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Abstract:
in large range step sizes while using marching methods.

Flattening of the interfaces is necessary in computing wave propagation along stratified waveguides
When the supposition that there exists one horizontal
straight line in two adjacent interfaces does not hold, the previously suggested local orthogonal transform method
with an analytical formulation is not feasible. This paper presents a numerical coordinate transform and an equation
transform to perform the transforms numerically for waveguides without satisfying the supposition. The boundary
value problem is then reduced to an initial value problem by one-way reformulation based on the Dirichlet-to-
Neumann (DtN) map. This method is applicable in solving long-range wave propagation problems in slowly varying

waveguides with a multilayered medium structure.
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1 Introduction

A direct numerical computation can be very
time consuming for small scale wave propagation
problems.
the finite difference method and the finite element
method, lead to huge linear systems, which are also
nonsymmetric and indefinite. Thus, it is hard to
solve them. The coupled mode method (Jensen et
al., 1994) and some approximate methods (Tarppet,
1977; Fishman, 1993; Lee and Pierce, 1995; Lu and

Common numerical methods, such as
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McLaughlin, 1996; Fishman et al.,, 1997; Lu, 1999)
based on exact one-way reformulation are popular
because of their high efficiency in treating such prob-
lems; however, these numerical studies are usually
confined to waveguides with flat boundaries or inter-
faces. Even though these methods can be applied to
waveguides with a curved boundary if the ‘staircase’
approximation is used, they often result in marching
in a very small range step. Many numerical methods
have been developed to avoid the crude ‘staircase’
approximation. For example, the approach of Abra-
hamsson and Kreiss (1994) and Larsson and Abra-
hamsson (1998) uses a conformal mapping which
keeps the governing equation in a very simple form.
However, in general, the conformal mapping is global
and requires much effort for its calculation, especially
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when the waveguide is very long and the boundaries
(or interfaces) are complicated.

Local orthogonal transform (Lu et al., 2001; Zhu
and Lu, 2002) is an efficient method for flattening one
curved bottom or interface and reducing the normal
derivative at the interface or bottom to only the par-
tial derivative in the transverse variable. Further-
more, the transformed governing equation does not
involve the cross derivative term, and thus it is pos-
sible to be solved by some marching methods. For
waveguides with at least two internal interfaces and
satisfying the divisible assumption that there is a
horizontal straight line between two adjacent inter-
faces, we have developed a local orthogonal coordi-
nate transform and derived an ‘improved Helmholtz
equation’ with two flat interfaces (Zhu and Li, 2007;
2008). Since the local orthogonal transforms are gen-
erally in an analytical form, we call it the analytical
local orthogonal transform method (ALOTM). As
mentioned above, the divisible assumption is not al-
ways valid practically, and a numerical local orthog-
onal transform method (NLOTM) that removes the
divisible requirement would be very useful and ap-
plicable.

There are many recent publications (Nilsson,
2002; Andersson, 2008; 2009) using conformal
mapping methods built on the modified Schwarz-
Christoffel mapping for bent acoustic waveguides.
Efficient numerical methods for conformal mappings
of waveguides have also been developed (Andersson,
2008; 2009) to handle problems where the variations
in geometry are found in a large proportion of the
waveguide. Although these methods can be used to
remove the divisible assumption required by previ-
ous versions of the local orthogonal transform meth-
ods and are competitive for medium bounded regions
when the boundaries contain vertices or when parts
of the boundaries are straight lines, they are far from
efficient for an unbounded or large-scale region with
boundary curves or interfaces that do not approach
infinity as a straight line (Andersson, 2008). There-
fore, NLOTM can be implemented with the march-
ing processing and accordingly provides more com-
putational efficiency for large-scale range-dependent
waveguides. The NLOTM provides a framework for
implementing some marching methods in waveguides
with slowly varying curved interfaces. Furthermore,
due to the fact that the Cauchy problem (Delillo et
al., 2001; Marin et al., 2003; Marin, 2005; Jin and

2010 11(12):998-1008 999

Zheng, 2006; Jin and Marin, 2008) has become an in-
teresting research area in inverse problems in recent
years, if the incident waves need to be reconstructed
in large-scale stratified waveguides (Li et al., 2008),
the NLOTM can be used to flatten the curved inter-
faces or boundaries and is important for the compu-
tation involved with a large range step size.

