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Abstract:    We design a task mapper TPCM for assigning tasks to virtual machines, and an application-aware virtual machine 
scheduler TPCS oriented for parallel computing to achieve a high performance in virtual computing systems. To solve the problem 
of mapping tasks to virtual machines, a virtual machine mapping algorithm (VMMA) in TPCM is presented to achieve load 
balance in a cluster. Based on such mapping results, TPCS is constructed including three components: a middleware supporting an 
application-driven scheduling, a device driver in the guest OS kernel, and a virtual machine scheduling algorithm. These com-
ponents are implemented in the user space, guest OS, and the CPU virtualization subsystem of the Xen hypervisor, respectively. In 
TPCS, the progress statuses of tasks are transmitted to the underlying kernel from the user space, thus enabling virtual machine 
scheduling policy to schedule based on the progress of tasks. This policy aims to exchange completion time of tasks for resource 
utilization. Experimental results show that TPCM can mine the parallelism among tasks to implement the mapping from tasks to 
virtual machines based on the relations among subtasks. The TPCS scheduler can complete the tasks in a shorter time than can 
Credit and other schedulers, because it uses task progress to ensure that the tasks in virtual machines complete simultaneously, 
thereby reducing the time spent in pending, synchronization, communication, and switching. Therefore, parallel tasks can col-
laborate with each other to achieve higher resource utilization and lower overheads. We conclude that the TPCS scheduler can 
overcome the shortcomings of present algorithms in perceiving the progress of tasks, making it better than schedulers currently 
used in parallel computing. 
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1  Introduction 
 

Virtualization abstracts the resources in com-
puting systems, and transfers physical resources into 
logic resources which can be used and reused con-
veniently. Virtual machines are packaged and isolated 
by virtual machine monitors (VMM). If the quantity 
of the CPUs in a host is less than that of the virtual 
machines, the CPUs are scheduled to several virtual 
machines with round-robin (Chuzhoy and Naor, 

2006). Virtual machine scheduling refers to selecting 
the virtual machines as current virtual machines to use 
CPUs. Thus, the nature of virtual machine scheduling 
is the scheduling of virtual CPUs (VCPUs) (Ales-
sandro, 2004; Chen et al., 2011a). If virtual machines 
have the same right to use the spaces of CPUs, a vir-
tual machine scheduling algorithm requires us to 
determine the time slices for them in the execution 
cycle of systems (Ogata, 2002). The mainstream al-
gorithms for virtual machine scheduling are Bor-
rowed Virtual Time (BVT) (Duda and Cheriton, 
1999), Strong Earliest Deadline First (SEDF) (Fu and 
Xu, 2006), Credit (Gupta et al., 2006), and others 
(Lehoczky et al., 1989; Jones et al., 1997; Nieh and 

Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 

ISSN 1869-1951 (Print); ISSN 1869-196X (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 

* Project (No. 2007AA010305) supported by the National High-Tech 
R&D Program (863) of China 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012 



Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(3):155-177 156 

Lam, 1997). These algorithms are often called on by 
VMM to change the CPUs’ utilization of virtual ma-
chines, so they can solve most of the problems of 
resource allocation for virtual machines when facing 
different requirements (Pfoh et al., 2009). But when 
the systems encounter tasks with parallel computing, 
these virtual machine scheduling algorithms may not 
run with a high efficiency because of their short-
comings in perceiving the knowledge in virtual ma-
chines. A lack of accuracy and effectiveness in de-
termining the progress of tasks makes them unable to 
solve such problems (Chen et al., 2011b). 

In a virtualized cluster, large and complex tasks 
are generally divided into subtasks and mapped into 
several virtual machines to carry out parallel com-
puting. In many parallel computing applications, one 
kind of subtask is concerned with the workflow par-
allel application (Chen et al., 2011b). The input of a 
workflow task is normally an abstract workflow 
model. For the characteristics of the workflow paral-
lel application, the workflows are usually described as 
a directed acyclic graph (DAG). In DAG, a task that 
does not have any parent task is called an entry task, 
and one that has no child task is called an exit task. 
Three typical workflow software applications are 
Montage (for astronomy applications), Broadband 
(for seismology applications), and Epigenome (for 
bioinformatics applications) (Juve et al., 2009). 
Montage creates science-grade astronomical image 
mosaics using data collected from telescopes. The 
size of a Montage workflow depends upon the area of 
the sky (in square degrees) covered by the output 
mosaic. Broadband generates and compares seismo-
grams from several high- and low-frequency earth-
quake simulation codes. Each workflow generates 
seismograms for several sources (scenario earth-
quakes) and sites (geographic locations). For each 
source/site combination, the workflow runs several 
high- and low-frequency earthquake simulations and 
computes intensity measures of the resulting seis-
mograms. Epigenome maps short DNA segments 
collected using high-throughput gene sequencing 
machines to a previously constructed reference ge-
nome using MAQ software. The workflow splits 
several input segment files into small chunks, refor-
mats and converts the chunks, maps the chunks to a 
reference genome, merges the mapped sequences into 
a single output map, and computes the sequence 
density for each location of interest in the reference 

genome.  
Our study focuses on workflow parallel appli-

cations. In workflow parallel computing, a key prob-
lem is how to map the top tasks into the virtual ma-
chines efficiently. Also, a virtual machine scheduler is 
required that will consider fully the parallelism 
among subtasks, such as assignments, progress, and 
urgency. In this paper we design a mapper TPCM for 
assigning tasks to virtual machines and an applica-
tion-driven virtual machine scheduler TPCS with a 
shorter completion time oriented for parallel com-
puting task-oriented workflows. TPCM divides 
workflow tasks into several subtasks, among which 
the data flows tend to be serial and parallel. The data 
flows are used to determine the parallel virtual ma-
chines, and then serve as the base for mapping tasks to 
the virtual machines. Because the mapping from tasks 
to virtual machines affects the performance of sys-
tems, TPCM determines a modest quantity of virtual 
machines in a physical machine to maintain load 
balance. TPCS transmits the progress statuses of 
workflow applications into the Xen system, which 
allocates resources to CPUs based on the progress 
status of tasks. The TPCS scheduler ensures unified 
progress among tasks whatever their assignments, 
and keeps the tasks simultaneous to shorten the time 
in pending, synchronization, communication, and 
switching. TPCS can not only ensure high perform-
ance scheduling based on the progress of tasks, but 
also improve resource utilization and maintain load 
balance.  
 

 
2  Related works 

2.1  Parallel application scheduling algorithms in 
high performance computing 

There are many task scheduling algorithms that 
schedule parallel applications to processors in high 
performance computing. In general, task scheduling 
is presented in two forms: static and dynamic (Boyer 
and Hura, 2005). In static scheduling algorithms, all 
information needed for scheduling, such as the 
structure of the parallel application, the execution 
times of individual tasks, and the communication 
costs among tasks must be known in advance. Static 
task scheduling takes place during the compilation 
time before parallel applications run. In dynamic 
scheduling, however, tasks are allocated to processors 
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upon their arrival, and scheduling policies must be 
made at this time (Ilavarasan et al., 2005; Kim et al., 
2005). Based on the challenges caused by the dy-
namicity of virtualization and the vagueness of 
availability requirements in the scheduling strategy of 
virtual data centers, some researchers have studied 
dynamic task scheduling with fuzzy prediction in 
virtualized data centers (Kong et al., 2011). This is a 
dynamic algorithm to schedule tasks without de-
pendence, which differs from our problem.  

Static task scheduling algorithms are more 
suitable for high performance computing because 
many parallel applications have long execution time, 
and hence they require a high quality task scheduler to 
minimize the time. Also, the static scheduling time of 
several scientific and engineering applications is 
much shorter than their execution time on systems. 
For example, the execution times of more than 50% of 
the parallel applications that were run on four real 
parallel computing systems were between tens and 
thousands of minutes (Iosup et al., 2006). The static 
scheduling times of parallel applications with diverse 
characteristics, scheduled using several static sched-
uling algorithms, are shorter than one second (Top-
cuoglu et al., 2002). Static scheduling algorithms can 
be broadly classified into three main groups: heuristic, 
guided random, and hybrid algorithms (Topcuoglu et 
al., 2002; Daoud and Kharma, 2011). 

1. Heuristic scheduling algorithms move from 
one point in the search space to another, following a 
particular rule. Such algorithms, though efficient, 
search some paths in the search space and ignore 
others (Zhang et al., 2007; Wang et al., 2009; Daoud 
and Kharma, 2011). Heuristic scheduling algorithms 
can be divided into three groups: list-based, clustering, 
and duplication heuristics (Topcuoglu et al., 2002). In 
list-based scheduling heuristics, each task is assigned 
a given priority. The tasks are inserted in a list of 
waiting tasks, such that tasks with higher priority are 
placed ahead of those with lower priorities. Three 
steps, task selection, processor selection, and status 
update, are then repeated until all the tasks in the list 
are scheduled. Clustering heuristics trade off in-
ter-processor communication overhead with paral-
lelization by allocating heavily communicating tasks 
to the same processor. In such heuristics, the tasks are 
grouped into an unlimited number of clusters (Top-
cuoglu et al., 2002; Bansal et al., 2003). Duplication 
algorithms start by running a clustering or list-based 

algorithm to create an initial schedule. This im-
provement in performance comes at the cost of in-
creasing the complexity of the scheduling process. 

