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Abstract: Optical flow estimation is still an important task in computer vision with many interesting applications.
However, the results obtained by most of the optical flow techniques are affected by motion discontinuities or
illumination changes. In this paper, we introduce a brightness correction field combined with a gradient constancy
constraint to reduce the sensibility to brightness changes between images to be estimated. The advantage of this
brightness correction field is its simplicity in terms of computational complexity and implementation. By analyzing
the deficiencies of the traditional total variation regularization term in weakly textured areas, we also adopt a
structure-adaptive regularization based on the robust Huber norm to preserve motion discontinuities. Finally, the
proposed energy functional is minimized by solving its corresponding Euler-Lagrange equation in a more effective
multi-resolution scheme, which integrates the twice downsampling strategy with a support-weight median filter.
Numerous experiments show that our method is more effective and produces more accurate results for optical flow
estimation.
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1 Introduction

Estimating a displacement field for consecutive
images from an image sequence is one of the major
challenges in computer vision. It arises whenever one
aims to identify correspondences between points in
pairs of images. Examples include motion estima-
tion (Gilland et al., 2008), tracking (Dessauer and
Dua, 2010), and medical multi-modal registration
(Wang et al., 2007). The resulting dense correspon-
dence between pairs of points in either image can
subsequently be used for the structure-from-motion
algorithm (Fakih and Zelek, 2008), object recogni-
tion (Efros et al., 2003), and other higher level tasks.
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Starting with the seminal work of Horn and
Schunck (1981), most of state-of-the-art methods are
based on minimizing the energy

E(U) = Ed(I1, I2,U) + λEs(U), (1)

where the unknown optical flow field U : Ω → R
2,

and two input images I1 and I2 are both defined
on the image domain Ω ⊂ R

2. The data term
Ed(I1, I2,U) measures the similarity of the input
images for a given optical flow field, and the regular-
ization term Es(U) allows to impose some prior on
the optical flow field U . Although a lot of work has
focused on improving energy models and optimizing
algorithms, there is still room for improvement.

For the data term, the original energy model of
optical flow relies on the brightness constancy con-
straint. Any changes of the illumination in the scene
violating the brightness constancy assumption lead
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to unsatisfactory results. To deal with the problem
of brightness variations, many methods have been
proposed (Gennert and Negahdaripour, 1987; Ne-
gahdaripour, 1998; Haussecker and Fleet, 2001; Kim
et al., 2005; Teng et al., 2005). For example, Gennert
and Negahdaripour (1987) proposed to replace this
constancy constraint with a linear model between im-
age brightness values. Haussecker and Fleet (2001)
proposed some physical models of brightness varia-
tions, including the brightness variations caused by
diffusion, moving illumination envelope or changed
surface orientation, etc., for optical flow computa-
tion. However, these physical models are usually
constructed from some prior knowledge about the
system. Thus, their methods are appropriate only for
the applications where the physical model is known
in advance. Also, they cannot deal with the op-
tical flow globally. Kim et al. (2005) proposed an
integrated approach that incorporates Gennert and
Negahdaripour (1987)’s formulation with the robust
statistical framework of Black and Anandan (1996).
Teng et al. (2005) adopted the revised definition of
the optical flow proposed by Gennert et al. and em-
bedded a generalized dynamic image model (GDIM)
(Negahdaripour, 1998) into a gradient-based regular-
ization method to estimate the revised optical flow.
Although these methods can deal with the illumi-
nation variations, they have many parameters that
need to be carefully tuned in order to obtain desir-
able results. They adopt the robust log function,
leading to a highly non-convex model, and this adds
to the difficulty in the computing.

