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Abstract:    To facilitate the application of support vector machines (SVMs) in embedded systems, we propose and test a parallel 
and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training SVMs. By taking 
advantage of the mature and popular SMO algorithm, the numerical instability issues that may exist in traditional numerical 
algorithms are avoided. The error cache updating task, which dominates the computation time of the algorithm, is mapped into 
multiple processing units working in parallel. Experiment results show that using the proposed architecture, SVM training prob-
lems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be achieved. This architecture 
overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications, 
and thus is more suitable for embedded use, where scalability is an important concern. 
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1  Introduction 
 

Support vector machines (SVMs) are one of the 
most powerful and important supervised machine 
learning methods (Vapnik, 1998; Schölkopf et al., 
1999). They are effective tools for solving problems 
like face detection, speaker identification, text cate-
gorization and so forth (Burges, 1998). Although 
SVMs are popular on general-purpose computing 
platforms, where very high performance can be 
achieved with hardware accelerators such as graphics 
processing units (GPUs) (Catanzaro et al., 2008) and 
field-programmable gate arrays (FPGAs) (Graf et al., 
2008), their applications in embedded systems are 
hindered by the complexity of the algorithm, especially 
when the capability for on-line learning is needed. 

On-line learning is indispensable for applica-
tions with adaptive capabilities. For these types of 
applications, very short training time is usually re-
quired for fast adaptation. For instance, in the appli-
cation of SVM for adaptive channel equalization 
(Sebald and Bucklew, 2000), the SVM classifier 
needs to be retrained on-line to adapt to a changing 
environment. To track fast channel variations, very 
low latency SVM training is required. When SVMs 
are used to build smart human-computer interfaces 
such as the sketch recognizer (Sun et al., 2005), fast 
on-line training is also required to adapt to new users 
or new user habits swiftly. 

To facilitate the application of SVMs in em-
bedded systems where a dedicated and efficient de-
vice is preferred, several digital architectures that 
implement SVMs on hardware have been proposed in 
recent years. Anguita et al. (2003) proposed a VLSI- 
friendly SVM training algorithm, based on which a 
digital architecture is presented and implemented on 
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an FPGA. Wee and Lee (2004) proposed a concurrent 
architecture for training SVMs based on the kernel 
Adatron (KA) algorithm (Frieß et al., 1998) and 
implemented this on an FPGA chip for disease di-
agnosis. Choi et al. (2006) implemented a hardware 
SVM training unit and incorporated it into a speaker 
verification system. There are some other hardware 
implementations of SVMs (Biasi et al., 2005; An-
guita et al., 2006; Manikandan et al., 2009), but only 
the less complicated testing phase was implemented. 

Unfortunately, the previously proposed digital 
architectures for training SVMs lack the necessary 
flexibility for embedded applications. The SVM 
hardware described by Choi et al. (2006) works only 
serially. On the other hand, the architectures of both 
Wee and Lee (2004) and Anguita et al. (2003) involve 
a lot of processing elements (PEs) that process train-
ing samples in a fully parallel way, and the number of 
PEs used in hardware is determined by the size of the 
training set. Both of the serial and fully parallel ar-
chitectures are difficult to scale, and thus a trade-off 
between performance and hardware costs is not pos-
sible, making these architectures less suitable to be 
used in embedded systems, where scalability is an 
important concern. 

To better address this problem, in this paper we 
propose a parallel and scalable digital architecture 
based on the widely used sequential minimal opti-
mization (SMO) algorithm for training support vector 
machines. The error cache updating task in the SMO 
algorithm is mapped into multiple processing units 
working in parallel. The number of processing units is 
adjustable so that scalability can easily be achieved. 
Unlike previously proposed fully parallel architec-
tures, by adjusting the memory size of the hardware, 
this architecture can solve SVM training problems of 
different sizes. 
 