2 Basic equation

In ocean acoustic applications, waves are al-
lowed to travel large distances in the horizontal di-
rection in this multilayered media where the surface
can be seen as even, and the bottom is composed
of multilayered media. The interfaces between two
adjoint layers are usually curved. The range dis-
tance L is much larger than the typical wavelength.
The depth D is also larger than the wavelength but
much smaller than L. This typical structure is very
common in acoustics, electro-magnetism, seismic mi-
gration, and some other applications.

Consider the two-dimensional (2D) Helmholtz
equation in a typical ocean surrounding with two
curved interfaces

Uy + Usy + K2 (2, 2)u =0 (1)

for —c0 < x < 400, 0 < z < D1, where the first
layer with density p; is located in 0 < z < hq(x),
and the second layer with density po is located in
hi(xz) < z < ha(x), and the third layer with density
ps is located in ho(xz) < z < D;. The interfaces
are two curves z = hy(z) and z = ha(z), where
Dy > 1, L > Dy > 1/k, u represents the Fourier
transform of acoustic pressure, and « is called the
wavenumber. We also suppose that the problem is
range independent (i.e., wavenumber and interfaces
are independent of z) for x < 0 and = > L, that is

hio, =<0, h2o, <0,
hi(w) =4 " ha(a) =4 1>
1(x) { hl,oo» X > L7 2(x) { h2,c>07 X > L7
_J ko(2), =<0,
K, 2) = { Koo(2), = > L.

The boundary conditions on the top and the
bottom are supposed to be u’z:O =0 and u|Z:D1 =
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0. The interface conditions are as follows:

lim wu(z,z)= lim wu(z,z),
z—hy(z)™ z—hy(z)t

1 lim au(x,z):i lim ou(z, 2)
Pl z—ny(2)— on P2 zony(2)t on '
lim wu(z,z)= lim wu(z,z),

z—hg(z) ™ z—ho(z)t

1 lim au(x,z):i lim ou(z, 2)
P2 z—no(x)— on P3 zono(a)t on '

where n is a normal vector of the interface z = hq(x)
or z = ho(z) (Fig. 1).

0.5

Depth z

| —
H ha(x)

s . . |
0 1 2 3 4 5 6 7 8 9 10

Range x

Fig. 1 Sketch map of waveguide with curved in-
ternal interfaces

Here we shall concentrate on solving the equa-
tion for 0 < x < L since the Helmholtz equa-
tion can be easily solved by a separable variable
method for z < 0 or x > L. Supposing there
are no waves coming from +oo, we have the exact
boundary condition (radiation condition) at z = L,
Uy = 1y/02 + k2, (2)u, where i = /—1. The simplest
boundary condition at x = 0 is imposed as v = ug(z)
for a given function ug(z).

For simple derivation and illustration, our
method is developed for the waveguides with only
two curved internal interfaces, but it can be extended
to waveguides with more interfaces. In this method,
we remove the divisible assumption and consider a
general acoustical waveguide: there may be no hor-
izontal straight line z = Dy between two adjoint in-
terfaces hi(z) and ho(x). We suppose that a unique
solution exists for Eq. (1) with the boundary and
interface conditions.