2. Guided random scheduling algorithms mimic 
the principles of evolution and natural genetics to 
evolve near-optimal task schedules. Among the 
various guided random algorithms, genetic algo-
rithms (GA) are the most widely used for the sched-
uling problem (Wu and Dajski, 1990; Grefenstette et 
al., 1997; Daoud and Kharma, 2011). In attempts to 
obtain schedules of better quality, many well-known 
metaheuristics have been adopted, including Simu-
lated Annealing (SA) (Grefenstette et al., 1997; Zo-
maya and Teh, 2001; Baskiyar and Dickinson, 2005), 
Tabu Search (TS) (Radulescu and van Gemund, 2002; 
Topcuoglu et al., 2002; Phinjaroenphan et al., 2005), 
Artificial Immune System (AIS) (Wu and Dajski, 
1990), Ant Colony Optimization (ACO) (Bansal et al., 
2003), Particle Swarm Optimization (PSO) (Nes-
machnow et al., 2010), and Variable Neighborhood 
Search (VNS) (Iverson et al., 1999). GA usually takes 
more computing effort to locate the optimal solutions 
in the region of convergence (Topcuoglu et al., 2002), 
owing to its lack of local search ability. On the other 
hand, trajectory methods, such as VNS (Sih and Lee, 
1993), have shown their potential in exploiting the 
promising regions in the search space with high 
quality solutions. Nevertheless, they are still prone to 
premature convergence traps due to their limited ex-
ploration ability. Thus, it is natural to consider hybrid 
metaheuristics, also known as memetic algorithms 
(MA) (Grefenstette et al., 1997; Iverson et al., 1999), 
which have been applied to solve scheduling prob-
lems (Boyer and Hura, 2005). 

3. Hybrid scheduling algorithms are also a main 
group. A hybrid scheduling algorithm combines heu-
ristic algorithms and GA. The Genetic List Schedul-
ing (GLS) algorithm (Grefenstette et al., 1997) is an 
example of this class of algorithms, but it has greater 
complexity than other algorithms. There are also 
other highly efficient algorithms for the problem of 
task scheduling in heterogeneous distributed systems, 
including Dynamic Level Scheduling (DLS) (Sih and 
Lee, 1993), Heterogeneous Earliest Finish Time 
(HEFT) (Topcuoglu et al., 2002), Critical Path on a 
Processor (CPOP) (Topcuoglu et al., 2002), Mapping 
Heuristic (MH) (El-Rewini and Lewis, 1990), and 
Levelized Min Time (LMT) (Wu and Dajski, 1990). 
DLS and HEFT are improved heuristic scheduling 
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algorithms. They are two of the best existing sched-
uling algorithms for heterogeneous distributed sys-
tems (Topcuoglu et al., 2002), and are employed as 
benchmark scheduling algorithms in many studies 
(Radulescu and van Gemund, 2002; Baskiyar and 
Dickinson, 2005). The DLS algorithm does not 
schedule tasks between two previously scheduled 
tasks. HEFT starts by setting the computation costs of 
tasks and the communication costs of edges to their 
mean values. Each task is assigned a value called the 
upward rank. In this algorithm, the upward rank of a 
task is the largest sum of the mean computation costs 
and mean communication costs along any directed 
path from this task to an exit task. 

The above static and dynamic task scheduling 
algorithms focus on the allocation of CPUs to tasks, 
and these scheduling methods for parallel applica-
tions have already been well-studied and well- 
explored in the context of high performance com-
puting. However, our research on CPU scheduling has 
a different scope: 

1. Existing task scheduling algorithms take tasks 
or subtasks as the scheduling units to map to CPUs, 
focusing on the optimal combination and mapping of 
tasks to CPUs, so it is a scheduling problem in a 
macro field. Our CPU scheduling algorithm pays 
attention to dynamic resource adjustment during a 
period of time for some tasks or subtasks. The aim is 
to organize the CPU time slices with rationality. The 
CPU scheduling includes the determination of re-
source requirements, the setting of the interrupt cycle, 
and the selection of diversity scheduling algorithms, 
so it is a scheduling problem in a micro field. 

2. Existing task scheduling algorithms concen-
trate on task scheduling in a non-virtualization envi-
ronment that has only two layers, i.e., from CPUs to 
tasks. But our work focuses on CPU scheduling in a 
virtualization environment, and we solve the alloca-
tion of CPUs to virtual machines, not the tasks di-
rectly. Because of the increasing complexity of hier-
archies in virtualized systems, the algorithm we 
propose is different from task scheduling algorithms. 

2.2  CPU scheduling algorithms in virtualization 
computing environments 

The mainstream VCPU scheduling algorithms 
are as follows: (1) BVT algorithm (Duda and Cheri-
ton, 1999): BVT sets a weight to each of the domains 

in a system to allocate the time slices of CPUs in 
proportion, and the allocation is applied to the occa-
sion oriented real-time demand. (2) SEDF algorithm 
(Fu and Xu, 2006): SEDF also allocates the time 
slices of CPUs in proportion, but in this case a domain 
cannot occupy all the CPU resources at one time, and 
we can reserve a portion of them for services in other 
domains. SEDF is applied to occasions with the de-
mand of real-time. (3) Credit algorithm (Gupta et al., 
2006): Credit is designed for SMP hosts and each of 
their CPUs manages a local queue of VCPUs. Each 
VCPU in this queue has one of two priorities: over or 
under.  

For real-time CPU scheduling algorithms, Ear-
liest Eligible Virtual Deadline First (EEVDF) focuses 
on real-time tasks and is also classified as a propor-
tional share real-time algorithm (Lehoczky et al., 
1989). SMART (Nieh and Lam, 1997) dynamically 
integrates a real-time scheduler and a conventional 
scheduler depending upon priorities and admission 
control. Resource reservations and a precomputed 
scheduling graph are used for scheduling real-time 
applications in the Rialto operating system (Jones et 
al., 1997). BERT effectively schedules multimedia 
and best-effort jobs, but its implementation depends 
on a prediction mechanism that is tied to the Scout 
operating system (Bavier et al., 1999). 

For non-real-time CPU scheduling algorithms, 
studies have been focused on first-come first-served 
(FCFS), Shortest Job First (SJF), and PRIORITY (Shi 
et al., 2007), in which the FCFS policy is a non- 
preemptive scheduling discipline that schedules the 
tasks in order of their arrival in the waiting queue. The 
earliest arriving task has the highest priority, so the 
ready task will get the CPU time slices until this 
process completes the task or the task is interrupted 
(Rawat and Rajamani, 2009). Many techniques have 
been imagined to efficiently manage threads, includ-
ing the Work Stealing (WS) and the Parallel Depth 
First (PDF) techniques (Chen et al., 2007). PDF ap-
proaches have been proposed for cache sharing as 
well as for WS, a popular scheduling technique that 
takes a more traditional approach. The WS policy 
maintains a work queue for each processor. When 
forking a new thread, the new thread is put on the top 
of the local thread. The Critical Path Method, CPM, is 
yet another method for scheduling threads. This  
approach tries to shorten the longest path in the  
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application graph by removing communication re-
quirements and mapping the adjacent tasks into a 
cluster (Cerin et al., 2008).  

A hierarchical CPU scheduler addresses this 
problem by statically partitioning the CPU bandwidth 
among various application classes. Hierarchical 
scheduling is a scheduling framework that enables the 
grouping together of threads, processes, and applica-
tions into service classes (Chandra and  Shenoy, 
2008). CPU bandwidth is then allocated to these 
classes based on the collective requirement of their 
constituent entities. In a hierarchical scheduling 
framework, the total system CPU bandwidth is di-
vided proportionately among various service classes. 
Proportional-share scheduling algorithms (Nieh and 
Lam, 1997; Caprita et al., 2005) are a class of sched-
uling algorithms that meet this criterion. Another 
requirement for hierarchical scheduling is that the 
scheduler should be insensitive to fluctuating CPU 
bandwidth available to it. A proportional-share 
scheduling algorithm, such as Start-Time Fair Queu-
ing (SFQ) (Goyal et al., 1996), has been shown to 
meet all these requirements in unprocessed environ-
ments and has been deployed in a hierarchical 
scheduling environment. However, SFQ can result in 
unbounded unfairness and starvation when employed 
in multiprocessor environments. 

Schedulers that deal with performance issues can 
be classified as driven by deadlines or by propor-
tionally sharing resources (Rau and Smirni, 1999). 
Deadline driven schedulers, such as Earliest-Deadline 
First (EDF) and Rate Monotonic (RM), are optimal 
under light load conditions but are not well suited to 
support best-effort applications. Proportional share 
schedulers try to allocate CPU resources to applica-
tions in proportion to their shares (Jin et al., 2005). 
The idea was first presented for network packet 
scheduling as Weighted Fair Queuing, and later ap-
plied to processor scheduling as stride scheduling. 
From then on, many variants such as Virtual Clock, 
SFQ, SFS, FFQ, SPFQ, GRRR, and time-shift FQ 
have been proposed. GR3 (Chan and Nieh, 2003) also 
falls into this group, and provides a more accurate 
share with a low scheduling overhead. As propor-
tional share scheduling is based on predefined shares 
of applications, it faces the challenge of setting rea-
sonable shares for a set of tasks with dynamically 
changing resource requirements. Lottery scheduling 

(Waldspurger and Weihl, 1994) also proposes hier-
archical allocation of resources based on the notion of 
tickets and lotteries. Lottery scheduling itself is a 
randomized algorithm that can meet resource re-
quirements in a probabilistic manner, and extending it 
to multiprocessor environments is nontrivial.  

There are currently some VCPU schedulers in 
the Quest operating system. The HARTIK kernel 
(Ghazalie and Baker, 1995) supports the co-existence 
of both soft and hard real-time tasks. To ensure tem-
poral isolation between hard and soft real-time tasks, 
the soft real-time tasks are serviced using a constant 
bandwidth server (CBS). CBS guarantees a total 
utilization factor no greater than Qs/Ts, even in 
overload, by specifying a maximum budget in a des-
ignated window of time. CBS has bandwidth preser-
vation properties similar to those of the dynamic 
sporadic server (DSS) (Abeni and Buttazzo, 1998), 
but with better responsiveness. TBS and DSS both 
assume the existence of server deadlines. We chose to 
assume the existence of deadlines for VCPUs in 
Quest, restricting VCPUs to fixed priorities. This 
avoided the added complexity of managing the dy-
namic priorities of VCPUs as their deadlines change. 
Also, for cases in which there are multiple tasks 
sharing a fixed-priority VCPU, the execution of one 
task will not change the importance of the VCPU for 
the other tasks (Govindan et al., 2009; Danish et al., 
2011).  