 
2  Support vector machine classifier and 
sequential minimal optimization 
 

Given a training set { } 1
( , ) m

i i i
y

=
x , where xi is an 

input pattern and yi∈{±1} is the associated class label, 
an SVM classifier predicts the class label of a new 
pattern x with the decision function 
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where ai’s are Lagrange multipliers, b is a bias term, 
and k(·,·) is the kernel function that maps input pat-
terns into the feature space. One of the most widely 
used kernel functions is the Gaussian radial basis 
function (RBF): 
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The Lagrange multipliers are determined during 
SVM training, which amounts to solving the follow-
ing quadratic programming (QP) problem: 
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where C is a predefined regularization constant. 
Although many algorithms can be applied to 

solve the QP problem Eq. (3), SMO (Platt, 1999) has 
proven to be one of the most popular and successful 
approaches. SMO is an extreme case of the decom-
position algorithms aimed at solving large scale 
problems. By restricting the working set to have only 
two elements, SMO can solve the sub-QP problems 
analytically, thus avoiding the use of numerical 
solvers, which might cause numerical instability is-
sues. To improve the efficiency of the working set 
selection method of Platt’s SMO algorithm, Keerthi et 
al. (2001) suggested two modified versions of SMO. 
The architecture proposed in this paper is based on the 
second modification, which is very efficient and is 
widely used. 

To describe Keerthi’s SMO algorithm, first di-
vide the training samples into five sets: I0={i: |yi|=1, 
0<ai<C}, I1={i: yi=1, ai=0}, I2={i: yi=−1, ai=C}, 
I3={i: yi=1, ai=C}, I4={i: yi=−1, ai=0}. Then define 

the error array 
1

( , ) ,m
i j j i j ij

e a y k y
=

= −∑ x x  i=1, 2, ..., 

m, the upper and lower bounds bup=min{ei: i∈I0∪ 
I1∪I2}, blow=max{ei: i∈I0∪I3∪I4}, and their associ-
ated indices up 0 1 2arg min ,  ii

i e i I I I= ∈ ∪ ∪  and ilow = 

arg max ,ii
e  i∈I0∪I3∪I4. 
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The SMO algorithm optimizes two Lagrange 
multipliers at each step according to Eqs. (4) and (5): 

 
new old old old( ) /p p p q pa a y e e η= − − ,              (4) 
new old old new( )q q p pa a s a a= + − ,                    (5) 

 
where p=ilow, q=iup, s=ypyq, η=2k(xp, xq)−k(xp, xp)− 
k(xq, xq). new

pa  and new
qa  are then clipped to [0, C]; 

i.e., new
pa = min(max(0, new

pa ), C), new
qa = min(max(0, 

new
qa ), C). 

After optimizing ap and aq, the error array ei is 
updated according to Eq. (6): 
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Then update blow, ilow, bup, and iup, based on the new ei 
array, and start the next iteration of the procedure. 

The training process stops if ilow=iup or blow< 
bup+2τ (τ is the tolerance, which is usually set to 10−3), 
which means all Lagrange multipliers satisfy the 
Karush-Kuhn-Tucker (KKT) conditions.  

The skeleton of the modified SMO algorithm is 
outlined in Table 1. The computations required for 
each task are also listed in this table. It is assumed that 
an inner product between training pattern vectors is 
required for kernel evaluation, which is the case for 
the widely used RBF, polynomial and tanh kernels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Architecture design 

3.1  Algorithm analysis 

The SMO algorithm is a sequential algorithm in 
its original form. To implement it with parallel 
hardware, a parallel version of this algorithm should 
be developed first. By analyzing the characteristics of 
the SMO algorithm listed in Table 1, we can see that 
the computation of task 4 dominates the computation 
for large dimensions d of the training pattern vectors. 
If d is not large enough (smaller than around 10), task 
5 can become a bottleneck. Therefore, it is desirable 
that both task 4 and task 5 should be parallelized to 
train SVM efficiently. 

In order to parallelize task 4, we should first 
analyze its data dependency. According to Eq. (6), 
each element of array ei is updated independently 
with one training sample at a time. Thus, we can first 
partition the entire training samples into several 
smaller subsets and then update the corresponding 
subset of array ei simultaneously. Thus, ei should be 
partitioned accordingly. With this technique, the 
processing time of task 4 in parallel hardware can be 
reduced almost linearly. 