3 Local orthogonal transform

To avoid constricting the coordinate net into a
narrow coordinate net in the (z, z) plane, we further
divide the layer below z = ho(x) into two sub-layers:
hao(x) < z < D and D < z < D; with the added
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interface 2 = D. The detailed transform scheme to
flatten the curved interfaces

{£=f@J%

Z= g(xvz)v

are as follows:

o a0 0 b0,
dx Ox 9z 0z

where the function f is to be determined according
to the orthogonal condition.
1. The first layer 0 < z < hi(x) in a medium
with density p1 (Zhu and Lu, 2002). Let
[z, 2),

{ Z=g(x,2) = z/h(x),

satisfy {(z,2)|0 < =« 0

{(,2)|0<2<L,0< 1}.
2. The second layer hi(z) < z < ha(z) in a

medium with density pa (Zhu and Lu, 2002). Let

=
Il

f.9

<L, 0 <z < h(x)} <=
2 <

z — hi(x)

)T @ m UL

satisfy {(z,2)[0 < z < L, h1(z) < z < ha(2)} AN
((#2)0<z <L, 1<2<H).

3. The third layer h2(x) < z < D in a medium
with density ps. Let

satisfy {(z,2)[0 < =z < L, ha(z) < z < D} AN
{(z,2)[0< &< L,H <2< D}.

4. The fourth layer D < 2 < D; in a medium
with density ps. Let

satisfy {(z,2)|0 < z <
{((#,5)0< <L, D<2
4 Equation transformation

Because Eq. (1) is expected to be transformed
as

Vie + (@, 2)Ves + B(2,2)Vz +7v(2,2)V =0, (2)
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welet u(x, z) = W(x, z)-V(z, z) and the coefficient of
the V; be zero in order to remove Vz. Then W (x, z)
is governed by 2W. f, + W f., + 2Wo fo + W fze =0

(Zhu and Lu, 2002). Coefficients of Eq. (2) are
obtained as follows:
ad, 2 = Lt
R+
B(i, 5) = 2W.g. + Wg.. + 2Woge + Woae
’ W(f2+12) ’
(5.5) = Waw + Wz + 2W
e W2+ 72)

(3)

To compute the coefficients of the transformed

Eq. (3) in the multilayered waveguide, the numeri-

cal algorithm considers two aspects: (1) coordinate

transformation, i.e., the computation of f, g, and its

corresponding partial derivatives; (2) equation trans-

formation, i.e., the computation of W(z,z) and its
corresponding partial derivatives.

4.1 Coordinate transformation

Coordinate transforms should be consistent
with the operator marching. Let the marching com-
putation come to the position at £ = #;, and f,g
be computed on the coordinate line &; = f(z,z2).
Here, we also compute its relative derivatives, which
will be used later in the computation of the equation
transformation.

Differentiating with respect to z along &; =

f(z, z) gives
dz
z T 7. — 0;
fetfog
that is,
dz  f.
dz  f.
Since the transform is required to be orthogonal, that
is

0F 2y 0f 95 _,
dr Ox 9z 0z
we have
9
fr  9:

Hence, the equation coordinates curve &; = f(z, 2)
satisfies

dx a gz
el L Iz
dz (2,) g,
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whose analytical formulation can be derived in every

layer:
3—j = F(z,z) =
b (x)
— <z <
hl(x)z7 O\Z\hl(l‘),
1

0, D<Z<D17

with the initial condition z(0) = &;.

The classical Runge-Kutta method of solving
ordinary differential equations (ODEs) can be ap-
plied to calculate the physical coordinate from the
computing coordinate along & = ;.

From a computed discrete point-set { (z;, 2;)|1 <
i < M} of physical coordinates, we can reformulate

{ x =m(3,2), 5)

2 =n(#, 2),

by some interpolation methods at & = %, which is
the inverse function of

=
Il

LIz

Details are omitted here as they can be found in
many basic textbooks concerning numerical analysis.

Differentiating partially to Z and Z respectively
along & = f(x, z) gives fz = 1, fz = 0, which can be
written as

frmé + fzni =0.
Then we have
n:
fo= Cngmz —nzmg’
- (7)
fz = =

NzMsz — NzMyz ’

From Eq. (7), we obtain

(fw)éng
fzz = (fZ)ifz + (8)

(fz)2927
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where

-1
(nimg — ngmi)Q
—nz(ngams—+ ngmes — Ngzmsg — nsmm)] .