In addition to these mainstream CPU scheduling 
algorithms, a scheduling methodology based on the 
priority in accordance with I/O status has been pre-
sented (Aspnes et al., 1997). The I/O performance of 
a domain scheduling algorithm in the Xen hypervisor 
with more emphasis on resource exchange in VMM 
was discussed by Govil et al. (2000). In studies of 
resource allocation over multiple virtual machines, 
the traditional CPU scheduling algorithms can allo-
cate resources to processes with fairness. But in vir-
tualization environments, the scheduler should adopt 
other flexible scheduling policies (Volkmar et al., 
2004), such as that of guest OS, to avoid preemptive 
blocking (Rosenblum and Garfinkel, 2005). Three 
CPU scheduling algorithms in Xen were evaluated by 
Hiroshi and Kenji (2007) by analyzing the effects of 
parameter settings. Dynamic configurations of CPUs 
are also a vital research area. Dynamic configuration 
policies orienting the virtual machines’ status (Pfoh et 
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al., 2009) and applied requirements (Fumio, 2009) 
have been presented. These methodologies have two 
characteristics: first, they stress the effect that the I/O 
has on real time scheduling. Second, the open-source 
virtualization software is used to perform experiments 
to test I/O overheads and CPU multithreading abili-
ties in the file, Web, and high performance computing 
servers. 

There have been fewer studies on application- 
driven virtual machine schedulers oriented for paral-
lel computing in clusters. Some researchers have 
presented scheduling algorithms with sense percep-
tion (Cota-Robles and Flautner, 2008). The virtual 
machine scheduling mechanism with sense percep-
tion was used to infer the I/O roundedness of 
user-level tasks combined with an event in I/O bind-
ing tasks. A scheduling algorithm based on the prior-
ity of tasks was designed to ensure the fairness of 
CPU for dynamic requirements of applications in 
symmetrical multi-processing (SMP) hosts (Shi et al., 
2009). Some scholars proposed that a modified VMM 
can perceive an implicit guest OS by inferring the 
information of guest OS (Laslo et al., 2008). A CPU 
scheduling algorithm for communication perception 
with a better cost and performance was presented by 
Huai et al. (2007). Researchers have implemented 
sense perception to task load, but they have not solved 
the problem of allocating CPU resource based on the 
progress of tasks. In general, virtual machine moni-
tors tend to lack the knowledge in virtual machines, 
and virtual machines lack knowledge of tasks in the 
workload, especially their progress (percentage of 
completed task assignment and percentage of re-
maining task assignment). Therefore, unexpected 
assignments make it difficult to allocate resources 
accurately according to the progress status of tasks. 
When faced with virtual machines with collaborative 
computing tasks, it is impossible to satisfy these re-
quirements. In our study we aim to solve these prob-
lems in a virtualized parallel computing environment.  

 
 

3  TPCM: a mapper for assigning tasks to 
virtual machines 
 

In this section, we present a mapper, TPCM, to 
deploy tasks and virtual machines. The TPCM map-
per is a tool which makes a plan for mapping tasks 

using the virtual machines mapping algorithm 
(VMMA). In this plan, the quantity of physical ma-
chines and the quantity of virtual machines in each 
physical machine are determined. After this work has 
been completed, TPCM collects the information from 
physical machines, and creates virtual machines 
based on such a plan. Then, the tasks are mapped into 
the virtual machines. Although the creation of virtual 
machines is part of the work of task mapping, it is not 
dealt with in VMMA. Therefore, it is not considered 
in the time measuring of VMMA, but it is considered 
in the time measuring of task mapping for TPCM. The 
mapper requires the inputting of the set of tasks and 
their relationships. First, we describe a method ori-
ented for parallel computing tasks based on the 
workflow. 

3.1  Description of tasks 

In parallel computing, the division of tasks pro-
duces a set of subtasks with parallel and serial struc-
tures. We call the set of subtasks the taskSet. Thus, 
each pair of subtasks in the taskSet would be one of 
the seven relationships whose data flows are shown in 
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 

1. Serial relation 
The serial relation has two instances, the first 

shown as I in Fig. 1: for taska, taskbtaskSet, taskb can 
begin only after taska is completed. That is, if a data 
flow from taska to taskb exists, then it is a strict serial 
relation between taska and taskb, denoted by taska→ 
taskb. The second instance, shown as II in Fig. 1, is: 
for taska, taskb, taskctaskSet, if taska→taskbtaskb→ 
taskc, then it is a loose serial relation between taska 
and taskc, denoted by taskataskc. 

2. Parallel relation 
The parallel relation has two instances, the first 
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Fig. 1  The relationships among tasks 
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shown as III in Fig. 1: for taska, taskb, taskctaskSet, 
only after taska and taskb are both completed, can 
taskc begin. That is, if taska→taskctaskb→taskc, then 
it is a frontier strict parallel relation between taska and 
taskb, denoted by taska taskb. The second instance is 

shown as IV in Fig. 1: for taska, taskb, taskctaskSet, 
taskb and taskc can begin only after taska is completed. 
That is, if taska→taskbtaska→taskc, then it is a latter 
strict parallel relation between taskb and taskc, de-
noted by taskb taskc. 

3. Indirect relation 
The indirect relation has two instances. The first 

is shown as V in Fig. 1: for taska, taskb, taskctaskSet, 
if taskataskbtaskataskc, then it is the latter indi-
rect relation between taskb and taskc, denoted by 
taskbtaskc. The second instance is shown as VI in 
Fig. 1: for taska, taskb, taskctaskSet, if taskataskc 
taskbtaskc, then it is a frontier indirect relation 
between taska and taskb, denoted by taskataskb. 

4. Connectionless relation   
In Fig.1 (VII), for taska, taskbtaskSet, if there 

are no serial, parallel, or indirect relations between 
taska and taskb, then there is a connectionless relation 
because no data flow exists between any pair of tasks, 
denoted by taska taskb. 

The task information can be created manually or 
automatically. Some studies show that automatic 
decomposition might lead to irrational task sets, so we 
suggest manual decomposition. After we construct 
the relationship between tasks, the task information is 
enveloped as a data structure taskSet and inputted into 
virtual computing systems. The mapper TEVM in 
virtual computing systems completes the mapping 
from tasks to virtual machines. 

3.2  The algorithm for mapping tasks to virtual 
machines 

In general, there are two methods to make par-
allel computing for tasks with the same configuration 
requirement. In Method 1, the tasks are placed into a 
virtual machine and then run to make parallel com-
puting as processes or threads (Katz et al., 2005). In 
Method 2, the tasks are placed into multiple virtual 
machines and then run to make parallel computing as 
multiple virtual machines (Bansal et al., 2003; Qi et 
al., 2006). Method 2 has at least two advantages: 

1. In a multiple virtual machine environment, a 

task occupies an operation system. Because of the 
isolation characteristics among virtual machines, 
there are fewer pending, deadlock, and synchroniza-
tion phenomena than in multiple processes or threads. 

2. Processes or threads are found in many data 
interactions among applications and operation sys-
tems, such as library calling in kernels, hardware 
reading and writing, and network transmission, not 
only in their own execution. The multiple virtual 
machines refer to multiple applications interacting 
with multiple guest OS. In the condition of power 
computing resources, the speed of this method is 
faster than that of a single operation interacting with 
many applications in a virtual machine. 

As existing machines generally contain multiple 
CPUs and a CPU contains multiple cores, task col-
laboration over multiple virtual machines has the two 
advantages described above. Therefore, we adopt 
Method 2. 

In our algorithm design, the quantity of virtual 
machines is determined by the relationships among 
subtasks in taskSet to mine the parallelism of subtasks 
and keep the assignments of tasks consistent with the 
resources allocated (Hamidzadeh et al., 2000). The 
mapping of tasks to virtual machines determines the 
performances of systems and affects the total running 
time of tasks. Also, we should maintain the load 
balance among virtual machines (Cherkasova et al., 
2007) by considering the density of data flows in 
communication and synchronization (James and Ravi, 
2007; Kim and Lim, 2009). Furthermore, the de-
ployment of virtual machines to physical machines 
should be based on the load status of the virtual ma-
chines.  

The key for mapping tasks to virtual machines is 
to estimate the workload of the tasks. In this section, 
the workload is decided by the quantity of codes from 
tasks and the communication with other tasks, and is 
ultimately determined by the estimated execution 
time in a certain hardware configuration. There are 
several techniques to estimate such information (Wu 
and Dajski, 1990). The distributed system is repre-
sented by a set P of m processors that have diverse 
capabilities. The n×m computation cost matrix C 
stores the execution costs of tasks. Each element 
ci,jC represents the estimated execution time of task 
ti on processor pj. Precise calculation of the running 
time of the tasks on the processors is unfeasible  
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before running the application (Phinjaroenphan et al., 
2005). One approach to estimating the execution time 
of task ti on processor pj is to use profiling informa-
tion of ti and pj (Dail et al., 2002; Zhang et al., 2004). 
Another approach is to analyze past observations of 
the running times of similar tasks on pj (Iverson et al., 
1999; Govindan et al., 2007). Having determined the 
workload, the algorithm implementing the mapping 
from tasks to virtual machines (VMMA) is shown in 
Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
The input parameters of VMMA are taskSet, 

PMS, ε, ξ, ς, and Ф. Besides taskSet, as defined above, 
PMS is a set of physical machines in a cluster, ε is the 

maximum quantity of virtual machines deployed in a 
physical machine, and ξ, ς, Ф are three parameters 
describing the boundary of load, where ξ is the 
minimum deviation among virtual machines, ς is the 
maximum load that a virtual machine can afford, and 
Ф is the maximum load that a physical machine can 
afford. To process the data easily, the assignments of 
tasks are normalized to (0, 1] to measure their load, so 
ξ, ς, Ф(0, 1]. In algorithm VMMA, the set of the 
maximum parallel quantity of subtasks MPtaskSet is 
collected from taskSet to create a virtual machine 
array VMS with the length of MPtaskSet as its initial 
length. The subtasks in MPtaskSet are mapped into 
the elements of VMS one by one, and then the other 
unmapped tasks in taskSet are mapped into VMS 
based on the serial relation among tasks. We decide 
whether the virtual machines need to be combined 
according to the relationship between the quantity of 
virtual machines and the quantity of physical ma-
chines. VMS.count/PMS.count>ε shows that too 
many virtual machines deployed in a physical ma-
chine would lead to inconvenience in their deploy-
ment, so the virtual machines are required to be com-
bined. The function workload() computes the load of 
tasks deployed. If the load of a task in a virtual ma-
chine is less than ς, this virtual machine should be 
combined with other virtual machines. In the last part, 
the algorithm deploys the virtual machines into 
physical machines. The average number of virtual 
machines deployed in a physical machine is com-
puted as index, and then Ф is taken as the reference to 
deploy the virtual machines with a balanced load. 

