei=−yi, i=1,
2, ..., m

m LMO, ECU

2 Determine: blow, ilow, bup, and iup m/N ECU, CUC
 Repeat

3 Optimize lowia and upia (2d+c1)I LMO

4 Update ei, i=1,2,...,m (2dm/N+
2d+c2)I

ECU

5 Update blow, ilow, bup, and iup (m/N+N)I ECU, CUC
6 Until ilow=iup or blow<bup+2τ 1 LMO
7 Calculate b=(blow+bup)/2 1 LMO

I: number of iterations; m: number of training samples; d: dimension
of the training pattern vectors; N: number of ECUs; c1 and c2 are
some implementation-dependent constants. LMO: Lagrange mul-
tiplier optimizer; ECU: error cache updating unit; CUC: cache unit
controller

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 625

To evaluate the scalability of the architecture, we

consider two criteria, speedup and efficiency, which
are defined respectively as follows:

clock cycles with multiple ECUsspeedup =
clock cycles with a single ECU , (7)

speedupefficiency =
number of ECUs

. (8)

Scaling of speedup and efficiency of the archi-

tecture with respect to a different number of ECUs on
the Sonar dataset is illustrated in Fig. 3. The training
procedure takes about 5 720 000 clock cycles with a
single ECU, which is about 114 ms if the hardware
runs at 50 MHz. The figure shows that up to 8 ECUs,
the architecture scales almost linearly with the num-
ber of ECUs. After that, the speedup slows down
gradually. The reason is that, according to Amdahl’s
law, when N parallel processing units are used, the
speedup is limited to 1/(1−P+P/N), where P is the
portion of parallelizable workload. Fortunately, pat-
tern classification problems with a large dataset are
very common, which means that the portion of par-
allelizable workload is usually quite high, leading to
better scalability than the one obtained with this small
dataset.

4.2 Application to adaptive channel equalization

As pointed by Chen et al. (1990), channel equa-
lization can be treated as a classification problem. The
classifier takes a vector of d consecutive channel
outputs xn=[x(n), x(n−1), ..., x(n−d+1)]T as the input
pattern and the transmitted symbol u(n−D)∈{±1} as
the output class label, where D denotes the delay. The
SVM-based adaptive equalizer is trained periodically
with the following training sequences for channel
estimation:

1
0{(, ())}m

n i iu n D i −
− =− −x . (9)

This is a typical application where a dedicated device
for on-line SVM training can be effectively used.

In our experiment, the following polynomial
channel, studied by Sebald and Bucklew (2000), was
considered:

3

() () 0.5 (1),
ˆ() () 0.9 (),

ˆ() () (),

x n u n u n
x n x n x n
x n x n e n

= + −⎧
⎪ = −⎨
⎪ = +⎩

 (10)

where e(n) is an additive white Gaussian noise with
variance 2

eσ .

The model with D=0, d=2, and 2 0.2eσ = was
used in simulation to generate training samples. The
variance σ2 of the Gaussian kernel was set to 0.5 and
the regularization constant C was set to 0.25. A total
of 2900 instances were generated, 500 of which were
used for training, and the rest for testing.

Table 4 shows how classification error rates
change with the LUT size and word length on this
problem. The least classification error rate was
14.8%, slightly better than the results on the same
problem reported by Anguita et al. (2003). Table 4
also shows that the quantization effect of the
fixed-point hardware sometimes can be a benefit for
generalization capability. Smaller classification error
rates were obtained with the fixed-point hardware
than with the floating-point simulator, where the
classification error was 15.25%. This property ac-
cords with the results of Anguita et al. (2003).

Scaling of the speedup and efficiency of the ar-
chitecture with respect to different numbers of ECUs
on the channel equalization problem is illustrated in Fig. 3 Speedup and efficiency on the Sonar dataset

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16 18
Number of ECUs

S
pe

ed
up

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ffi

ci
en

cy
 Speedup

Efficiency

Table 3 Classification error rates on the Sonar dataset
for different LUT sizes and word lengths

Classification error rate (%) Word length
(bits) SLUT=256 512 1024 2048

13 5.76 8.65 6.73 6.73
14 7.69 6.73 6.73 6.73
15 6.73 5.76 5.76 5.76
16 5.76 6.73 5.76 5.76
17 7.69 5.76 5.76 5.76

SLUT: lookup table size

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 626

Fig. 4. The training procedure takes about 3 653 000
clock cycles with a single ECU, which is about 73 ms
if the hardware runs at 50 MHz. Fig. 4 also shows that
the scalability of the architecture on this problem is
better than that on the Sonar dataset. This occurs
because this problem has more training samples, and
the portion of parallelizable computation is greater.
As the size of the problem goes up, better scalability
can be achieved with this architecture.

4.3 FPGA synthesis results

The Verilog code generated from the Stateflow

model of the architecture was adapted for FPGA
synthesis. It was designed in a parameterized way,
where the number of ECUs can be defined with mac-
ros. In our current implementation, the CUC can work
with up to 16 ECUs, but it can be extended easily to
support more ECUs. The design was synthesized for
the Xilinx Virtex-4 XC4VLX100 FPGA, which con-
tains 240 18-kb block RAMs, 49 152 logic slices, and
96 XtremeDSPTM slices for arithmetic operation.
Critical paths were extracted, indicating that the
hardware was able to run at more than 75 MHz.