- [nza(nams — nzmg)

(fz)z, (f2)z, (f2)z can be computed in the same way,
and we omit the details here.

Once mz, Nz, Mzz,Nzz and mgz, Nz, Mzz, Nzz are
computed, fz, f:, fee, f-» can be obtained numeri-
cally according to Egs. (7) and (8). In this work,
msz,nz, Mzz,Nzz are computed separately in L1 (0 <
2<1.0),Ly (1.0< 2 < H),Ls (H < 2 < D), and
Ly (D < z < Dy) by the following three-point for-
mulae with a properly selected step h:

—P(i,iz—h)—FP(.fi,él—f—h)

P: (2, %) = o7 ;9
o P(z,z; —h)—2P(z,%;)+ P(z,%2;, + h
oz - 5 265 Pt )

(10)
where h satisfies: if 2; € L; and 2,41 € Lj, then
Zixhe Ljand 2, +h < %41, with j =1,2,3,4. In
general, if the step sizes for a discrete depth variable
Z are not very small or too large, we can directly
use the function values on discretized points in each
layer to compute the derivatives.

With respect to the computing of mgz, ns,
Mgz, Nz at & = T, the Runge-Kutta method is used
to compute m(&, 2),n(%,2) at & = ;96,8 = &, & =
Z; + 0 for some properly selected 6 > 0, and then the
derivatives with respect to & are approximated by
the three-point numerical derivatives:

—P(&; — 6,2) + P(&; + 6, 2)
26 ’

P2, 2) = (11)

P(z;

52
(12)

Note here that the computing of numerical
derivatives is not a stable process in that small
changes in function values may cause large changes in
the values of the corresponding derivatives. The se-
lection of the optimal step sizes h and § for numerical
derivative is crucial for the coordinate transforma-
tion: too small a step size amplifies the side effects
of the noise in original data; too large a step size
weakens the accuracy in approximating a derivative.
Theoretically, there is an optimal step size which bal-
ances the trade-off between numerical stability and
accuracy. In general, for slowly varing waveguides,
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—8,8) — 2P(&;,2) + P(&; + 6,2)
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there exists a neighborhood of the optimal step size
in which the numerical derivative can be computed
exactly and stably. Thus, in practice, we need only
to find one proper value from the neighborhood by
some preliminary numerical tests, instead of com-
puting the optimal one with more efforts.

4.2 Equation transformation

To obtain an equation transformation, the cal-
culation of W(x,z) and its corresponding partial
derivatives are necessary. W (z, z) is governed by

QW fo A Wfee +2Wofo + Wee =0. (13)

At (Z, 2), substituting

Ww = Wifw+Wégw7 Wz :Wifz+Wégz

(14)
into Eq. (13) gives

2(f§+fz2)W%+2(fzgz+f292)W2+(fzz+f22)W =0,

(15)
which can be written as
Wi = 0W, (16)
where 0 = —% . Note that W can be
2(fw + fz) i1/2

seen as a function of (&, %) and also (z,z). We de-
note it by W (&, 2) or W(x, z) for simplicity in the
following derivation. It is the same with 6.

Eq.(16) has the exact solution

W (&) = W(L)exp (/ 9(t)dt> , (17)

L
which can be solved easily using some marching
methods.
used to represent the general step from &1 to Zy:

The step formulation from 21 to Zg is

Wy ~ "Wy, (18)

where 7 = %3 — Zp, with the initial condition
W(L,2) =1 (0 <2< Dy). For Eq. (17), supposing
that W(L, 2) is polluted initial data and W*(L, 2) is
exact, and that 6(t) is computed and 6*(t) is exact,
we have the error propagating estimation as shown
later. Note here that, we omit the variable Z in
some functions for simplicity in notation, such as
W(L,2) = W(L),W(&,2) —» W(&),0(t,2) — 0(t).
Theorem 1 Let 0(t) — 0*(¢t) = e(t), and W (&) and
W*(z) be solutions of Eq. (16) corresponding to 6(¢)
and 6*(t), respectively. Then we have
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(1)
W (L W)
W) p(ﬁ @“>me 1)
@) A
¢ < ‘MV/{/*((Q;C)) < Cy, (20)
with C; = OlgniiilL III/[//*((LL)) - exp (/LI e(t)dt) and
W(L) @
Cy = omax W (L) - exXp (/L e(t)dt) ‘

(3) Let [le(®)||oo = ¢, W(L) = W*(L). For any
e>0,if

¢< min{ - %mu _5),%111(1 —|—a)}, (21)

then

e

W (z)

—1’<E.

Proof
(1) From Eq. (17), we have

W* () = exp ( /L IG*(t)dt) W*(L).  (23)

Eq. (23) dividing Eq. (17) gives

W@ _ T g W(L)
W@—e%AWHG@W%w@
W (L)

= exp (/L e(t)dt) W (L)’

which is Eq. (19).
(2) Taking the absolute value of Eq. (19), we

have
W(z) | _ : W (L)
“r= ‘W*(i) P (/L e<t>dt> W*(L)‘ =G
with Cp = ngi?L III/[//*((LL)) - exp (/LI e(t)dt) and
W(L) :
Cy = OI£§L<><L W (L) - exp (/L e(t)dt) ‘

(3) For |le(t)]||lcc = ¢, W(L) = W*(L), from
Eq. (20) we have

S m
Ci > OgnjlgLexp (/L ||e(t)||oodt>
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= exp (/; cdt> > exp (/LO cdt) =e e (24)

and

< _
Cy < oax, exp ( /L ||e(t)||oodt>

= exp (/j cdt) < exp (— /LO cdt) =ele. (25)

Letting e ¢ > 1 — ¢ and "¢ < 1 +¢, then from
Egs. (24) and (25) we have

W (&)
W (&)

1—5<01§’ ’SCQ<1+E (26)

c< min{ - %ln(l —5),%111(1—}—5)}.

Thus, under the constraint Eq. (19), we have

W (2)
— -1 .
£ < ‘W*(:ﬁ) <e;
that is,
W (2)
—1 .
‘W%) %5

Since there is no initial error in W(L) with
W(L,2) = W*(L,z) =1 (0 < 2 < Dy), the de-
viations of W (&) are completely determined by the
errors e(t), which arise from the calculation of 6(t),
and Eq. (21) can be taken as a practical approximate
estimate. If the accuracy of 6(¢) can be controlled
successfully, the accumulated errors for W(z) will
not be serious. For the slowly varied waveguides, 0(t)
is also slowly varied and it is possible to control the
accuracy and stability in numerical derivative com-
puting. Furthermore, if the computed domain is very
long and the errors are excessively accumulated, we
can reset W(2/,2) = 1 in some & = &’ where the in-
terfaces and boundaries are flat in its neighborhood,
since W (%, 2) satisfying Eq. (13) has a constant so-
lution W (Z,2) = 1 in the area with flat interfaces
and boundaries. The marching process can then be
continued from the new starting point.

From Eq. (16), we have

Wis = (Wa)e = W)z = 0. W +0W5 = (0:+6)W,

(27)
where 6; can be computed by Eq. (11). In this way,
W; and W;; can be computed from Eqs. (16) and
(27).
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To obtain the coefficients of Eq. (2) according
to Eq. (3), we still need to compute W; and Wj;
numerically. Once W (%, 2) at & = &, is computed,
this can be approximated by the three-point numer-
ical derivatives Egs. (9) and (10) in Ly (0 < 2 <
1.0),L, (1.0 < 2 < H),Ls (H < 2 < D), and
Ly (D < 2 < Dy), respectively. After Wi, Wiz, W,
and W;; are computed, we have

Wz =W f2+2Was f2g:+ Wiz g2 + W foz A Wigs.-.
(28)
Then, one can compute the coefficients of the trans-
formed Helmholtz equation (Eq. (2)) according to

Eq. (3).