The output of the VMMA algorithm is PMS, a 
set of physical machines in a cluster. We define the 
elements in PMS as PM=(VMs[]), where VMs is the 
set of virtual machines deployed in this physical 
machine, VMs=VM[]. The element in VMs is VM= 
(tasks[], PM), in which tasks[] is a set of tasks in this 
virtual machine, and PM is the physical machine that 
VM hosts. Based on the construction of elements in 
PMS, taskSet is allocated to virtual machines and the 
virtual machines are deployed to physical machines.  

 
 

4  TPCS: an application-driven virtual ma-
chine scheduler  
 

On the basis of tasks mapped, we propose a 
virtual machine scheduler which can perceive the 

   Input taskSet and PMS, 

Sum workload of VMS as SWL

Determine the set of maximum parallel tasks as 
MPtaskSet from taskSet using      and  

Determine the set of maximum virtual 
machines as VMS from MPtaskSet

Map tasks in MPtaskSet into VMS 
(the set of virtual machines)

Map tasks in taskSet, but not in 
MPtaskSet into VMS using       and 

VMS.count/PMS.count> 

Foreach vm2 in VMS 

SWL/VMS.count  Workload(vm1)> 

Workload(vm1)+Workload(vm2)<

Foreach vm1 in VMS 

Combine vm1 and vm2 

Compute index=int(VMS.count/PMS.count)

Foreach vm in VMS 

|Workload(pm)  SWL/PMS.count|<  *index

Foreach pm in PMS 

pm.Add(vm)

Return PMS

Whether vm is not null

Y
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N
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, , , 
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

Fig. 2  Virtual machine mapping algorithm (VMMA)



Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(3):155-177 163

progress of tasks. When the system performs parallel 
computing, the scheduler can use the progress of tasks 
to decide the CPU allocation of virtual machines. 

In a system virtualization environment, a highly 
efficient scheduling algorithm can improve not only 
hardware usage, but also the efficiency of parallel 
computing tasks in multiple virtual machines. In the 
Xen hypervisor, the Xen kernel neither knows the 
workload of tasks in guest OS, nor perceives the 
progress of tasks packaged in virtual machines. Thus, 
it cannot make an efficient and accurate scheduling 
based on the status of tasks in virtual machines and is 
unable to reduce the time spent on pending, synchro-
nization, communication, and switching among con-
current tasks. We propose an improvement to the 
Credit algorithm in Xen in which the progress statuses 
of applications are transmitted to the Xen kernel in an 
active way so that the scheduling algorithm can al-
locate the CPU resource to virtual machines with 
optimization according to the progress status. 

We take Xen hypervisor 3.4.2 as the virtualized 
platform to achieve the goal of perceiving the pro-
gress of tasks in virtual machines. The tasks placed in 
virtual machines are allocated CPU resources based 
on their present statuses. TPCS, an application-driven 
virtual machine scheduler, integrates the virtual ma-
chines into a coherent whole. TPCS has three com-
ponents: a middleware supporting parallel computing, 
a device driver, and a virtual machine scheduling 
algorithm (Fig. 3). To implement the application-ware 
in the Xen hypervisor, TPCS is designed from the top 
down using a hierarchical approach. Take X86 ar-
chitecture as an example. Three components run at 
different CPU right levels: a virtual machine sched-
uling algorithm runs in CPU-ring0 in the Xen hyper-
visor, a device driver runs in CPU-ring 1 of the VM 
guest OS kernel, and a middleware runs in CPU-ring 
3 of the application layer. 

 
 
 
 
 
 
 
 
 
 
 

In Fig. 3, middleware calls the interface pro-
vided by the guest OS to transmit the percentage of 
completed task information to the guest OS, and then 
to the CPU virtualization subsystem of the Xen hy-
pervisor. The Xen hypervisor analyzes the percentage 
of completed task information to decide the virtual 
machine scheduling policy. The scheduling is based 
on the amount of uncompleted assignments and the 
urgency of some tasks. Xen allocates or adjusts the 
CPU time slices for virtual machines to change their 
resource utilization, thus changing the speed of tasks 
and keeping the concurrent tasks in a simultaneous 
status. The synchronization of tasks can reduce  
the time spent in pending, communication, and 
switching. 

The design components of TPCS are described 
in detail in the following subsection. 

4.1 Middleware supporting application-driven 
scheduling 

In existing virtual machine scheduling algo-
rithms, CPU schedulers implement scheduling based 
on a static policy, not on the status of current tasks. 
Some researchers propose that the system software 
can perceive the workload of the application. For 
example, performance counters are known to be able 
to extract the characteristics of application behaviors 
at lower software layers, enabling estimation of the 
workload of the application. However, the system 
software cannot perceive the progress of an applica-
tion because the workload has no relationship with the 
progress of the application. The percentage of com-
pleted tasks can be known only by the tasks them-
selves. As a result, we adopt a notification approach, 
application-driven scheduling, in which the top 
module in TPCS reports the progress of tasks to the 
underlying module in an active way.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 3  The architecture of the TPCS scheduler 
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We have developed a middleware supporting 
application-driven scheduling in guest OS to perceive 
the progress of an application. The middleware has 
three functions: 

1. Inputting progress markers into threads of 
tasks 

The middleware inputs the progress markers of 
scheduling information into the threads of tasks to 
obtain the progress status from the threads of tasks at 
some key time points. Progress markers are collected 
via signals. Each signal is a tuple with two elements, 
signal=(taskid, mark), in which taskid, the identifier 
of a subtask, can be taken to compute the present 
location of parallel computing, and mark is labeled 
as the progress of this subtask. The signals are  
constructed in subtasks scanned by middleware  
periodically. 

2. Progress information management for tasks 
The middleware, as a daemon in guest OS with 

the task information, runs when its hosted virtual 
machine starts. After the tasks in taskSet are mapped 
into the virtual machines, the middleware describes 
the task information of taskSet as a tuple with two 
elements, Taskinfo=(tasks, relationship), in which, 
tasks is the set of subtasks in parallel computing, and 
relationship reflects the relation among these subtasks. 
For all tasktasks, task=(taskID, workload, Mark- 
quantity, dynamicinfo), taskid is the identifier of a 
subtask, workload is an estimation of the assignments 
for this subtask, and Markquantity is the quantity of 
markers, that is the number of times of inputting 
progress marks. Dynamicinfo, a group of dynamic 
data for subtasks, can be described as dynamicinfo= 
(loadtime, previoustime, finishworkload, state), where 
loadtime is the time loading the subtask, previoustime 
is the time receiving the last signal, and finishwork-
load is the assignment completed in the last signal, 
and state describes the status of subtasks, such as 
preparing, completed, or running state.  

3. Transmitting the progress signals to guest OS 
To implement the signal transmission of pro-

gress marks, we define two concepts for progress 
status: first, the percentage of tasks completed de-
noted by Rate, and second, the time to complete a unit 
task denoted by TimeRate. 
Definition 1 (Rate)    The proportion of tasks com-
pleted, Rate, is the ratio of the number of completed 
assignments to the number of all assignments for 

tasks. The Rate is divided into the rate for the current 
task and the rate for the concurrent task set, denoted 
by thisRate and allRate, respectively. The current task 
refers to the recent task scanned by the middleware, 
and the concurrent task set refers to the set of tasks 
run concurrently with the current task in taskSet. In 
our design, allRate can be computed according to the 
properties of finishworkload in task.Dynamicinfo and 
the workload of task in Taskinfo, but thisRate needs 
only the location of the progress mark for the current 
task: 

 

thisRate Currenttask.workload signal.mark/

  Currenttask.Markquantity.

 
 (1) 

 

Definition 2 (TimeRate)    The time to complete a unit 
task, TimeRate, is the ratio of the time to complete 
assignments for each task. It is also divided into the 
TimeRate for the current task and the TimeRate for 
the concurrent task set, denoted by thisTimeRate and 
allTimeRate, respectively. 

In determining the task progress, we compare 
allTimeRate with thisTimeRate to determine the 
speed of the current task relative to the concurrent 
task set, thereby deciding the urgency of the current 
task in the progress of the synchronization process, 
and providing a reference for the Xen system to 
schedule the virtual machines. 

The middleware scans the statuses of tasks pe-
riodically, and if it does not receive a signal for a long 
time, it judges whether a deadlock exists in the system 
(Govindan et al., 2007). Otherwise, the signal is col-
lected and processed by algorithm VSTA (Fig. 4).  

The time points to execute VSTA are as follows: 
(1) the time before the running of the first subtask, (2) 
the time after the running of the last subtask, (3) the 
time before the running of each subtask, (4) the time 
after the running of each subtask, and (5) the period of 
time in the interval between the running of subtasks. 