For the regularization term, the classic Horn
and Schunck (HS) model uses a homogeneous reg-
ularization term that does not respect any flow
discontinuities. Since different image objects may
move in different directions, it is also desirable to
permit discontinuities. The total variation (TV)
regularization allows to retrieve flow discontinu-
ities. There are also many works on robust func-
tions and isotropic/anisotropic regularization formu-
lations to retrieve flow discontinuity (Shulman and
Herve, 1989; Black and Anandan, 1996; Brox et al.,
2004; Bruhn et al., 2005; Zach et al., 2007; Stein-
brücker and Pock, 2009). The TV regularization is
an L1 penalization of the flow gradient magnitudes.
However, due to the tendency of the L1 norm to
favor sparse solutions (i.e., lots of ‘zeros’), the fill-in
effect leads to piecewise constant solutions (‘staircas-

ing’ in a 1D setting) in weakly textured areas. Huber
(1973) proposed a quadratic penalization function in
the field of robust statistics to reduce ‘staircasing’
effect. Werlberger et al. (2009) proposed to replace
an isotropic TV regularization, e.g., used in Wedel
et al. (2009a), with an anisotropic (image-driven)
Huber regularization term. For many real-world ex-
amples, discontinuities of the motion field tend to
coincide with object boundaries and discontinuities
of the brightness function. Wedel et al. (2009b) pro-
posed a structure-adaptive regularization term.

The optimization algorithm and the implemen-
tation are also important for improving the accu-
racy of the estimated flow fields. Most methods
adopt the coarse-to-fine strategy. These methods
include: temporal averaging of image derivatives
(Hsiao et al., 2003), texture decomposition (Zach et
al., 2007; Wedel et al., 2009a), the robust statistical
framework of Black and Anandan (1996), and bicu-
bic interpolation-based warping (Lempitsky et al.,
2008). One problem of the coarse-to-fine strategy
resides in the warping process, which transforms im-
ages by a coarser estimated field. Works of Cassisa et
al. (2009) and Steinbrücker and Pock (2009) for op-
tical flow computation do not need the warping step.
If the estimation at a coarser level is pretty close to
the exact coarser field, however, errors introduced
by the warping process are negligible. Thus, both
the downsampling strategy and using an advanced
filter to intermediate flow values before the warping
process are very important. Wedel et al. (2009a)
adopted the median filtering after each incremen-
tal estimation step to remove a lot of outliers. Sun
et al. (2010) used a weighted filter (Yoon and Kweon,
2006) model to improve the accuracy of the recovered
optical flow field.

Based on the above analysis, we propose a new
energy model for robust optical flow estimation. Its
data term combines the brightness correction field
with gradient constancy constraints. Unlike the
physical model and the linear model of brightness
variations mentioned above, this brightness correc-
tion field is based on a regularization operator. It
takes into account non-stationary brightness rela-
tionship and reduces the sensibility to brightness
changes. To decrease the ‘staircasing’ effect caused
by the TV regularization term in weakly textured ar-
eas, a structure-adaptive regularization term based
on the Huber norm is adopted. The Euler-Lagrange
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equation of the proposed energy model is solved by
an effective multi-resolution scheme, which uses the
downsampling strategy twice with different down-
sampling factors. Thus, the proposed strategy can
recover the missing details that are caused by the
traditional coarse-to-fine scheme. After each warp-
ing step, a support-weight median filter is applied to
the newly computed flow field. It helps to remove
outliers robustly.

2 Methodology

2.1 Data term with the brightness correction
field

At the beginning of optical flow estimation, the
data term is based on the assumption that the bright-
ness of a pixel is not changed by the displacement.
However, in realistic scenarios, the brightness con-
stancy assumption almost never holds. For example,
a pixel can change its brightness value because an
object moves (translates or rotates) to another part
of the scene with the different lighting or because
the illumination of the scene changes (globally or lo-
cally) in time. To handle this issue, one has to take
into account non-stationary brightness variation re-
lationship. Previous works have focused on the phys-
ical model (Haussecker and Fleet, 2001) or the linear
model of brightness variations (Gennert and Negah-
daripour, 1987; Kim et al., 2005; Teng et al., 2005).
Unlike these two models of the brightness variation,
our brightness correction field model does not need
to know in advance the physical model underlying
the brightness variation and does not have many pa-
rameters that need to be carefully tuned in order to
obtain desirable results. It is directly defined as

I2(X +U(X)) = I1(X)−M(X), (2)

where M(X) is a brightness correction field (note
that for any two images there always exists a correc-
tion field M(X)). U(X) is the optical flow vector
representing the displacement between frames I1 and
I2. The maximum a posteriori (MAP) approach to
estimating U and M is to maximize the conditional
probability:

p(U ,M |I1, I2) ∝ p(I1, I2|U ,M)p(U)p(M). (3)

