
Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 155

Task mapper and application-aware virtual machine

scheduler oriented for parallel computing*

Jing ZHANG1,2, Xiao-jun CHEN‡1, Jun-huai LI1, Xiang LI1
(1School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China)

(2State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710048, China)

E-mail: ZhangJing@xaut.edu.cn; army.net@163.com; lijunhuai@xaut.edu.cn; lixiang@163.com

Received July 27, 2011; Revision accepted Jan. 6, 2012; Crosschecked Feb. 9, 2012

Abstract: We design a task mapper TPCM for assigning tasks to virtual machines, and an application-aware virtual machine
scheduler TPCS oriented for parallel computing to achieve a high performance in virtual computing systems. To solve the problem
of mapping tasks to virtual machines, a virtual machine mapping algorithm (VMMA) in TPCM is presented to achieve load
balance in a cluster. Based on such mapping results, TPCS is constructed including three components: a middleware supporting an
application-driven scheduling, a device driver in the guest OS kernel, and a virtual machine scheduling algorithm. These com-
ponents are implemented in the user space, guest OS, and the CPU virtualization subsystem of the Xen hypervisor, respectively. In
TPCS, the progress statuses of tasks are transmitted to the underlying kernel from the user space, thus enabling virtual machine
scheduling policy to schedule based on the progress of tasks. This policy aims to exchange completion time of tasks for resource
utilization. Experimental results show that TPCM can mine the parallelism among tasks to implement the mapping from tasks to
virtual machines based on the relations among subtasks. The TPCS scheduler can complete the tasks in a shorter time than can
Credit and other schedulers, because it uses task progress to ensure that the tasks in virtual machines complete simultaneously,
thereby reducing the time spent in pending, synchronization, communication, and switching. Therefore, parallel tasks can col-
laborate with each other to achieve higher resource utilization and lower overheads. We conclude that the TPCS scheduler can
overcome the shortcomings of present algorithms in perceiving the progress of tasks, making it better than schedulers currently
used in parallel computing.

Key words: Virtual machine, Virtualization, Application-aware, Parallel computing, Virtual machine mapping, Credit algorithm,

Virtual machine scheduling
doi:10.1631/jzus.C1100217 Document code: A CLC number: TP391; TP393

1 Introduction

Virtualization abstracts the resources in com-
puting systems, and transfers physical resources into
logic resources which can be used and reused con-
veniently. Virtual machines are packaged and isolated
by virtual machine monitors (VMM). If the quantity
of the CPUs in a host is less than that of the virtual
machines, the CPUs are scheduled to several virtual
machines with round-robin (Chuzhoy and Naor,

2006). Virtual machine scheduling refers to selecting
the virtual machines as current virtual machines to use
CPUs. Thus, the nature of virtual machine scheduling
is the scheduling of virtual CPUs (VCPUs) (Ales-
sandro, 2004; Chen et al., 2011a). If virtual machines
have the same right to use the spaces of CPUs, a vir-
tual machine scheduling algorithm requires us to
determine the time slices for them in the execution
cycle of systems (Ogata, 2002). The mainstream al-
gorithms for virtual machine scheduling are Bor-
rowed Virtual Time (BVT) (Duda and Cheriton,
1999), Strong Earliest Deadline First (SEDF) (Fu and
Xu, 2006), Credit (Gupta et al., 2006), and others
(Lehoczky et al., 1989; Jones et al., 1997; Nieh and

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project (No. 2007AA010305) supported by the National High-Tech
R&D Program (863) of China
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 156

Lam, 1997). These algorithms are often called on by
VMM to change the CPUs’ utilization of virtual ma-
chines, so they can solve most of the problems of
resource allocation for virtual machines when facing
different requirements (Pfoh et al., 2009). But when
the systems encounter tasks with parallel computing,
these virtual machine scheduling algorithms may not
run with a high efficiency because of their short-
comings in perceiving the knowledge in virtual ma-
chines. A lack of accuracy and effectiveness in de-
termining the progress of tasks makes them unable to
solve such problems (Chen et al., 2011b).