The input values of the VSTA algorithm are 
Taskinfo and signal, where Taskinfo is created auto-
matically after the tasks are mapped into virtual ma-
chines in TPCM. The signal is obtained via the com-
munication among threads when the middleware 
scans threads of tasks. The output value of this algo-
rithm is a tuple VMsignal=(leftWorkload, allTimeR-
ate, thisLeftWorkload, thisTimeRate), in which left-
Workload is the average uncompleted assignment for 
all tasks paralleling with the current task, allTimeRate  
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is the time rate of all completed tasks in the whole 
process, thisLeftWorkload is the uncompleted as-
signments for the current task, and thisTimeRate is 
the time rate of a completed assignment for the cur-
rent task in recent time. 

Besides the two parameters of timeRate and 
thisTimeRate (which reflect the synchronization re-
quirement based on the urgency of tasks discussed 
above), the output of algorithm VSTA includes two 
other parameters, thisLeftWorkload and leftWorkload, 
which are the remaining assignments of the current 
task and the average remaining assignments of the 
concurrent tasks set, respectively. The value of 
thisLeftWorkload is the total assignment minus com-

pleted assignments for the current task. The left-
Workload is the mean value of thisLeftWorkload for 
all tasks in concurrent status. These two parameters 
reflect the general conditions based on the uncom-
pleted assignments. We compute these values, be-
cause the relativities between thisLeftWorkload and 
leftWorkload provide another reference for the Xen 
system scheduling the virtual machines. 

The essential points of VSTA: based on col-
lecting the concurrent task set for the current task, the 
progress of the current task is compared to that of the 
concurrent task set. VSTA computes the total as-
signments of tasks in the concurrent task set, com-
pleted assignments of tasks, and the time consump-
tion, to enable calculation of the remaining assign-
ment of tasks (thisLeftWorkload and leftWorkload), 
the percentage of assignments completed (thisRate 
and allRate), and the completion time of a unit task 
(allTimeRate and thisTimeRate). They are packaged 
into a VMsignal transmitting into the guest OS. 

In row 1 of VSTA (Fig. 4), the function get-
TaskbySignaltaskID gets the current task named Cur-
renttask from taskid. In rows 2–8, the concurrent 
subtasks are identified by traversing the tasks in 
Taskinfo and are named coTaskset from the current 
task (Fig. 5). In row 9, the function saveDynamicInfo 
saves the dynamicinfo of the current task. In rows 
10–17, coTaskset is taken to compute the time con-
sumption of the whole process. In rows 18–21, the 
completed and uncompleted assignments are com-
puted, and then, in rows 22–23, allTimeRate and 
thisTimeRate are determined. In row 24, the average 
remaining assignments of coTaskset is computed. In 
row 25, VMsignal is constructed and the system-call 
provided by guest OS transmits the VMsignal into the 
kernel of guest OS, and then passes it to the Xen  
hypervisor. 

 
 
 
 
 
 
 
 

 
For several tasks, task1, task2, ..., taskn, we can 

input mark1, mark2, …, markn because of their dif-
ferent workloads (Fig. 5). Thus, when the middleware 

Input: Taskinfo, signal 
Output: VMsignal  
1 
 
2 
 
3 
4 
5 
6 
7 
8 
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10 
11 
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13 
14 
15 
 
16 
 
17 
18 
19 

 
20 
21 
 
22 
23 
 
24 
25 

Currenttask←getTaskbySignaltaskID(Taskinfo,  
Signal.taskID);   

Define coTaskset as the set of tasks paralleling  
with Currenttask; 

coTaskset.add(Currenttask); 
Foreach (task in Taskinfo.tasks)  

If (Currenttasktask or Currenttasktask) 
coTaskset.add(task); 

Endif 
Endfor 
saveDynamicInfo(Currenttask);  
// for use in next scanning time 
finishtime←0;  
allworkload←0;  
finishworkload←0;  
Foreach (task in coTaskset) { 

allworkload+←task.workload; 
finishworkload+←task.dynamicinfo. 

finishworkload;  
finishtime+←sytemtime–task.dynamicinfo. 

loadtime;  
Endfor 
leftWorkload←allworkload–finishworkload; 
thisLeftworkload←Currenttask.workload– 

Currenttask.Dynamicinfo.finishworkload; 
allRate←finishworkload/allworkload;  
thisRate←Currenttask.workload×signal.mark/ 

Currenttask.markquantity;  
allTimeRate←finishtime/allRate;  
thisTimeRate←(systemtime–Currenttask. 

dynamicinfo.loadtime)/thisRate; 
leftWorkload←leftWorkload/coTaskset.count; 
VMsignal←VMsignal(leftWorkload, allTimeRate, 

thisLeftworkload, thisTimeRate); 

Fig. 4  Virtual machine signal transmitting algorithm 
(VSTA) 

...

...

...

task1

task2

taskn

mark1 mark2 markn
task1.workload

task2.workload

taskn.workload
...

...

Fig. 5  coTaskset in the concurrent state of a virtual 
machine 
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scans the tasks, we can determine the progress of the 
current task via the mark of signal. Therefore, VSTA 
implements the perception of task progress.  

4.2  Device driver in the guest OS kernel 

Virtual machine scheduling is carried out by a 
CPU virtualization subsystem in the Xen hypervisor 
based on progress signals. VMsignal must be trans-
mitted to the CPU virtualization subsystem through 
hyper-call, because hyper-call is the only way to 
switch to the Xen kernel from top layers. But mid-
dleware in CPU-ring 3 is not entitled to request the 
hyper-call in X86 architecture. We cannot submit 
VMsignal into the Xen hypervisor in CPU-ring 0 
directly, but we can use the hyper-call indirectly. In 
our design, VMsignal is transmitted into guest OS in 
CPU-ring 1 first, and then a hyper-call is called in 
guest OS to switch to the Xen hypervisor in CPU- 
ring 0.  

We have designed a special device driver named 
vmscmd in the guest OS kernel to complete this work 
in the same way as a device driver in a Linux opera-
tion system. We complete this operation with the help 
of system-call ioctl(), and the service routine of ioctl() 
in the Linux kernel is sys_ioctl() provided by 
file_operation in vmscmd. The function vmscmd_ 
ioctl is completed as shown in Fig. 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The function vmscmd_ioctl is the pointer of 
ioctl() in file_operation. The input parameters of 
vmscmd_ioctl are *inode, *file, cmd, and data, which 
have been determined by VZlinux 2.6.48 source files. 

The essential points of vmscmd_ioctl: We define 
a new command code in ioctl, IOCTL_VMSCMD_ 
VMscheduling. In this code, the function copy_from_ 
user() obtains VMsignal from middleware and saves 
it into a variable hypercall. The data type of hypercall 
is a struct of vmscmd_hypercall including two ele-
ments: op, the command line of hyper-call, and arg[4], 
four parameters of hyper-call. 

In rows 1–20, a new branch IOCTL_VMSCMD_ 
VMscheduling is added to the function of hyper-call 
_HYPERVISOR_VCPU_OP, a hyper-call designed 
for a CPU virtualization subsystem. In this new 
branch, the function copy_from_guest() is called to 
transmit the value of hypercall into the CPU virtual-
ization subsystem of the Xen hypervisor, as the input 
of the virtual machine scheduling algorithm discussed 
in Section 4.3. In row 14, vmscmd completes the 
work of calling the hyper-call through a jump in-
struction ‘call *%%eax’. 

We implement vmscmd in the guest OS kernel 
via system-call based on VZlinux 2.6.48 for Xen 3.3. 
In our design, vmscmd is loaded by the function 
module_init() after the guest OS kernel starts.  

4.3  Virtual machine scheduling algorithm 

4.3.1  Algorithm design 

The virtual machine scheduling algorithm first 
receives VMsignal from guest OS, and then allocates 
the CPUs based on task progress information. Related 
work shows that, if virtual machines have the same 
right to use the space of CPUs, CPUs would be allo-
cated via time slices. A virtual machine scheduling 
algorithm requires the determination of the time slices 
of CPUs based on round-robin to decide the credit 
values of VCPUs in the next execution cycle. The 
execution cycle, as a fixed value in systems and 
named ∆t in our study, is the time that the Xen hy-
pervisor takes to traverse all virtual machines. 

Here we discuss mainly the determination of the 
time slices. When a CPU clock interrupt occurs in 
systems, the CPU scheduler decides the time slices of 
virtual machines in the next execution cycle. If the 
time slices do not need to change, the virtual ma-
chines are scheduled in the next execution cycle  

Function vmscmd_ioctl(*inode ,*file, cmd, data) 
1 
2 
3 
4 
 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

{ switch(cmd){ 
case IOCTL_VMSCMD_VMscheduling:{ 

   vmscmd_hypercall hypercall; 
If (copy_from_user(&hypercall, data,  

sizeof(hypercall))) 
        return –EFAULT; 

_asm__volatile_( 
“pushl %%ebx; pushl %%ecx; pushl %%edx;”
“Movl 8(%%eax), %%ebx;” 
“Movl 16(%%eax), %%ecx;” 
“Movl 24(%%eax), %%edx;” 
“Movl (%%eax), %%eax;” 
“shll $5, %%eax;” 
“addl $hypercall_page, %%eax;” 
“call *%%eax;” 
“popl %%ebx; popl %%ecx; popl %%edx;” 
: “=a” (ret): “0”(&hypercall): “memory”; 
) 
break; } 
… } 

} 

Fig. 6  Function: vmscmd_ioctl 
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according to the current distribution of time slices. 
Otherwise, the virtual machine scheduling algorithm 
(VSA) (Fig. 7) is called immediately. The CPU vir-
tualization subsystem summarizes and stores the 
VMsignal into a special data structure to determine 
the time slices in the next execution cycle. We define 
VMinfo as this structure for managing the static and 
dynamic information for all currently active virtual 
machines, as the base of time slices for Xen in dif-
ferent execution cycles. 