The updating of blow, ilow, bup, and iup requires 
iterative comparisons over the entire array ei. Based 
on the fact that array ei will be partitioned into several 
subsets, the local results of blow, ilow, bup, and iup as-
sociated with each subset can be achieved simulta-
neously. The global blow and bup are the maximum and 
minimum values of all local blow’s and bup’s respec-
tively, and the corresponding ilow and iup can also be 
determined. Thus, task 4 can also be parallelized. 

3.2  Scalable architecture 

Based on the above analysis, tasks 4 and 5 can be 
mapped into multiple processing units to be per-
formed in parallel. This leads to the architecture 
shown in Fig. 1. It is characterized by one Lagrange 
multiplier optimizer (LMO) and multiple error cache 
updating units (ECU), all being connected to the 
cache unit controller (CUC). To support parallel 
processing, each ECU has its own memory units, 
holding a portion of training samples. Operation 
phases of this architecture include device configura-
tion, training data loading, SVM training, and out-
putting of the result. The global finite state machine 
(FSM) is presented in Fig. 2. 

Table 1  Skeleton of the modified SMO algorithm and 
computations required for each task 

Task Description Computation
1 Initialize: ai=0, ei=−yi, i=1,2,...,m 2m 
2 Determine: blow, ilow, bup, and iup 4m 
 Repeat  

3 Optimize low up
,i ia a  (2d+c1)I 

4 Update ei, i=1,2,...,m (4dm+c2)I 
5 Update blow, ilow, bup, and iup 4mI 
6 Until ilow=iup or blow<bup+2τ 4 
7 Calculate b=(blow+bup)/2 2 

I: number of iterations; m: number of training samples; d: dimen-
sion of the training pattern vectors; c1 and c2 are some constants, 
which depend on the kernel used in the algorithm 
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The LMO controls the entire process of training. 
It updates the Lagrange multipliers lowia  and upia  and 
checks the KKT conditions at each iteration step. The 
indices ilow, iup and associated training samples are 
input by CUC. Because the Gaussian kernel evaluator 
is incorporated in this architecture, a lookup table 
(LUT) is contained in this module for exponential 
operations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ECU is the basic parallel processing unit of this 

architecture. Tasks 4 and 5 are mapped into ECUs and 
performed in parallel during SVM training. The most 
important design consideration of this module is 
memory organization. To improve the processing 
performance, the memory unit of each ECU is divided 
into two blocks to support parallel memory accessing. 
Before SVM training, the input patterns of training 
samples should be stored into the ECUs, each holding 
a different portion of the input patterns xj, j=1,2,...,L, 
where L is the number of training samples in the cur-
rent ECU. At each iteration step, lowix  and upix  are 
loaded from the corresponding ECUs by CUC and 
then stored to all ECUs concurrently before updating 
ej, j=1,2,...,L. lowix  and upix  should be stored in a dif-
ferent memory block other than the one that holds xj’s 
to support concurrent memory accessing. With this 
design, the ECU is able to perform a multiply-  
accumulate (MAC) operation in a single clock cycle, 
and the loading and storing of lowix  and upix  can be 
pipelined. 

dout
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Fig. 1  Scalable digital architecture for training SVMs
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Fig. 2  Global finite state machine of the architecture 
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Apart from task 4, task 5 is processed in parallel 
with multiple ECUs. The array Sj (Sj=k for j∈Ik, 
j=1,2,...,L; k=0,1,...,4) is used to denote which set the 
training sample belongs to, and it should be updated 
after updating array ej. After arrays ej and Sj are up-
dated, blow, ilow, bup, and iup are determined locally 
with the training samples in the current ECU and then 
submitted to CUC. Arrays Sj and ej should also be 
stored in different memory blocks to support con-
current memory accessing. 