In a virtualized cluster, large and complex tasks
are generally divided into subtasks and mapped into
several virtual machines to carry out parallel com-
puting. In many parallel computing applications, one
kind of subtask is concerned with the workflow par-
allel application (Chen et al., 2011b). The input of a
workflow task is normally an abstract workflow
model. For the characteristics of the workflow paral-
lel application, the workflows are usually described as
a directed acyclic graph (DAG). In DAG, a task that
does not have any parent task is called an entry task,
and one that has no child task is called an exit task.
Three typical workflow software applications are
Montage (for astronomy applications), Broadband
(for seismology applications), and Epigenome (for
bioinformatics applications) (Juve et al., 2009).
Montage creates science-grade astronomical image
mosaics using data collected from telescopes. The
size of a Montage workflow depends upon the area of
the sky (in square degrees) covered by the output
mosaic. Broadband generates and compares seismo-
grams from several high- and low-frequency earth-
quake simulation codes. Each workflow generates
seismograms for several sources (scenario earth-
quakes) and sites (geographic locations). For each
source/site combination, the workflow runs several
high- and low-frequency earthquake simulations and
computes intensity measures of the resulting seis-
mograms. Epigenome maps short DNA segments
collected using high-throughput gene sequencing
machines to a previously constructed reference ge-
nome using MAQ software. The workflow splits
several input segment files into small chunks, refor-
mats and converts the chunks, maps the chunks to a
reference genome, merges the mapped sequences into
a single output map, and computes the sequence
density for each location of interest in the reference

genome.
Our study focuses on workflow parallel appli-

cations. In workflow parallel computing, a key prob-
lem is how to map the top tasks into the virtual ma-
chines efficiently. Also, a virtual machine scheduler is
required that will consider fully the parallelism
among subtasks, such as assignments, progress, and
urgency. In this paper we design a mapper TPCM for
assigning tasks to virtual machines and an applica-
tion-driven virtual machine scheduler TPCS with a
shorter completion time oriented for parallel com-
puting task-oriented workflows. TPCM divides
workflow tasks into several subtasks, among which
the data flows tend to be serial and parallel. The data
flows are used to determine the parallel virtual ma-
chines, and then serve as the base for mapping tasks to
the virtual machines. Because the mapping from tasks
to virtual machines affects the performance of sys-
tems, TPCM determines a modest quantity of virtual
machines in a physical machine to maintain load
balance. TPCS transmits the progress statuses of
workflow applications into the Xen system, which
allocates resources to CPUs based on the progress
status of tasks. The TPCS scheduler ensures unified
progress among tasks whatever their assignments,
and keeps the tasks simultaneous to shorten the time
in pending, synchronization, communication, and
switching. TPCS can not only ensure high perform-
ance scheduling based on the progress of tasks, but
also improve resource utilization and maintain load
balance.

2 Related works

2.1 Parallel application scheduling algorithms in
high performance computing

There are many task scheduling algorithms that
schedule parallel applications to processors in high
performance computing. In general, task scheduling
is presented in two forms: static and dynamic (Boyer
and Hura, 2005). In static scheduling algorithms, all
information needed for scheduling, such as the
structure of the parallel application, the execution
times of individual tasks, and the communication
costs among tasks must be known in advance. Static
task scheduling takes place during the compilation
time before parallel applications run. In dynamic
scheduling, however, tasks are allocated to processors

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 157

upon their arrival, and scheduling policies must be
made at this time (Ilavarasan et al., 2005; Kim et al.,
2005). Based on the challenges caused by the dy-
namicity of virtualization and the vagueness of
availability requirements in the scheduling strategy of
virtual data centers, some researchers have studied
dynamic task scheduling with fuzzy prediction in
virtualized data centers (Kong et al., 2011). This is a
dynamic algorithm to schedule tasks without de-
pendence, which differs from our problem.

Static task scheduling algorithms are more
suitable for high performance computing because
many parallel applications have long execution time,
and hence they require a high quality task scheduler to
minimize the time. Also, the static scheduling time of
several scientific and engineering applications is
much shorter than their execution time on systems.
For example, the execution times of more than 50% of
the parallel applications that were run on four real
parallel computing systems were between tens and
thousands of minutes (Iosup et al., 2006). The static
scheduling times of parallel applications with diverse
characteristics, scheduled using several static sched-
uling algorithms, are shorter than one second (Top-
cuoglu et al., 2002). Static scheduling algorithms can
be broadly classified into three main groups: heuristic,
guided random, and hybrid algorithms (Topcuoglu et
al., 2002; Daoud and Kharma, 2011).

1. Heuristic scheduling algorithms move from
one point in the search space to another, following a
particular rule. Such algorithms, though efficient,
search some paths in the search space and ignore
others (Zhang et al., 2007; Wang et al., 2009; Daoud
and Kharma, 2011). Heuristic scheduling algorithms
can be divided into three groups: list-based, clustering,
and duplication heuristics (Topcuoglu et al., 2002). In
list-based scheduling heuristics, each task is assigned
a given priority. The tasks are inserted in a list of
waiting tasks, such that tasks with higher priority are
placed ahead of those with lower priorities. Three
steps, task selection, processor selection, and status
update, are then repeated until all the tasks in the list
are scheduled. Clustering heuristics trade off in-
ter-processor communication overhead with paral-
lelization by allocating heavily communicating tasks
to the same processor. In such heuristics, the tasks are
grouped into an unlimited number of clusters (Top-
cuoglu et al., 2002; Bansal et al., 2003). Duplication
algorithms start by running a clustering or list-based

algorithm to create an initial schedule. This im-
provement in performance comes at the cost of in-
creasing the complexity of the scheduling process.