5 Interface conditions

For Eq. (2), the top and bottom boundary con-
ditions are

V|5:0 =0, V|2:D1 =0. (29)

The interface conditions between the first and
the second layers (at 2 = 1) become

(WV)| :(WV)|2:1+7

zZ2=1—

Pl

o %[hll(I)WL*WZ]V*W[hll () ga—g=]Vz }

217

=,}2{;[h;<w>wzwzlvW[h'l(m)gmgz]vz}

z1+

The interface conditions between the third and
the fourth layers (at 2 = H) become

(Wv)lng— :(WV)|2:H+ 3

é é[hIQ(aj)WLWz]VW[hé(w)gzgz]Vi}

Z—H™

=% { [R5 (2)Wa =WV =Why () ge —g:]Vz }
z—»HT

(31)
The conditions at the interface between the
fourth and the fifth layers (at 2 = D) are

WV p-=WVI.p+;

(32)

— AWV W, V:

2D~

= lW.V+Wg.V;

2D+

6 Numerical examples

Range discretization and matrix approximation
to the operator a(%, £)02 + 3(&, 2)0, +~(%, 2) are the
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same as those in Zhu and Lu (2002). We omit it in
this paper for simplicity.

The NLOTM has been tested on a number of
examples. We present four of them below. In the
first example, for the layer between hi(z) and ha(x)
which satisfies the divisible assumption, it can be
solved by both the ALOTM and the NLOTM. The
solution obtained by the NLOTM is compared with
that of the ALOTM. The second to the fourth ex-
amples are situations without satisfying the divisible
assumption solved using our new method.
Example 1 Let

16, 0<z<hi(x),
k=14 0.7x16, hi(z) <z < ha(z),
0.2 x 16, hg(x) <z < Dq,
with L—=10, n=30, Do=1.5, H=25 D=3,

Di=4, N=400, p1=1, p2=1.7, p3=2.7, §=0.025,
hi(z)=1 — erexp(—o1(z/L — 0.5)%), ha(z) = H —
626Xp(—0'2(.13/L — 0.5)2), 1 = €9 = 0.1, 01 = 02 =
10,0 € 2 < 4,0 <z <10, where N is the number of
points to discretize the Z variable, n is the number
to truncate the N x N matrices that approximate
the operators arising in the marching process (Zhu
and Lu, 2002). Note that all the derivatives with
respect to Z are computed directly on the values of
the discretizing points in Examples 14, and that h
is a constant in each layer.

Here, u(0, 2) is given by the eigenfunction whose
corresponding eigenvalue is the largest one at © = L
(Fig. 2). After flattening the two curved interfaces
by the orthogonal transform we suggest, the march-
ing scheme in Zhu and Lu (2002) can be implemented
to compute the solution u(Z, 2) at & = L. The cor-
responding solution is shown in Fig. 3. With the
ALOTM solutions acting as the ‘exact’ solutions, the
relative error of Example 1 is 0.0384. As shown in
Fig. 3, the real parts of u(L,Z2) with range steps
7 =1/8 and 7 = 1/128 {it closely, while the imag-
inary part has a slight discrepancy. The difference
may come from: (1) errors from computing numer-
ical derivatives, which suggests that a proper selec-
tion § and control of the random error in computing
derivatives are needed in a further study; (2) effects
of the introduced additional interface conditions in
the ALOTM, which results in different discretiza-
tions of deep variable 2 and corresponding different
matrix approximations.