VMinfo is a tuple with three elements, VMinfo= 
(vms, lwl, tr), where vms is the set of virtual machines 
in the Xen hypervisor, lwl is the maximum limited 
load of this system, and tr is the maximum assignment 
allowed in this system. For all vmvms, vm={signal, 
schedulerate, timeslice}, signal is the structure used to 
save VMsignals received from guest OS, schedulerate 
describes the proportion of time slices in the Xen 
hypervisor (schedulerate[0, 1]), and timeslice is the 
proportion of the time slices for virtual machine vm in 
the next execution cycle. 

Timeslices, as an element of VMinfo, is re-
freshed by VSA continuously. The latest value is 
taken as the basis to calculate the credits for VCPUs 
in virtual machines. In the Credit algorithm of the Xen 
hypervisor, the credit value of a VCPU decides the 
occupied frequency that this VCPU takes to the CPU. 
The CPU virtualization subsystem implements dy-
namic scheduling based on the progress of tasks in 
virtual machines by refreshing the values of VMinfo 
and credit. 

We now discuss VSA in detail. The input pa-
rameters of VSA are the execution cycle ∆t and 
VMinfo. The output of VSA is virtual machine 
scheduling information named VMinfo′ in the next 
execution cycle.  

The essential points of VSA: VSA analyzes 
VMinfo to decide the virtual machine scheduling 
policy. There are two policies to calculate the time 
slices. Policy 1 is virtual machine scheduling in gen-
eral conditions based on the uncompleted assign-
ments. Policy 2 is virtual machine scheduling with a 
synchronization requirement based on the urgency of 
tasks. TimeRate represents the time to complete a unit 
task, which can embody the total progress of con-
current tasks in virtual machines. Thus, it can decide 
the virtual machine scheduling policy that Xen adopts. 
The policy is determined by the deviation between the 
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currentvm←VMinfo.vms.currentvm;  
// obtain current virtual machines 
Policy←1;  // the default value is virtual machine  

// scheduling based on the urgency of tasks 
Foreach (vm in VMinfo.vms) 

If (abs(vm.signal.timerate−getAvgTasksTimeRates
(VMinfo))>VMinfo.tr) 
Policy←2;  // virtual machine scheduling  

// based on the assignment uncompleted
Endif 

Endfor 
If (Policy=1)  // virtual machine scheduling based  

// on the urgency of tasks 
   If (currentVm.signal.thisLeftWorkload>  

currentVm.signal.leftWorkload 
&&currentVm.signal.thisLeftWorkload>= 

VMinfo.lwl) 
      currentvm.schedulerate←100%; 
      Foreach (vm in VMinfo.vms) 

If (vm<>currentvm)  
Vm.schedulerate←0%;  

Endif 
      Endfor 
   Else 

sum←0; 
Foreach (vm in VMinfo.vms) 

Sum+←Vm.signal.leftWorkload; 
Endfor 
Foreach (vm in VMinfo.vms) 

 vm.schedulerate←vm.signal. 
leftWorkload/sum; 

Endfor 
   Endif 
Else  

sum←0; 
Foreach (vm in VMinfo.vms) 
  sum+←vm.signal.timerate; 

Endfor 
Foreach (vm in VMinfo.vms) 

vm.schedulerate←schedulerate computed 
   using Eq. (2); 

Endfor 
Endif 
Foreach (vm in VMinfo.vms) 

vm.timeslice←vm.schedulerate*∆t; 
Endfor 
Sort VMinfo.vms order by vm.timeslice desc; 
Determine the credit value for all VCPUs based on 

their vm.timeslice; 

Fig. 7  Virtual machine scheduling algorithm (VSA) 
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TimeRate of tasks in the current virtual machine and 
the average TimeRate of tasks in this physical ma-
chine. In our design, different virtual machine 
scheduling policies lead to different occupied fre-
quencies (schedulerate and credit) in the next execu-
tion cycle.  

We divide Policy 1 into two conditions: firstly, 
schedulerate is determined by the comparison be-
tween the remaining assignments of the current vir-
tual machine and the average remaining assignments 
of virtual machines in the host. If the former is greater 
than the latter and also greater than the maximum 
limited load of the system (VMinfo.lwl), then the 
current virtual machine will be scheduled to run in the 
next executable cycle and others must stop running, 
because the remaining assignment of the current vir-
tual machine is so great that it has exceeded the limit 
of the system and is far behind the tasks in parallel 
status. Otherwise, the second method is adopted; that 
is, the proportion of the remaining assignments of the 
current virtual machine in all assignments of virtual 
machines is taken as schedulerate. These two methods 
can ensure the system proceeds synchronously with 
the tasks in virtual machines. 

With Policy 2, schedulerate is decided by the 
TimeRate in all virtual machines. We define it as  

 

  1

schdulerate [max(Vm.signal.TimeRate)

  min(Vm.signal.TimeRate)

  Vm .signal.TimeRate]

  Vm.signal.TimeRate .

i

i








 

       (2) 

 

Eq. (2) shows that, the greater is the TimeRate in 
a virtual machine, the lower is the schedulerate, be-
cause a high TimeRate means the virtual machine is 
ahead of schedule. Then, the speed decreases in the 
next executable cycle to implement the synchroniza-
tion among tasks. 

As the schedulerate is defined as the ratio of time 
slices (schedulerate[0, 1]), the timeslice can be de-
termined by multiplying ∆t by the schedulerate after 
the schedulerate is calculated. 

In rows 1–7 of the VSA (Fig. 7), we set the de-
fault virtual machine scheduling policy as Policy 1. 
Then, the function getAvgTasksTimeRates computes 
the average progress of tasks. If the deviation between 
the TimeRate of tasks in the current virtual machine 
and the TimeRate of concurrent tasks in this physical 

machine is greater than the maximum assignment 
allowed in this system, VSA will adopt Policy 2.  

In rows 8–24, the algorithm takes the virtual 
machine scheduling in general conditions, in which 
the remaining task assignments directly affect the 
proportion of the time slices. In row 9, if the re-
maining assignments are greater than VMinfo.lwl, 
this virtual machine will be scheduled with the 
schedulerate=100% and the other virtual machines 
are set at 0% in the next execution cycle. Otherwise, 
the ratios among these remaining assignments decide 
their schedule-rate in the next execution cycle. 

In rows 25–33, the algorithm takes the virtual 
machine scheduling with synchronization require-
ments, in which the urgency of tasks directly affects 
the proportion of the time slices. We aim to exchange 
the completion time of virtual machines with CPU 
resources, so more resources will be allocated to ur-
gent tasks so as to reduce the pending time of slower 
tasks to implement the balance of all tasks. 

In rows 34–35, the proportions of time slices in 
the next execution cycles are determined, in which 
fewer time slices will be allocated to the virtual ma-
chines with forward progress. 

In row 37, the virtual machines are sorted  
by their time slices and form a queue for VCPU 
scheduling. 

In row 38, the algorithm determines the credit 
values of VCPUs. We implement this algorithm in the 
Xen hypervisor, in which the scheduling unit is the 
credit of a VCPU. To ensure fairness and flexibility, 
each virtual machine is set the same quantity of 
VCPUs and CPUs, and we let each VPCU map to a 
different CPU. In this way, each virtual machine has 
the same right to occupy CPUs. The VCPUs occupy 
CPUs according to their credit values. Thus, the credit 
value of each VCPU is adjusted in the VSA algorithm 
based on the time slice of virtual machines in their 
execution cycles. As a result, the credit value is taken 
to determine the usage that a VCPU occupies in a 
CPU in an execution cycle. 

4.3.2  Algorithm implementation 

The VSA is implemented in the Xen CPU virtu-
alization subsystem by changing the source code of 
Xen 3.3, and then it is defined as the scheduler 
sched_vsa_def. Meanwhile, VSA is set as a default 
algorithm saved in the variable opt_sched (Fig. 8). 



Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(3):155-177 169

 
 
 
 
 
 
 
 
 
 
 
The interfaces of sched_vsa_def are composed 

of some properties such as ‘char *name’ and 12 
functions such as ‘(*init)(void)’, among which the 
most important is the function ‘struct task_slice(*do_ 
schedule)(s_time_t)’ which implements VSA. 

When the Xen hypervisor starts, VSA is initial-
ized by the function init_idle_domain. The function 
scheduler_init obtains the current scheduler by com-
paring opt_sched and schedulers[]. Then, the macro 
SCHED_OP is called to initialize sched_vsa_def. 
VMinfo is defined by its initialization function 
sched_vsa_def. The vms in VMinfo=(vms, lwl, tr) is 
collected and saved in the Xen hypersvisor. lwl and tr 
are appointed the constants in the source codes of Xen 
3.3, which can be adjusted by the hyper-call 
_HYPERVISOR_VCPU_OP. In vm={signal, sched-
ulerate, timeslice} of vms, we change the hyper-call 
_HYPERVISOR_VCPU_OP to construct a VMsignal, 
and then transmit the VMsignal into the vm.signal in 
VSA. The starting values of schedulerate and 
timeslice are set as 0 in our experiments. 

 
 

5  Experimental evaluations 
 

Based on the source codes of Xen 3.3 and 
VZlinux 2.6.18, we have developed a prototype sys-
tem in the desktop operation system Fedora core 12.0. 
We constructed a development environment in 
Eclipse for Linux by using a GCC compiler and C 
language. The machine was a PC with Intel Core 2, 
2.8 GHz CPU, 2 GB DDR RAM, PAE, and a 160 GB 
hard disk. 

First, we implemented TPCM, and obtained 
three key components of TPCS. Then we developed 
source codes which were deployed into a testing en-
vironment to verify their effectiveness. This testing 
environment was built on a pair of two-socket servers, 

with each socket having four Intel Xeon 1.6 GHz 
CPUs. One server had 4 GB DDR RAM and the other 
had 2 GB DDR RAM. The two servers were con-
nected by a 1000 Mb/s Ethernet network. We used 
Linux 2.6.18 with Xen 3.3 as the operation system. 
The storage was exported to a migrated VM from a 
file system image, which was accessed via the Net-
work File System (NFS) protocol. We pre-installed 
Red Hat Enterprise Linux 5 as the guest OS in VMs. 
After determining the reliability of the prototype 
system, we built them on a larger cluster to make 
system evaluations. 