CUC manages the data transfer among different 
modules. After all ECUs finish their updating tasks in 
the current iteration step, the CUC determines the 
final blow, ilow, bup, and iup by merging the partial re-
sults achieved in each ECU. These values are then 
passed to the LMO module to start the next iteration 
step. The interconnection between CUC and ECUs is 
based on a bus-like structure with broadcasting abil-
ity. The CUC is the only master device on the bus, 
while all ECUs act as slave devices, and thus no ar-
biter is needed for the bus, making it simple, efficient, 
and easy to extend. 

The task mapping and clock cycles required by 
each task with this architecture are presented in  
Table 2. The clock cycles are a combination of time 
for both computation and IO, with overlapped cycles 
removed. 

Note that currently only the Gaussian kernel is 
implemented in the hardware, but other kernels can be 
incorporated into the architecture easily as well. More- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

over, to reduce the hardware cost and power dissipa-
tion, fixed-point arithmetic is used in the architecture. 

 
 

4  Experiment results and comparisons  
 
Experiments were conducted to test the effec-

tiveness, scalability, and other characteristics of the 
architecture, such as the required LUT size and word 
length. The first set of experiments was based on a 
benchmarking dataset, the Sonar dataset, and the 
second was based on the dataset from a telecommu-
nication problem, using SVM for the purpose of 
adaptive channel equalization, where a dedicated 
hardware can be very useful. 

A bit-true and cycle-accurate model of the digital 
architecture was first implemented with Simulink 
Stateflow®, which is an efficient tool to model and 
simulate event-driven systems. The synthesizable 
Verilog code was then generated automatically from 
the Stateflow model with Simulink HDL Coder®. 
Architectural properties such as scalability and per-
formance were evaluated based on simulation results 
with the Stateflow model. The Verilog code was then 
adapted and synthesized for FPGA to obtain the 
hardware related information, such as the clock rate 
and hardware cost. 

4.1  Application to the Sonar dataset 

The Sonar dataset consists of 208 patterns, each 
with 60 features. The task is to predict whether an 
object is a mine or a rock based on the features of the 
Sonar signals. The dataset is usually subdivided 
evenly into the training set and the testing set. In our 
experiments, the variance σ2 of the Gaussian kernel 
was set to 0.5 and the regularization constant C was 
set to 10. 

As mentioned before, the hardware was imple-
mented with the LUTs and fixed-point arithmetic. 
Thus, classification performance could be affected by 
the LUT size and word length. Table 3 shows how 
classification error rates change with the LUT size 
and word length. The same classification error rates 
as those with floating-point arithmetic were obtained 
when the LUT size was not less than 1024 entries and 
the word length was not less than 16 bits, which were 
much less than the requirements proposed in Wee and 
Lee (2004). 

Table 2  Task mapping and clock cycles required by each 
task 

Task Description Clock  
cycles 

Processing 
unit(s) 

1 Initialize: ai=0, ei=−yi, i=1, 
2, ..., m 

m LMO, ECU

2 Determine: blow, ilow, bup, and iup m/N ECU, CUC
 Repeat   

3 Optimize lowia  and upia  (2d+c1)I LMO 

4 Update ei, i=1,2,...,m (2dm/N+ 
2d+c2)I 

ECU 

5 Update blow, ilow, bup, and iup (m/N+N)I ECU, CUC
6 Until ilow=iup or blow<bup+2τ 1 LMO 
7 Calculate b=(blow+bup)/2 1 LMO 

I: number of iterations; m: number of training samples; d: dimension 
of the training pattern vectors; N: number of ECUs; c1 and c2 are 
some implementation-dependent constants. LMO: Lagrange mul-
tiplier optimizer; ECU: error cache updating unit; CUC: cache unit 
controller 
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To evaluate the scalability of the architecture, we 

consider two criteria, speedup and efficiency, which 
are defined respectively as follows: 
 

clock cycles with multiple ECUsspeedup = 
clock cycles with a single ECU ,   (7) 

speedupefficiency = 
number of ECUs

.                (8) 