Here the independence of M and U is assumed.
The term p(I1, I2|U ,M) is a joint likelihood of the

images, which leads to the familiar similarity mea-
sure of the brightness value constancy assumption.
p(U) is a prior used to regularize the optical flow U

and p(M) ∝ exp(−β||PM ||2) is a prior on M that
reflects our assumption on spatial brightness inter-
actions, where P is a regularization operator for M
and β is the equilibrium parameter of two terms. It
is also assumed that pixel-wise probabilities are inde-
pendent and identically distributed, but only when
given the correction field. MAP estimation in Eq. (3)
is equivalent to the minimization of the following ob-
jective function:

Edb(U ,M) =||I1(X)− I2(X +U)−M ||2
+ β||PM ||2, (4)

where images I1, I2 and the correction field M are in
matrix form, and ‖ ·‖ is Euclidean norm. Eq. (4) can
also include the regularization on U , because it de-
pends on the U that comes from a prior p(U) (Myro-
nenko and Song, 2009). To make our data term more
robust, the gradient constancy assumption is consid-
ered. Thus, the data term of our energy model is
defined as

Ed(U ,M) = Edb(U ,M) + μEdg(U), (5)

where Edg(U) =
∑

X

||∇I2(X +U) −∇I1(X)||1,
|| · ||1 is L1 norm, and μ is a tuning weight parameter.

2.2 Structure-adaptive regularization term
based on the Huber norm

Since different image objects may move in dif-
ferent directions, it is desirable to permit discon-
tinuity. TV regularization takes this discontinuity
into account; however, it leads to the piecewise con-
stant of estimated flow fields in weakly textured area.
The piecewise constant effect can be reduced signif-
icantly by using a quadratic penalty: for small gra-
dient magnitudes the estimated flow field sticks to
linear penalty, while for larger magnitudes the esti-
mated flow field maintains the discontinuity preserv-
ing properties known from TV. Huber (1973)’s func-
tion is an effective quadratic penalization in the field
of robust statistics. Shulman and Herve (1989) were
the first to apply it in the context of flow estimation.
Werlberger et al. (2009) proposed an anisotropic
(image-driven) Huber regularization term to replace
the isotropic TV regularization. Meanwhile, for
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many real-world examples, discontinuities of the mo-
tion field tend to coincide with object boundaries
and discontinuities of the brightness function. Thus,
Wedel et al. (2009b) proposed a structure-adaptive
regularization term. Inspired by these methods, our
regularization term is defined as

Es(U) =
∑

X

||w(X)∇U(X)||δ , (6)

||j||δ =

{
|j|2/(2δ), |j| ≤ δ,

|j| − δ/2, otherwise,
(7)

where the threshold δ is set to 0.01, w(X) =

exp(−||∇I1||k), and k is set to 0.7 in our experi-
ments. w(X) is the simple structure adaptive map
that maintains motion discontinuity (Wedel et al.,
2009b).

Thus, our objective function is defined as

E(U ,M) = Ed(U ,M) + λEs(U), (8)

where λ is a regularization weight parameter.

2.3 Formulation of the computing model

Eq. (8) is an energy function about the bright-
ness correction field M and optical flow U . M and
U can be found by minimizing Eq. (8). We first solve
analytically for M with fixed U . Letting the deriva-
tive of Eq. (8) only with respect to M be zero, we
obtain

M = (I + βPTP )−1r, (9)

where r = I1(X) − I2(X + U), I is the identity
matrix, and r is the residual image. P is a ma-
trix, and is also the discrete derivative-based regu-
larization of the brightness correction filed. The ma-
trix PTP is square, symmetric, and positive semi-
definite. Thus, it allows spectral decomposition:
PTP = DΛDT,Λ = diag{λ1, λ2, · · · , λN}, λi ≥
0, i = 1, 2, · · · , N , where N is the number of image
pixels. Substituting M and PTP back into Eq. (8),
we obtain

E(U) = rTDLDTr + μEdg(U) + λEs(U), (10)

where L = diag{l1, l2, · · · , lN}, li = βλi/(1 + βλi),
0 ≤ λi ≤ 1, i = 1, 2, · · · , N.