5.1  TPCM evaluation 

5.1.1  Mapping efficiency with different parameter 
settings  

Here we describe an example used to evaluate 
the virtual machine mapper TPCM and scheduler 
TPCS presented in this paper. We take the simulation 
of a cold flow impulsive experiment for a car engine 
(CFIE) as the instance. CFIE is a typical coupling 
process which considers the relations affecting flow 
field and structure. The CFIE project was constructed 
by three subprojects with 22 subtasks. Massively 
parallel computing was found to exist in these 22 
subtasks after analyzing their requirements. The 
taskSet is shown in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on the description of the parallel com-

puting tasks, the subtasks in taskSet are described by 
their assignments and the relationships between them 
are identified as serial, parallel, indirect, or connec-
tionless. To adapt to the threshold of inputting pa-
rameters in algorithm VMMA, the assignments of 
tasks are normalized to (0, 1]. 

// xen/com/schedule.c 55-61 
static char opt_sched[10]="vsa"; 
extern structure scheduler sched_bvt_def; 
extern structure scheduler sched_sedf_def; 
extern structure scheduler sched_credit_def; 
extern structure scheduler sched_vsa_def; 
static struct scheduler *schedulers[]={ 

&sched_bvt_def, &sched_sedf_def, 
&sched_credit_def, &sched_vsa_def, Null}; 

Fig. 8  Definition of the CPU scheduling algorithm 
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Fig. 9  Construction of parallel computing tasks 
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We completed the mapping from tasks to virtual 
machines using VMMA. First, we used two hosts to 
make an evaluation, so PMS.count was set as 2. Based 
on the performances of the hardware, the quantity of 
virtual machines was limited to 4. To produce a higher 
efficiency, we set ε=3<4. Any group of parameters ξ, ς, 
Ф would produce a different value of ‘index’ (an 
average number of virtual machines) in algorithm 
VMMA. A higher ξ refers to a higher demand in a 
virtual machine combination. Therefore, it is very 
difficult to combine the virtual machines. A higher ς 
refers to a lower demand in a virtual machine com-
bination. Therefore, it is easy to combine the virtual 
machines. A higher Ф refers to a lower demand to 
load balance in servers. Therefore, it is also easy to 
deploy the virtual machines. If we set different in-
putting values of ξ, ς, Ф to VMMA, different outputs 
would be shown after CFIE runs. 

The values of ‘index’ meet the features of VMMA 
in virtual machine combination (Table 1). The data in  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the column headed ‘weights of assignments in virtual 
machines’ show that VMMA can maintain the load 
balance among virtual machines and physical ma-
chines. According to the characteristics of parallel 
computing among virtual machines and the quantity 
of physical machines in clusters, we set the input 
values of parameters in VMMA as PMS.count=2, ε=3, 
ξ=0.1, ς=0.9, Ф=0.2. We chose such settings for two 
reasons: first, too many virtual machines in a physical 
machine would increase the complexity of manage-
ment and lead to a higher overhead in synchronization, 
communication, and switching. Therefore, the quan-
tity of virtual machines was set as 6. Second, the 
performance of one server is better than the other 
because of its greater DDR RAM, so the weights of 
their assignments were set as 0.56:0.44. Based on 
such parameters, the mapping from tasks to virtual 
machines after VMMA runs is shown in Fig. 10. We 
conclude that TPCM is very effective for solving the 
mapping of tasks to virtual machines. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  The results of virtual machine mapping with different parameters 

ξ ς Ф Index Weights of assignments in virtual machines 
Weights of assignments 

in physical machines

0.1 10 0.09, 0.13, 0.06, 0.10, 0.14, 0.08, 0.14, 0.08, 0.07, 0.11 0.52, 0.48 

0.2 10 0.11, 0.13, 0.09, 0.09, 0.11, 0.09, 0.10, 0.07, 0.11, 0.10 0.53, 0.47 0.7 

0.3 10 0.12, 0.08, 0.11, 0.10, 0.09, 0.11, 0.10, 0.12, 0.08, 0.10 0.50, 0.51 

0.1 8 0.19, 0.06, 0.11, 0.08, 0.18, 0.08, 0.13, 0.18 0.44, 0.57 

0.2 8 0.08, 0.16, 0.16, 0.10, 0.10, 0.08, 0.17, 0.15 0.50, 0.50 0.8 

0.3 8 0.14, 0.12, 0.12, 0.13, 0.12, 0.14, 0.12, 0.12 0.51, 0.50 

0.1 6 0.15, 0.14, 0.18, 0.22, 0.16, 0.16 0.47, 0.54 

0.2 6 0.20, 0.13, 0.23, 0.18, 0.12, 0.15 0.56, 0.44 0.9 

0.3 6 0.17, 0.17, 0.17, 0.18, 0.16, 0.14 0.51, 0.48 

0.1 4 0.34, 0.19, 0.28, 0.18 0.53, 0.46 

0.2 4 0.22, 0.26, 0.26, 0.27 0.48, 0.53 

0.1 

1.0 

0.3 4 0.26, 0.23, 0.26, 0.25 0.49, 0.51 

0.1 12 0.11, 0.08, 0.11, 0.10, 0.06, 0.11, 0.09, 0.10, 0.08, 0.05, 0.05, 0.08 0.57, 0.45 

0.2 12 0.11, 0.10, 0.11, 0.08, 0.07, 0.05, 0.07, 0.08, 0.08, 0.07, 0.08, 0.11 0.52, 0.49 0.7 

0.3 12 0.07, 0.08, 0.07, 0.08, 0.09, 0.09, 0.09, 0.08, 0.09, 0.09, 0.07, 0.10 0.48, 0.52 

0.1 10 0.13, 0.11, 0.07, 0.13, 0.13, 0.06, 0.08, 0.08, 0.08, 0.14 0.57, 0.44 

0.2 10 0.11, 0.11, 0.11, 0.06, 0.12, 0.12, 0.06, 0.12, 0.11, 0.10 0.51, 0.51 0.8 

0.3 10 0.09, 0.12, 0.09, 0.09, 0.10, 0.10, 0.12, 0.10, 0.10, 0.09 0.49, 0.51 

0.1 8 0.15, 0.09, 0.20, 0.14, 0.06, 0.09, 0.19, 0.08 0.58, 0.42 

0.2 8 0.12, 0.13, 0.08, 0.15, 0.14, 0.11, 0.12, 0.15 0.48, 0.52 0.9 

0.3 8 0.11, 0.13, 0.15, 0.13, 0.13, 0.11, 0.10, 0.13 0.52, 0.47 

0.1 5 0.24, 0.19, 0.12, 0.19, 0.26 0.55, 0.45 

0.2 5 0.31, 0.17, 0.14, 0.23, 0.16 0.62, 0.39 

0.2 

1.0 

0.3 5 0.17, 0.21, 0.22, 0.19, 0.22 0.60, 0.41 

ξ: the minimum deviation among virtual machines; ς: the maximum load that a virtual machine can afford; Ф: the maximum load that a 
physical machine can afford 
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5.1.2  Mapping efficiency with different quantities of 
physical machines 

We executed the algorithm VMMA in a larger 
cluster to verify the efficiency of TPCM. The cluster 
belongs to the High Performance Computing Lab, 
Xi’an University of Technology, China. This Lab was 
established in 2010, and now contains a total of 40 
machines, including 38 computing nodes, one I/O 
node, and one management node. Each machine was 
configured to an IBM x3550 M2 Server, Intel Xeon 
(four cores, 5500 serial), three caches, each ≥8 MB, 
DDR3 RDIMM memory, 6*4 GB, Disk I/O:2.5″ 
SAS/SATA/SSD, integrated hardware RAID-0/1/10, 
Optional supporting RAID-5, and two 10/100/1000 
Mb adaptive Ethernet cards. We set the number of 
computing nodes as 2, 8, 16, 26, or 38 to execute the 
CFIE. Meanwhile, the quantity of subtasks in CFIE 
increased by 21 times: we ran CFIE 21 times, and the 
workflow application had up to 462 subtasks. After 
the application was submitted to the prototype system, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

we recorded and summarized the completion time, 
and obtained the trend of changes in algorithm map-
ping efficiency with different quantities of physical 
machines (Fig. 11). Completion time increased with 
the increase in the quantity of tasks with different 
numbers of physical machines (Fig. 11). When there 
were only a few physical machines (PMS.count<8), 
the completion time changed significantly. But when 
there were many physical machines (PMS.count>26), 
the variation was relatively stable. For the same as-
signments, the completion time decreased with the 
increase in machines. When there were many (>352) 
subtasks, the completion time increased with the in-
crease in the number of machines, but when there 
were fewer (<264) subtasks, the completion time 
changed only slightly. Thus, the algorithm performs 
well only when the ratio of the quantity of tasks to the 
quantity of machines is controlled within a range of 
3–12. Fig. 11 shows that the TPCM showed high 
efficiency in our environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Running time plotted against task quantity with different numbers of machines 
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Fig. 10  The mapping of tasks to virtual machines 
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5.2  TPCS evaluation 

5.2.1  Efficiency with different parameter settings  

We tested the performance of the TPCS with the 
parameter configuration shown in Fig. 10 to verify the 
feasibility of the three core components. The Credit 
algorithm is a CPU scheduling algorithm for SMP 
hosts in the Xen hypervisor, so TPCS or Credit was 
set as the scheduler and we collected the results to 
evaluate their performance in systems. First, we used 
TPCS to run CFIE. With different parameters, we 
collected the completion times of 22 subtasks and the 
CPU utilizations in different execution cycles. We 
then used the Credit scheduler to run CFIE to com-
pare with TPCS. In VSTA, vmscmd_ioctl, and VSA, 
the factors affecting the efficiency of TPCS are the 
two parameters Markquantity and ∆t. Thus, we tested 
the performance in the following settings: 
Markquantity=1000, 2000, 3000, 4000 and ∆t=0.1, 
0.2, 0.3, 0.4.  