 
Scaling of speedup and efficiency of the archi-

tecture with respect to a different number of ECUs on 
the Sonar dataset is illustrated in Fig. 3. The training 
procedure takes about 5 720 000 clock cycles with a 
single ECU, which is about 114 ms if the hardware 
runs at 50 MHz. The figure shows that up to 8 ECUs, 
the architecture scales almost linearly with the num-
ber of ECUs. After that, the speedup slows down 
gradually. The reason is that, according to Amdahl’s 
law, when N parallel processing units are used, the 
speedup is limited to 1/(1−P+P/N), where P is the 
portion of parallelizable workload. Fortunately, pat-
tern classification problems with a large dataset are 
very common, which means that the portion of par-
allelizable workload is usually quite high, leading to 
better scalability than the one obtained with this small 
dataset. 
 
 
 
 
 
 
 
 
 
 
 

4.2  Application to adaptive channel equalization 

As pointed by Chen et al. (1990), channel equa-
lization can be treated as a classification problem. The 
classifier takes a vector of d consecutive channel 
outputs xn=[x(n), x(n−1), ..., x(n−d+1)]T as the input 
pattern and the transmitted symbol u(n−D)∈{±1} as 
the output class label, where D denotes the delay. The 
SVM-based adaptive equalizer is trained periodically 
with the following training sequences for channel 
estimation: 

 

1
0{( , ( ))}m

n i iu n D i −
− =− −x .                 (9) 

 
This is a typical application where a dedicated device 
for on-line SVM training can be effectively used. 

In our experiment, the following polynomial 
channel, studied by Sebald and Bucklew (2000), was 
considered: 

 

3

( ) ( ) 0.5 ( 1),
ˆ( ) ( ) 0.9 ( ),

ˆ( ) ( ) ( ),

x n u n u n
x n x n x n
x n x n e n

= + −⎧
⎪ = −⎨
⎪ = +⎩

             (10) 

 
where e(n) is an additive white Gaussian noise with 
variance 2

eσ . 

The model with D=0, d=2, and 2 0.2eσ =  was 
used in simulation to generate training samples. The 
variance σ2 of the Gaussian kernel was set to 0.5 and 
the regularization constant C was set to 0.25. A total 
of 2900 instances were generated, 500 of which were 
used for training, and the rest for testing. 

Table 4 shows how classification error rates 
change with the LUT size and word length on this 
problem. The least classification error rate was 
14.8%, slightly better than the results on the same 
problem reported by Anguita et al. (2003). Table 4 
also shows that the quantization effect of the 
fixed-point hardware sometimes can be a benefit for 
generalization capability. Smaller classification error 
rates were obtained with the fixed-point hardware 
than with the floating-point simulator, where the 
classification error was 15.25%. This property ac-
cords with the results of Anguita et al. (2003). 

Scaling of the speedup and efficiency of the ar-
chitecture with respect to different numbers of ECUs 
on the channel equalization problem is illustrated in Fig. 3  Speedup and efficiency on the Sonar dataset 
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Table 3  Classification error rates on the Sonar dataset 
for different LUT sizes and word lengths 

Classification error rate (%) Word length 
(bits) SLUT=256 512 1024 2048 

13 5.76 8.65 6.73 6.73 
14 7.69 6.73 6.73 6.73 
15 6.73 5.76 5.76 5.76 
16 5.76 6.73 5.76 5.76 
17 7.69 5.76 5.76 5.76 

SLUT: lookup table size 
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Fig. 4. The training procedure takes about 3 653 000 
clock cycles with a single ECU, which is about 73 ms 
if the hardware runs at 50 MHz. Fig. 4 also shows that 
the scalability of the architecture on this problem is 
better than that on the Sonar dataset. This occurs 
because this problem has more training samples, and 
the portion of parallelizable computation is greater. 
As the size of the problem goes up, better scalability 
can be achieved with this architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  FPGA synthesis results 

The Verilog code generated from the Stateflow 

model of the architecture was adapted for FPGA 
synthesis. It was designed in a parameterized way, 
where the number of ECUs can be defined with mac-
ros. In our current implementation, the CUC can work 
with up to 16 ECUs, but it can be extended easily to 
support more ECUs. The design was synthesized for 
the Xilinx Virtex-4 XC4VLX100 FPGA, which con-
tains 240 18-kb block RAMs, 49 152 logic slices, and 
96 XtremeDSPTM slices for arithmetic operation. 
Critical paths were extracted, indicating that the 
hardware was able to run at more than 75 MHz. 