According to the analysis of Myronenko and
Song (2009), li = 1/((dT

i r)
2/α+ 1), where D =

[d1,d2, · · · ,dN ], and α is a trade-off parameter. The

minimization problem of Eq. (10) is rewritten as

E(U) =

N∑

n=1

log
[
(dT

nr)
2/α+1

]
+μEdg(U)

+λEs(U).

(11)

Note that the matrixD composed of basis eigen-
vectors is still unknown and thus needs to be de-
fined. Here, the discrete cosine transform (DCT)
basis (Strang, 1999) is used as a form of D. The rea-
sons are twofold: DCT eigenvectors correspond to
the discrete derivative-based regularization P ; and,
they are the eigenvectors of the covariance matrix
of a weakly stationary stochastic process. It is well
known in signal processing theory that with the as-
sumption of the constant mean and the Toeplitz co-
variance, a stochastic process is said to be weakly
stationary (Gray, 2006). Thus, using the DCT ba-
sis D is implicitly related to the assumptions of a
weakly stationary residual image or a finite-order
Markov process. In Eq. (10), the matrix multipli-
cation DTr is just a discrete cosine transformation
of r, which can be computed by DCT in O(N logN)

(Strang, 1999).
E(U) in Eq. (11) is considered as an energy

functional with respect to the optical flow field
U(X), and minimized by solving its correspond-
ing Euler-Lagrange equation. Since ϕ(x) = |x|
is not continuously differentiable, we use ϕ(x2) =√
x2 + ε, ε > 0 to approximate it. According to

the calculus of variations (see the Appendix for the
derivation of Eq. (12)), the Euler-Lagrange equation
of Eq. (11) is obtained as follows:

−idct(
2A

A2 + α
)∇I2(X +U)

+ μ∇ϕ(||∇I2(X +U) −∇I1(X)||21)
− λdiv(φ′(∇U)∇U) = 0,

(12)

where φ(∇U)= ||w(X)∇U ||δ and A=dct(I1(X)−
I2(X +U)). The dct and idct are discrete co-
sine transform and inverse discrete cosine transform,
respectively.

3 Implementation

Since Eq. (12) is highly non-linear, the mini-
mization is not trivial. We use the first-order Tay-
lor expansion to approximate the non-linear term
∇I2(X +U) and A, i.e., ∇I2(X +U) = ∇I2(X) +
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∇2I2(X)TU and A(X+U) = A(X)+∇A(X)TU .
The linear system of equations can be solved by fixed
point iterations.

To find the global optimum of the proposed en-
ergy, the multi-resolution method is commonly used.
One problem of the coarse-to-fine strategy resides
in the warping process, which transforms images by
a coarser estimated field. However, if the estima-
tion at the coarser level is pretty close to the exact
coarser field, errors introduced by the warping pro-
cess are negligible. To resolve this issue, we propose
two strategies.

1. Support-weight median filter
After each warping step, we apply a support-

weight median filter to the newly computed flow
field. It further increases the robustness to reject out-
liers, because this filter considers the brightness sim-
ilarity and geometric proximity between central pix-
els and neighboring pixels (Yoon and Kweon, 2006).
Sun et al. (2010) quantitatively studied various as-
pects of the median filter to reduce noise for im-
proving accuracy. Thus, we adopt the composited
support-weight median filter proposed by Yoon and
Kweon (2006) and Sun et al. (2010). This strategy
is defined as

min
ŪX

∑

Y ∈NX

LX,Y |ŪX −UY |, (13)

where LX,Y =exp
(−(Δa/ξ+Δb/υ)r), r=O(X)/O(Y ),

NX denotes the set of neighbors of pixel X (it is
set to 7×7 neighbors of the central pixel X in our
experiments), O(X) and O(Y ) are calculated us-
ing Eq. (22) in Sand and Teller (2008), UY is the
displacement vector of the previous level, and ŪX

is the initial displacement vector of the fine level.
Δa(X,Y ) denotes the brightness similarity between
I(X) and I(Y ) measured as Euclidean distance and
Δb(X,Y ) is the Euclidean distance, i.e., the proxim-
ity between X and Y . The parameters ξ and υ are
used to tune the influence of brightness similarity
and spatial proximity. Eq. (13) can be solved using
the algorithm presented by Li and Osher (2009).