In Fig. 4, the NLOTM solution obtained with
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0 = 0.025 acts as the ‘exact’ solution and the rela-
tive error of the solution obtained with 6 = 0.05 is
0.0109. Asshown in Fig. 4, the solutions obtained fit
closely. The numerical test justifies the existence of
neighborhood of the optimal step size. In practical
computing, we need only to find one step size from
the neighborhood instead of the optimal one. It is
easy to verify that § = 0.05 is a rational step size for
the numerical derivative computed under the error
level of the current problems.

0
05
L s [1 1164}
15

£ 20

z

=
8 25 ha(x)
3.0 D
3.5
4.0 D:
0 1 2 3 4 5 6 7 8 9 10
Range x
(@)
0.14
0.12
0.10
0.08
El
0.06

0.04

0.02

0

0 0.5 1.0 15 20 25 30 35 4.0
Depth z

(b)
Fig. 2 Sketch map of the waveguide (a) and u(0,z)

(b) in Example 1

Example 2 Let

16, 0<z<hi(z),
0.7x 16, hi(z) < z < ho(x),
0.2 x 16, ho(x) < z < Dy,

with L =10, n =30, H =1.1, D =1.2, D; = 1.5,
N =200, pr = 1, po = 1.7, p3 = 2.7, 6 = 0.05,
hi(z) = 1— erexp(—o1(z/L —0.5)%), hao(x) = H—
sgexp(—ag(x/L - 05)2), €1 = &9 = 0.11, 01 = 02 =
2,0<2<1.5,0< 2 < 10.

Here, u(0, 2) is given by the eigenfunction whose
corresponding eigenvalue is the second largest one at
x = L (Fig. 5). The corresponding solution at z = L
is shown in Fig. 6.

Example 3 Let

16, 0 < z< hi(z),

0.7x 16, hi(z) < z < ho(x),

0.2 x 16, ho(z) <z < Dx,

with L = 10, n = 30, H = 1.08, D = 1.2, D; = 1.5,
N =200, pr =1, po = 1.7, p3 = 2.7, § = 0.05,
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Fig. 3 Comparison with the real part (a) and

the imaginary part (b) of u(L,z) for NLOTM in
the range step 7 = 1/8 (solid line) and ALOTM
solution in Zhu and Li (2007) in the range step
7 =1/128 (bold points) in Example 1
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Fig. 4 Comparison with the real part (a) and the

imaginary part (b) of u(L,z) by NLOTM with
6 = 0.05 (bold points) and § = 0.025 (solid line)
in the range step 7 = 1/8 in Example 1

hi(z) = 1— erexp(—oi(z/L —0.5)?), he(z) = H—
Egexp(—ag(x/L - 048)2), €1 = &2 = 0.1, 01 = 02 =
10,0< 2<1.5,0< x<10.

Here, u(0, 2) is given by the eigenfunction whose
corresponding eigenvalue is the third largest one at
x = L (Fig. 7). The corresponding solution is as
shown in Fig. 8.
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Fig. 6 Comparison with the real part (a) and the
imaginary part (b) of u(L,z) for 7 = 1/8 (dashed
line), 7 = 1/16 (bold points), 7 = 1/32 (dotted
line), and 7 = 1/128 (solid line) by NLOTM in
Example 2

Example 4 Let

16, 0 < z< hyi(z),
0.7x 16, hi(z) < z < ho(x),
0.2 x 16, hg(x) < z < Dy,

with L=10, n—30, H=1.1, D=1.2, D1 —=1.5, N—=200,
p1=1, pa=1.7, p3=2.7, h1(z)=1 — erexp(—o1 (/L —
0.5)%), ha(z) = H — esexp(—o2(x/L — 0.5)?), 1 =
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imaginary part (b) of u(L,z) for 7 = 1/8 (dashed
line), 7 = 1/16 (bold points), = = 1/32 (dotted
line), and 7 = 1/128 (solid line) by NLOTM in
Example 3

g0 =0.11,01 =09 =10,0< 2<1.5,0 <z < 10.