Fig. 5 shows how the hardware cost changes with 
the number of ECUs incorporated in the hardware. 
The LUT size was set to 1024 entries, and the word 
length was set to 16 bits. The ECU was configured 
with different sizes of memory when different num-
bers of ECUs were defined. A training set with up to 
256 patterns, each having up to 64 features, could be 
handled with the implemented SVM hardware. By 
increasing the memory size of each module, larger 
training sets can be handled with this architecture. If 
the word length is 18 bits and the dimension of the 
training sample is 16, a maximum of about 12 000 
training samples can fit into this FPGA. This is usually 
sufficient for adaptive applications with tight latency 
constraints, to which the proposed architecture is tar-
geted. Too many training samples may lead to very 
long training time, which is undesirable for such  
applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Comparisons 

Comparisons of the proposed architecture to the 
previously proposed ones are presented in Table 5. 
Anguita et al. (2003) trained SVM in a fully parallel 
fashion, where the number of PEs should be no less 
than the number of training samples. This kind of 
architecture is difficult to scale with a large number of 
training samples, because too many PEs would be 
needed. Moreover, this architecture stores the kernel 
matrix K explicitly, where Kij=k(xi, xj), but it is pro-
hibitive to do so for large-scale problems because the 
number of elements of K increases quadratically with 
the number of training samples. The architecture of 
Wee and Lee (2004) is based on a simplified SMO 
algorithm, which can handle only a non-standard type  

Table 4  Classification error rates on the channel equali-
zation problem for different LUT sizes and word lengths

Classification error rate (%) Word length 
(bits) SLUT=256 512 1024 2048 4096

13 15.0 15.0 14.8 15.4 15.3
14 15.0 15.2 15.0 14.9 15.0
15 15.0 15.0 15.0 15.0 15.1
16 15.2 15.0 15.0 15.0 15.2
17 15.2 15.2 15.1 15.0 15.0

SLUT: lookup table size 

Fig. 4  Speedup and efficiency on the channel equaliza-
tion problem 
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Fig. 5  Device utilization of the architecture with a dif-
ferent number of ECUs 
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of SVM where the bias b is set to zero. This archi-
tecture suffers from the same drawback as the one of 
Anguita et al. (2003) because of its fully parallel 
nature. Choi et al. (2006) trained SVM by solving a 
system of linear equations with the Gauss-Jordan 
elimination algorithm; no parallel processing tech-
nique is used in this architecture and the kernel matrix 
is also required to be stored explicitly. 

The architecture proposed in this paper is based 
on the popular and mature SMO algorithm. It is de-
signed with flexibility and scalability in mind, and 
thus is more suitable to be used in embedded envi-
ronments, where a trade-off is usually needed to 
balance the performance and hardware costs.  
 
 
5  Conclusions 
 

In this paper, a parallel and scalable architecture 
based on the SMO algorithm for training SVMs is 
proposed, tested, and mapped to an FPGA chip. To the 
best of our knowledge, this is the first time Keerthi’s 
SMO algorithm has been implemented with digital 
hardware. By taking advantage of the popular SMO 
algorithm, which avoids the numerical instability 
issues, inexpensive fixed-point arithmetic can be used 
with the proposed architecture to solve SVM training 
problems effectively. Experiments show that the 
performance of this architecture scales well with 
respect to the number of the parallel processing units. 
The drawbacks of the previously proposed SVM 
hardware that lacks flexibility are overcome in this 
scalable architecture based on the SMO algorithm, 
thus making this architecture more suitable to be used 
in embedded environments. Future work will focus on 
the optimization of the ECU module to make it more 
cost-effective. 
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