2. Downsampling strategy
We adopt the twice downsampling strategy to

estimate the optical flow field. At the first stage, we
use a five-level pyramid with a downsampling factor
of 0.6. At the second stage, we use the result ob-
tained from the first stage to initialize the flow, and
a different factor of 0.85 is adopted in this pyramid

downsampling. This can make up for the errors that
are caused by using only a single downsampling fac-
tor. In experiments, we try multi-downsampling (for
example, 3, 4, · · · ), and find that the results using
twice downsampling are more accurate than those
using single downsampling. Experiments show that
the improvement using multi-sampling is not obvi-
ous as compared to twice downsampling. Concerning
the computation time, we adopt the twice downsam-
pling strategies here. Fig. 1 shows an example of the
test images from the Middlebury dataset (Baker et
al., 2007) for optical flow estimation by single down-
sampling (with a downsampling factor of 0.85) and
our twice downsampling with different coefficients.
Figs. 1a and 1e are the test images of the ‘Grove’
and ‘RubberWhale’, respectively. Figs. 1b and 1f
are their corresponding ground truth flows. Figs. 1c
and 1g are the results using a single downsampling
strategy. Figs. 1d and 1h are the results using our
twice downsampling strategy with different coeffi-
cients. We use the corresponding average angular
error (AAE) and the average end-point error (EPE)
measures (Barron et al., 1994). Our downsampling
strategy gives smaller AAEs and EPEs than single
downsampling for optical flow estimation, and the
results are more accurate than those using single
downsampling.

4 Experiments and evaluation

We implemented the algorithm in Matlab, and
tested it on an Intel� CoreTM Duo CPU T7300 2.00
GHz machine with 2 GB RAM. The experiments
were performed on test image sequences of Middle-
bury datasets (Baker et al., 2007). We empirically
found the parameter values α = 0.05, μ = 0.2,
λ = 10−3, ε = 10−6, ξ = 90, and υ = 90 to be
satisfactory, which we used in all experiments unless
explicitly stated. It took 115 s for the ‘Urban’ image
sequences at resolution 420× 380.

4.1 Comparisons of different models

The first experiment shows the effectiveness of
our data term. We compared the proposed data
term with four different data terms in L1 norm: (1)
the brightness constancy constraint (BCC); (2) the
gradient constancy constraint (GCC); (3) the com-
bination of the brightness constancy and the gra-
dient constancy constraints (BGCC) (equilibrium
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 The visual comparison of single downsampling and our twice downsampling. (a) ‘Grove’; (b) The
ground truth flow; (c) The result using single downsampling (AAE, 2.118◦; EPE, 0.118); (d) The result using
our twice downsampling (AAE, 1.306◦; EPE, 0.089); (e) ‘RubberWhale’; (f) The ground truth flow; (g) The
result using single downsampling (AAE, 3.368◦; EPE, 0.109); (h) The result using our twice downsampling
(AAE, 2.634◦; EPE, 0.084). AAE: average angular error; EPE: end-point error

parameter μ = 1) (Here, our model also uses the
equilibrium parameter μ = 1); (4) the one using
Kim et al. (2005)’s method. For fairness, we adopted
the same regularization term to form the full model,
and employed the uniform multi-resolution scheme
to compute the optical flow field.

Fig. 2 shows the error comparison of the
‘Grove2’, ‘Venus’, ‘Urban2’, and ‘Dimetrodon’ se-
quences from Middlebury University (Baker et al.,
2007). We used the corresponding average angular
error (AAE) measure (Barron et al., 1994) to com-
pare the quality of estimated flow fields with the
ground truth. The AAEs for ‘Urban2’ and ‘Venus’
are small when using the BCC, and the GCC is fa-
vored in ‘Grove2’ and ‘Dimetrodon’ due to the illu-
mination change. The AAEs using the BGCC are
always between the BCC and the GCC. The AAEs
using Kim’s method are smaller than those using
BCC, but at medium level. Since our data term
adopts the brightness correction field combined with
the gradient constraint, the results are more accurate
than the others.