Fig. 5 shows how the hardware cost changes with
the number of ECUs incorporated in the hardware.
The LUT size was set to 1024 entries, and the word
length was set to 16 bits. The ECU was configured
with different sizes of memory when different num-
bers of ECUs were defined. A training set with up to
256 patterns, each having up to 64 features, could be
handled with the implemented SVM hardware. By
increasing the memory size of each module, larger
training sets can be handled with this architecture. If
the word length is 18 bits and the dimension of the
training sample is 16, a maximum of about 12 000
training samples can fit into this FPGA. This is usually
sufficient for adaptive applications with tight latency
constraints, to which the proposed architecture is tar-
geted. Too many training samples may lead to very
long training time, which is undesirable for such
applications.

4.4 Comparisons

Comparisons of the proposed architecture to the
previously proposed ones are presented in Table 5.
Anguita et al. (2003) trained SVM in a fully parallel
fashion, where the number of PEs should be no less
than the number of training samples. This kind of
architecture is difficult to scale with a large number of
training samples, because too many PEs would be
needed. Moreover, this architecture stores the kernel
matrix K explicitly, where Kij=k(xi, xj), but it is pro-
hibitive to do so for large-scale problems because the
number of elements of K increases quadratically with
the number of training samples. The architecture of
Wee and Lee (2004) is based on a simplified SMO
algorithm, which can handle only a non-standard type

Table 4 Classification error rates on the channel equali-
zation problem for different LUT sizes and word lengths

Classification error rate (%) Word length
(bits) SLUT=256 512 1024 2048 4096

13 15.0 15.0 14.8 15.4 15.3
14 15.0 15.2 15.0 14.9 15.0
15 15.0 15.0 15.0 15.0 15.1
16 15.2 15.0 15.0 15.0 15.2
17 15.2 15.2 15.1 15.0 15.0

SLUT: lookup table size

Fig. 4 Speedup and efficiency on the channel equaliza-
tion problem

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18
Number of ECUs

S
pe

ed
up

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

E
ffi

ci
en

cy

Speedup
Efficiency

Fig. 5 Device utilization of the architecture with a dif-
ferent number of ECUs

0

10
20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Number of ECUs

D
ev

ic
e

ut
iliz

at
io

n
(%

)

Slice flip flops
4-input LUTs
Occupied slices
RAMB16s
DSP48s

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 627

of SVM where the bias b is set to zero. This archi-
tecture suffers from the same drawback as the one of
Anguita et al. (2003) because of its fully parallel
nature. Choi et al. (2006) trained SVM by solving a
system of linear equations with the Gauss-Jordan
elimination algorithm; no parallel processing tech-
nique is used in this architecture and the kernel matrix
is also required to be stored explicitly.

The architecture proposed in this paper is based
on the popular and mature SMO algorithm. It is de-
signed with flexibility and scalability in mind, and
thus is more suitable to be used in embedded envi-
ronments, where a trade-off is usually needed to
balance the performance and hardware costs.

5 Conclusions

In this paper, a parallel and scalable architecture
based on the SMO algorithm for training SVMs is
proposed, tested, and mapped to an FPGA chip. To the
best of our knowledge, this is the first time Keerthi’s
SMO algorithm has been implemented with digital
hardware. By taking advantage of the popular SMO
algorithm, which avoids the numerical instability
issues, inexpensive fixed-point arithmetic can be used
with the proposed architecture to solve SVM training
problems effectively. Experiments show that the
performance of this architecture scales well with
respect to the number of the parallel processing units.
The drawbacks of the previously proposed SVM
hardware that lacks flexibility are overcome in this
scalable architecture based on the SMO algorithm,
thus making this architecture more suitable to be used
in embedded environments. Future work will focus on
the optimization of the ECU module to make it more
cost-effective.

References
Anguita, D., Boni, A., Ridella, S., 2003. A digital architecture

for support vector machines: theory, algorithm, and
FPGA implementation. IEEE Trans. Neur. Networks,
14(5):993-1009. [doi:10.1109/TNN.2003.816033]

Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D., 2006.
Feed-forward support vector machine without multipli-
ers. IEEE Trans. Neur. Networks, 17(5):1328-1331.
[doi:10.1109/TNN.2006.877537]

Biasi, I., Boni, A., Zorat, A., 2005. A Reconfigurable Parallel
Architecture for SVM Classification. Proc. IEEE Int.
Joint Conf. on Neural Networks, p.2867-2872. [doi:10.
1109/IJCNN.2005.1556380]

Burges, C.J.C., 1998. A tutorial on support vector machines for
pattern recognition. Data Min. Knowl. Discov., 2(2):121-
167. [doi:10.1023/A:1009715923555]

Catanzaro, B., Sundaram, N., Keutzer, K., 2008. Fast Support
Vector Machine Training and Classification on Graphics
Processors. Proc. 25th Int. Conf. on Machine Learning,
p.104-111. [doi:10.1145/1390156.1390170]

Chen, S., Gibson, G.J., Cowan, C.F.N., Grant, P.M., 1990.
Adaptive equalization of finite nonlinear channels using
multilayer perceptrons. EURASIP Signal Process., 20(2):
107-119.