Fig. 12 shows the performance comparison be-
tween Credit and TPCS with different Markquantity 
(∆t=0.1). Markquantity=2000 led to the minimum 
completion time (147.279 s) in four settings, and the 
completion times in Markquantity=1000, 3000, 4000 
were 174.755, 192.230, and 244.657 s respectively, so 
the quantity of markers inputted to the tasks had a 
vital effect on the performance of the system. We can 
determine a value of Markquantity whose completion 
time of tasks is the lowest of all. More markers in 
tasks result in more scanning time in middleware with 
a higher overhead, and the tasks may not be syn-
chronized when meeting fewer markers in the tasks. A 
suitable Markquantity would keep the overhead in 
systems at the lowest level. We also see that when 
Markquantity=1000 or 2000 (∆t=0.1), the completion 
time of TPCS was shorter than that of Credit. We 
conclude that TPCS can fully utilize the parallelism 
among tasks to allocate the CPU resources with 
 
 
 
 
 
 
 
 
 

rationality to produce a lower overhead. The Credit 
scheduler would also make the completion time 
proportional to the number of assignments, but the 
TPCS scheduler enables some tasks to complete their 
assignments within the same time because of the 
synchronization in parallel computing. 

Fig. 13 shows the performance comparison of 
Credit and TPCS with different ∆t (Markquantity= 
2000). The curves of ∆t=0.1, 0.2, 0.3, and 0.4 almost 
overlapped. We conclude that if the completion time 
of tasks is far greater than ∆t, the execution cycle has 
no effect on the completion time of tasks, so all the 
curves in Fig. 13 fluctuate over the range 147–154, no 
more than 3% of the total time consumption. As long 
as we set a reasonable Markquantity, the performance 
of the TPCS scheduler should be better than that of 
the Credit scheduler. 
 
 
 
 
 

 
 
 
 

 
 

Here, we summarize the resource utilization of 
the two algorithms. The resource utilization of TPCS, 
based on seven groups of parameters (Markquantity, 
∆t)=(1000, 0.1), (2000, 0.1), (3000, 0.1), (4000, 0.1), 
(2000, 0.2), (2000, 0.3), (2000, 0.4), was compared 
with that of Credit (Fig. 14). 

 
 
 
 
 
 
 
 
 
 

The eight average CPU utilizations (Fig. 14) for 
eight kinds of configuration in frontier 200 execution 
cycles show that Markquantity and ∆t greatly affect 
the CPU utilization. When Markquantity=2000 and 
∆t=0.1, CPU utilization reached 62.25%, and at this 

Fig. 12  Completion time comparison between Credit and 
TPCS with different Markquantity (∆t=0.1) 
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Fig. 13  Completion time comparison between Credit and 
TPCS with different ∆t (Markquantity=2000) 
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time point, CFIE had the shortest completion time. 
Thus, the TPCS scheduler can achieve a higher per-
formance by improving the resource utilization of 
virtual machines. In addition, the larger is ∆t, the 
lower is the CPU utilization, because a long execution 
cycle in systems would produce fewer times for col-
laboration in TPCS. That is, it would be difficult to 
implement the policy of exchanging the completion 
time for CPU resources. In our experiment, most of 
the CPU utilizations in the TPCS scheduler were 
greater than those in the Credit scheduler. Therefore, 
the TPCS scheduler can effectively mine the paral-
lelism among tasks and implement a better dynamic 
resource scheduling by reducing the overheads from 
synchronization, communication, and switching, 
thereby accelerating the execution of tasks. 

5.2.2  Efficiency with different quantities of machines  

The efficiency of TPCS was verified again in the 
cluster composed of 38 computing nodes and 462 
subtasks. The quantity of machines was set as 2, 8, 16, 
26, or 38, and the quantities of tasks were set as 22, 44, 
66, …, 462. After the subtasks were submitted to the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

prototype system, the completion time was recorded 
and summarized. Fig. 15 shows the change in the effi-
ciency of TPCS with different quantities of machines. 

The completion time increased with the increase 
in task quantity with a fixed quantity of machines. For 
the same quantity of tasks, the greater was the quan-
tity of machines, the shorter was the completion time. 
Meanwhile, when there were only a few (<8) ma-
chines, the rate of increase was greater than when 
there were many (>26). Only if the quantity of tasks 
and the quantity of machines reached a certain ratio (a 
ratio of 3–12), can the algorithm achieve good per-
formance. We conclude that TPCS maintains a high 
efficiency with different numbers of machines. 

Fig. 16 shows the speedups with different 
numbers of machines and with different tasks. The 
speedups showed a trend of a slow increase with the 
increase in task quantity. When there were 38 ma-
chines and the quantity of tasks was less than 66 
(especially 22), the speedup was much smaller than in 
other cases. This is because when the ratio of the 
quantity of tasks to the number of machines is far less 
than 3, the system cannot achieve a good performance. 
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Fig. 15  Completion times under different numbers of physical machines using the TPCS scheduler with a cluster 
composed of 38 computing nodes and 462 subtasks 

Fig. 16  Speedups under different numbers of physical machines using the TPCS scheduler with a cluster composed 
of 38 computing nodes and 462 subtasks 
In a stand-alone environment, we ran CFIE with from 22 to 462 tasks and then summarized the completion times as 
362.228, 652.010, 941.793, 1231.575, 1521.358, 1811.140, 2100.922, 2390.705, 2680.487, 2970.270, 3260.052, 3549.834, 
3839.617, 4129.399, 4419.182, 4708.964, 4998.746, 5288.529, 5578.311, 5868.094, and 6157.876 s. These values are
approximately proportional to the quantity of tasks. We took these values as the reference values to compute the speedups
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For the same quantity of tasks, a larger number of 
machines would lead to a greater acceleration. When 
the ratio of the quantity of tasks to the number of 
machines was from 3 to 12, the speedups showed an 
equally spaced growth trend with the growth of the 
quantity of tasks. Thus, TPCS showed high accelera-
tion efficiency in our experiment. 

5.2.3  A comparison among scheduling algorithms 

To further verify the performance of TPCS, we 
compared it with other CPU scheduling algorithms 
from related studies. We ran the CFIE with 462 sub-
tasks in the Xen hypervisor for all kinds of algorithms. 
Since BVT and SEDF have been implemented in the 
Xen hypervisor, we need only to set the scheduler in 
the CPU subsystem as sched_bvt_def or sched_sedf_ 
def. Other algorithms, SMART, SJF, EEVDF, SFQ, 
EDF, DSS, TBS, and CBS, were also created as cor-
responding schedulers. A virtual machine was taken 
as a task, a process, or a thread, because these algo-
rithms were designed originally for non-virtualized 
environments. After the subtasks were completed, the 
completion time was recorded. We ran the CFIE 
program five times, and the completion times were 
averaged. The results are shown in Fig. 17. 

The TPCS scheduler had the minimum comple-
tion time among all the schedulers for 462 subtasks in 
CFIE using different numbers of machines (PMS.count 
=2, 8, 16, 26, 38), followed by the Credit scheduler. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unlike in non-parallel computing systems, DSS and 
TBS algorithms in parallel computing had the 
maximum completion times, exceeding 300 s. We 
conclude that TPCS is the best scheduler oriented for 
parallel computing virtual machines.  

To determine the speedups of all algorithms, we 
ran the CFIE program in a stand-alone machine in 
Credit and computed the speedups based on the data 
in Fig. 17. The results are shown in Fig. 18. The 
speedups in TPCS were greater than those in the  
other algorithms with the same number of physical 
machines.  

5.2.4  Discussions 

The three experiments above evaluated the per-
formance of TPCS and Credit. We suggest that the 
ratio of the quantity of tasks to the number of ma-
chines should be controlled at 3–12 in our design. 
Within this scope, different parameter settings and 
different numbers of tasks and machines can lead to a 
high efficiency. The resource utilization of TPCS is 
higher than that of Credit. TPCS can also produce a 
shorter completion time and higher speedup com-
pared with other similar algorithms. The experiments 
verified the feasibility of the TPCS scheduler. In a 
virtualized environment, a virtual machine scheduling 
policy that uses resources in exchange for completion 
time is feasible under the condition of adequate 
physical resources.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17  Comparison of completion time among the different scheduling algorithms 
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Fig. 18  Comparison of speedup among the different scheduling algorithms 
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6  Conclusions 
 

In this paper, we studied virtual machine map-
ping and scheduling problems in parallel computing. 
For the problem of virtual machine mapping, a new 
methodology describing the tasks was presented to 
summarize the four relations, serial, parallel, indirect, 
and connectionless. We designed a mapper, TPCM, 
with the VMMA algorithm to implement load balance 
by fully mining the parallelism of tasks and deploying 
the virtual machines into balanced physical machines. 
For the problem of virtual machine scheduling, we 
designed a virtual machine scheduler, TPCS, includ-
ing a middleware supporting application-driven mode, 
a device driver in the guest OS kernel, and a virtual 
machine scheduling algorithm (VSA). TPCS trans-
mits the progress of tasks from the top layer to the 
underlying layer, and the Xen CPU virtualization 
subsystem schedules the virtual machines based on 
the progress of tasks to keep all subtasks simultaneous. 
Thus, we implemented a policy to exchange the 
completion time of tasks for CPU resources. This 
policy can ensure a higher collaboration among tasks 
to reduce the overheads in synchronization, commu-
nication, and switching. Experiments showed that 
TPCM can realize the load balance according to the 
parameters in clusters. The settings of the inputting 
information to tasks make the TPCS scheduler com-
plete its tasks in a shorter time than Credit and other 
schedulers. The execution cycle has no effect on the 
performance of the virtual machine scheduling algo-
rithm, but it has a great effect on CPU utilization. 
Overall, the TPCS scheduler can overcome the short- 
comings of Credit and other schedulers in perceiving 
the progress of tasks, and thus is better suited to par-
allel computing than Credit and other schedulers. 
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