Fig. 3 shows the visual comparison for close-up
of ‘Grove3’. Image (a) is our whole estimated optical
flow field from frame 10 and frame 11 of ‘Grove3’
in the Middlebury University database. Image (b)
shows the close-up of the ground truth. Images (c)
and (d) show close-up results by using BGCC and
GCC, respectively. Image (e) is the result using Kim

Fig. 2 Flow estimation average angular errors (AAE)
with respect to different models. BCC: brightness
constancy constraint; GCC: gradient constancy con-
straint; BGCC: brightness constancy and gradient
constancy constraints

et al. (2005)’s method. As shown in the close-up im-
ages, some details of branches disappear when em-
ploying BGCC, GCC, and Kim’s model. Our model
is able to recover the branch details much better, as
shown in image (f).

4.2 Optical flow benchmarking on Middle-
bury datasets

To evaluate the accuracy of current flow esti-
mation techniques, benchmark sequences with a re-
liable ground truth are required. We used sequences
of Middlebury datasets (Baker et al., 2007) to test
our method. Table 1 shows the AAEs of various
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methods on different Middlebury sequences. Our
method gives smaller AAEs than those methods for
optical flow estimation.

Fig. 4 shows a comprehensive comparison
of results produced by a number of approaches
in the same framework. These methods contain:
integrating the statistical framework with the linear
model of the brightness variation (Kim et al.,
2005), using an appropriate adaptive regularization
term (Wedel et al., 2009b), employing an efficient
median filter model (Sun et al., 2010), and adopting
an image-driven regularization term (Werlberger

(a) (b) (c) (d) (e) (f)

Fig. 3 The visual comparison of the optical flow results. (a) Our estimated flow result; (b) The ground truth
flow; (c) The close-up estimated flow result using the brightness and the gradient constraints (BGCC); (d)
The close-up estimated flow result using the gradient constraint (GCC); (e) The close-up estimated flow result
using Kim et al. (2005)’s method; (f) The close-up of our estimated flow result

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 The visual comparison of different methods. (a) Patch of frame 10; (b) The ground truth flow; (c)
Integrating the statistical framework with the linear model of the brightness variation (Kim et al., 2005);
(d) Using an appropriate adaptive regularization term (Wedel et al., 2009b); (e) Patch of frame 11; (f)
Employing an efficient median filter model (Sun et al., 2010); (g) Adopting an image-driven regularization
term (Werlberger et al., 2009); (h) Our result

Table 1 Comparison of various methods regarding the
average angular error (AAE) on different Middlebury
sequences

MS
Average angular error (◦)

Brox Zach Kim Sun Ours

RubberWhale 5.794 5.639 5.846 4.012 3.372
Hydrangea 5.496 5.536 5.385 2.873 1.965
Dimetrodon 5.297 4.610 4.575 2.136 2.273
Urban3 5.242 7.440 4.784 3.456 2.794
Grove3 6.356 7.471 5.845 4.987 4.768

MS: Middlebury sequence. Brox: Brox et al. (2004); Zach:
Zach et al. (2007); Kim: Kim et al. (2005); Sun: Sun et
al. (2010); Ours: our method
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et al., 2009). Using these methods, the edges
of objects obtained are fuzzy, and the clearance
between the wheel and the army men disappears.
Our model produces an agreeable optical flow
estimation in detail (Fig. 4h), due to the robust
data term (integrating the brightness correction
field and gradient constancy assumption) and the
structure-adaptive regularization based on the
Huber norm.