Here, u(0, 2) is given by the eigenfunction whose
corresponding eigenvalue is the second largest one at
x = L (Fig. 9). The corresponding solution is as
shown in Fig. 10.

In Examples 2—4, four different values for the
time-steps are considered and the corresponding nu-
merical results are presented together in Figs. 6, 8,
and 10 for comparison. As shown by these figures,
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Fig. 9 Sketch map of the waveguide (a) and u(0,z)

(b) in Example 4
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Fig. 10 Comparison with the real part (a) and the

imaginary part (b) of u(L,z) for 7 = 1/8 (dashed
line), 7 = 1/16 (bold points), 7 = 1/32 (dotted
line), and 7 = 1/128 (solid line) by NLOTM in
Example 4

the solutions obtained with 7 = 1/8 are not rea-
sonably accurate, while the solutions with 7 = 1/16
fit closely the more accurate solutions obtained with
T = 1/32 and 7 = 1/128, at least similar to the
shape of the waveforms. The figures indicate that
reasonable NLOTM solutions are not obtained with
the range step 7 = 1/8 like the numerical examples
solved by the ALOTM in Zhu and Li (2007; 2008).
The reason is that the waveguides with indivisible
interfaces are generally more irregular. In fact, for
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the waveguides under the divisible assumption, the
result in Example 1 shows that the NLOTM solu-
tion with 7 = 1/8 is a very close approximation to
the ‘exact’ ALOTM solution. The solutions obtained
with 7 = 1/128 act as the ‘exact’ solution. We com-
pute the relative errors of u(L, z) in the range step
7 = 1/16 and they are 0.0238,0.0513, and 0.0491, re-
spectively. The numerical examples show that good
approximate solutions can be obtained by selecting
quite large steps.

7 Discussions

The presupposition that there is a horizontal
line between two adjoint interfaces is essential for
the analytical local orthogonal transform method
(ALOTM), which is used to compute wave prop-
agation in multilayered waveguides. Our current
study develops a practical numerical scheme for com-
puting wave propagation in slowly varying acous-
tic waveguides without imposing the divisible as-
sumption. The proposed numerical local orthogonal
transform method (NLOTM) can be implemented
with the marching processing and is generally more
computationally efficient than the methods built on
modified Schwarz-Christoffel mapping (Andersson,
2008; 2009) for large-scale range-dependent waveg-
uides. This method is particularly useful for solv-
ing long-range wave propagation problems in slowly
varying waveguides with multilayered medium struc-
ture. Numerical examples show that our method is
feasible for solving the Helmholtz equation in slowly
varing stratified waveguides using a large range step.

In an approximate comparison of the numerical
Examples 2—4 with Example 1, we find that the con-
vergence speed of Examples 2—4 using the NLOTM
without meeting the divisible assumption is slower.
Part of the reason lies in the irregularity of the com-
puting domain in Examples 2-4 where the very close
distance of two adjoint interfaces results in imple-
menting the marching method in a relatively small
range step. Furthermore, several problems for the
NLOTM should be proposed and addressed for fu-
ture studies:

1. In the coordinate transform, how to elim-
inate the side effects caused by the computing of
the numerical partial derivatives? Since the consid-
ered waveguides are slowly varied, this gives rise to
smoothing the computed data by some regulariza-
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tion methods (Cullum, 1971) to smoothly reformu-
late the functions such as © = m(&, 2),z = n(z, 2),
and Wz, z) at & = &;.

2. How to adaptively select optimal varying
range steps of marching according to the character-
istics of bottom or interfaces, and to eliminate the er-
rors arising in the marching progress when the curved
interfaces or boundaries become sharp abruptly?

3. In the traditional ALOTM, additional inter-
faces are introduced, which leads to the imposition
of additional interface conditions. Thus, the corre-
sponding effects of the additional interfaces and the
problem of how to improve the additional interface
conditions need to be investigated in future research.
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