Choi, W.Y., Ahn, D., Pan, S.B., Chung, K.I., Chung, Y.W.,
Chung, S.H., 2006. SVM-based speaker verification
system for match-on-card and its hardware implementa-
tion. ETRI J., 28(3):320-328. [doi:10.4218/etrij.06.0105.
0022]

Frieß, T.T., Cristianini, N., Campbell, C., 1998. The Kernel-
Adatron Algorithm: A Fast and Simple Learning Proce-
dure for Support Vector Machines. Proc. 15th Int. Conf.
on Machine Learning, p.188-196.

Graf, H.P., Cadambi, S., Durdanovic, I., Jakkula, V., Sanka-
radass, M., Cosatto, E., Chakradhar, S.T., 2008. A Mas-
sively Parallel Digital Learning Processor. 22nd Annual
Conf. on Neural Information Processing Systems, p.529-
536.

Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy,
K.R.K., 2001. Improvements to Platt’s SMO algorithm
for SVM classifier design. Neur. Comput., 13(3):637-649.
[doi:10.1162/089976601300014493]

Table 5 Comparisons among several digital architectures for training SVMs
Architecture Algorithm Parallelization Hardware resource usage Clock cycles per iteration

Anguita et al. (2003) DSVM with fixed bias Fully parallel Depends on the number of PEs m+c1
Wee and Lee (2004) Kernel Adatron Fully parallel Depends on the number of PEs d+c2
Choi et al. (2006) Gauss-Jordan elimination Serial Depends on the memory size Variable
This paper SMO Customizable Depends on the number of ECUs

and the memory size
4d+(2d+1)m/N+c3

m: number of training samples; d: dimension of the training pattern vectors; N: number of ECUs; c1, c2, and c3 are some implementation-
dependent constants. DSVM: digital support vector machine; SMO: sequential minimal optimization; PE: processing element; ECU: error
cache updating unit

Cao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(8):620-628 628

Manikandan, J., Venkataramani, B., Avanthi, V., 2009. FPGA
Implementation of Support Vector Machine Based Iso-
lated Digit Recognition System. Proc. 22nd Int. Conf. on
VLSI Design, p.347-352. [doi:10.1109/VLSI.Design.
2009.23]

Platt, J.C., 1999. Fast Training of Support Vector Machines
Using Sequential Minimal Optimization. In: Schölkopf,
B., Burges, C., Smola, A. (Eds.), Advances in Kernel
Methods: Support Vector Learning. MIT Press, Cam-
bridge, MA, p.185-208.

Schölkopf, B., Burges, C.J.C., Smola, A.J., 1999. Advances in
Kernel Methods: Support Vector Learning. MIT Press,

Cambridge, MA, p.1-16.
Sebald, D.J., Bucklew, J.A., 2000. Support vector machine

techniques for nonlinear equalization. IEEE Trans. Signal
Process., 48(11):3217-3226. [doi:10.1109/78.875477]

Sun, Z., Zhang, L., Tang, E., 2005. An incremental learning
method based on SVM for online sketchy shape recogni-
tion. LNCS, 3610:655-659. [doi:10.1007/11539087_82]

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley, New
York, p.493-520.

Wee, J.W., Lee, C.H., 2004. Concurrent support vector ma-
chine processor for disease diagnosis. LNCS, 3316:1129-
1134. [doi:10.1007/b103766]

Journals of Zhejiang University-SCIENCE (A/B/C)

Latest trends and developments

These journals are among the best of China’s University Journals. Here’s why:

 JZUS (A/B/C) have developed rapidly in specialized scientific and technological areas.
JZUS-A (Applied Physics & Engineering) split from JZUS and launched in 2005
JZUS-B (Biomedicine & Biotechnology) split from JZUS and launched in 2005
JZUS-C (Computers & Electronics) split from JZUS-A and launched in 2010

 We are the first in China to completely put into practice the international peer review system in
order to ensure the journals’ high quality (more than 7600 referees from over 60 countries,
http://www.zju.edu.cn/jzus/reviewer.php)

 We are the first in China to pay increased attention to Research Ethics Approval of submitted

papers, and the first to join CrossCheck to fight against plagiarism

 Comprehensive geographical representation (the international authorship pool enlarging every
day, contributions from outside of China accounting for more than 46% of papers)

 Since the start of an international cooperation with Springer in 2006, through SpringerLink, JZUS’

usage rate (download) is among the tops of all of Springer’s 82 co-published Chinese journals

 JZUS’ citation frequency has increased rapidly since 2004, on account of DOI and Online First
implementation (average of more than 60 citations a month for each of JZUS-A & JZUS-B in 2009)

 JZUS-B is the first university journal to receive a grant from the National Natural Science Foun-

dation of China (2009-2010)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