Fig. 5 The visual comparison on some complex motion examples. Top row: two-object-overlaid images from
the Middlebury training dataset (Baker et al., 2007); center top row: results obtained using the classic warping
model (Brox et al., 2004); center row: results obtained using SIFT flow (Liu et al., 2008); center bottom row:
results obtained using LDOF (Brox and Malik, 2011); bottom row: results obtained with our method

4.3 Complex-motion optical flow estimation

We compared the proposed method with a
number of optical flow methods on some complex
motion examples. Fig. 5 shows three examples con-
taining complex articulated motion. The first row
shows two-object-overlaid images from Middlebury
datasets. From the second row to the fourth row,
estimated optical flow results using the classical
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combination model (Brox et al., 2004), large
displacement optical flow (LDOF) (Brox and Malik,
2011), and scale-invariant feature transform (SIFT)
flow (Liu et al., 2008) are shown, respectively. The
last row displays our estimated optical flow. There
are some problems in motion details estimation
using the classical combination model of Brox et
al. (2004). For example, the motion of the rear
windows in the left, the motion of elbow of the sword
arm in the middle, and the motion of branches in
the right are missing. The SIFT flow method shows
typical discretization and quantization artifacts,
in particular discontinuities aligned with the grid
axes and block effects due to missing subpixel
accuracy. Compared with SIFT flow, the results
of LDOF are much better. The reason is that this
method performs region-based descriptor matching
and recovers large displacement flow by adjusting
the objective to favor matching results. However,
sometimes it is vulnerable to matching outliers, and
does not estimate boundary details between regions
well. Using the proposed model and the effective
multi-resolution scheme, our experimental results
are more accurate for estimating details of complex
motion than the above methods, as shown in the
last row of Fig. 5.

5 Conclusions and future work

In this paper, we present a new energy model
for robust optical flow estimation. It consists of
two terms: a data term combining a brightness cor-
rection field with a gradient constancy assumption,
and a structure-adaptive regularization term based
on the robust Huber norm. Compared with other
methods, the proposed model can deal with slight
changes of illumination conditions and reduces the
piecewise constant of estimated flow fields in weakly
textured areas from total variation. We solve the
Euler-Lagrange equation of the proposed energy us-
ing a more effective multi-resolution method, which
adopts the downsampling strategy twice with differ-
ent downsampling factors. The proposed method
recovers the missing motion details that are caused
by using the traditional coarse-to-fine scheme. Af-
ter each warping step, we apply a support-weight
median filter to the newly computed flow field for re-
jecting outliers. The comparative experiments with
state-of-the-art methods show that our method is

more effective and produces more accurate results
of optical flow estimation. Our future research will
focus on estimating large disparities, which has a
great promise on boosting the accuracy of motion
estimation taking advantage of the proposed model
without the necessity of using typical coarse-to-fine
approaches.
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Appendix: derivation of Eq. (12)

We rewrite Eq. (11) as follows:

E(U) =

N∑

n=1

log
(
(dT

nr)
2/α+ 1

)

+ μ
∑

X

||∇I2(X +U) −∇I1(X)||1

+ λ
∑

X

||w(X)∇U ||δ . (A1)

For convenience, we assume E(U) = E1(U) +

E2(U).

E1(U) =

N∑

n=1

log
(
(dT

nr)
2/α+ 1

)
, (A2)

E2(U) =μ
∑

X

||∇I2(X +U) −∇I1(X)||1

+ λ
∑

X

||∇U ||δ . (A3)

According to the analysis of Myronenko and Song
(2009), dT

nr is the discrete cosine transform of r,
and it denotes A = dct{r}. The dct and idct are
discrete cosine transform and inverse discrete cosine
transform, respectively.
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E1(U) =

N∑

n=1

log(A2/α+ 1). (A4)

According to the calculus of variations, a minimizer
of Eq. (A1) must fulfill the Euler-Lagrange equation:

δE1 + δE2 = 0, (A5)

where δ is the symbol of variation. Thus, through
the calculus of variations, we obtain
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δE1 =− idct(
2A/α

A2/α+ 1
), (A6)

δE2 =μ∇ϕ(||∇I2(X +U)−∇I1(X)||21)
− λdiv(φ

′
(∇U)∇U), (A7)

where ϕ(x2) =
√
x2 + ε, ε > 0, φ(∇U) =

||w(X)∇U ||δ , δ>0. Finally, Eq. (A8) is obtained:

−idct(
2A

A2 + α
)∇I2(X +U)

+ μ∇ϕ(||∇I2(X +U)−∇I1(X)||21)
− λdiv(φ′(∇U)∇U) = 0.

(A8)