2. Guided random scheduling algorithms mimic
the principles of evolution and natural genetics to
evolve near-optimal task schedules. Among the
various guided random algorithms, genetic algo-
rithms (GA) are the most widely used for the sched-
uling problem (Wu and Dajski, 1990; Grefenstette et
al., 1997; Daoud and Kharma, 2011). In attempts to
obtain schedules of better quality, many well-known
metaheuristics have been adopted, including Simu-
lated Annealing (SA) (Grefenstette et al., 1997; Zo-
maya and Teh, 2001; Baskiyar and Dickinson, 2005),
Tabu Search (TS) (Radulescu and van Gemund, 2002;
Topcuoglu et al., 2002; Phinjaroenphan et al., 2005),
Artificial Immune System (AIS) (Wu and Dajski,
1990), Ant Colony Optimization (ACO) (Bansal et al.,
2003), Particle Swarm Optimization (PSO) (Nes-
machnow et al., 2010), and Variable Neighborhood
Search (VNS) (Iverson et al., 1999). GA usually takes
more computing effort to locate the optimal solutions
in the region of convergence (Topcuoglu et al., 2002),
owing to its lack of local search ability. On the other
hand, trajectory methods, such as VNS (Sih and Lee,
1993), have shown their potential in exploiting the
promising regions in the search space with high
quality solutions. Nevertheless, they are still prone to
premature convergence traps due to their limited ex-
ploration ability. Thus, it is natural to consider hybrid
metaheuristics, also known as memetic algorithms
(MA) (Grefenstette et al., 1997; Iverson et al., 1999),
which have been applied to solve scheduling prob-
lems (Boyer and Hura, 2005).

3. Hybrid scheduling algorithms are also a main
group. A hybrid scheduling algorithm combines heu-
ristic algorithms and GA. The Genetic List Schedul-
ing (GLS) algorithm (Grefenstette et al., 1997) is an
example of this class of algorithms, but it has greater
complexity than other algorithms. There are also
other highly efficient algorithms for the problem of
task scheduling in heterogeneous distributed systems,
including Dynamic Level Scheduling (DLS) (Sih and
Lee, 1993), Heterogeneous Earliest Finish Time
(HEFT) (Topcuoglu et al., 2002), Critical Path on a
Processor (CPOP) (Topcuoglu et al., 2002), Mapping
Heuristic (MH) (El-Rewini and Lewis, 1990), and
Levelized Min Time (LMT) (Wu and Dajski, 1990).
DLS and HEFT are improved heuristic scheduling

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 158

algorithms. They are two of the best existing sched-
uling algorithms for heterogeneous distributed sys-
tems (Topcuoglu et al., 2002), and are employed as
benchmark scheduling algorithms in many studies
(Radulescu and van Gemund, 2002; Baskiyar and
Dickinson, 2005). The DLS algorithm does not
schedule tasks between two previously scheduled
tasks. HEFT starts by setting the computation costs of
tasks and the communication costs of edges to their
mean values. Each task is assigned a value called the
upward rank. In this algorithm, the upward rank of a
task is the largest sum of the mean computation costs
and mean communication costs along any directed
path from this task to an exit task.

The above static and dynamic task scheduling
algorithms focus on the allocation of CPUs to tasks,
and these scheduling methods for parallel applica-
tions have already been well-studied and well-
explored in the context of high performance com-
puting. However, our research on CPU scheduling has
a different scope:

1. Existing task scheduling algorithms take tasks
or subtasks as the scheduling units to map to CPUs,
focusing on the optimal combination and mapping of
tasks to CPUs, so it is a scheduling problem in a
macro field. Our CPU scheduling algorithm pays
attention to dynamic resource adjustment during a
period of time for some tasks or subtasks. The aim is
to organize the CPU time slices with rationality. The
CPU scheduling includes the determination of re-
source requirements, the setting of the interrupt cycle,
and the selection of diversity scheduling algorithms,
so it is a scheduling problem in a micro field.

2. Existing task scheduling algorithms concen-
trate on task scheduling in a non-virtualization envi-
ronment that has only two layers, i.e., from CPUs to
tasks. But our work focuses on CPU scheduling in a
virtualization environment, and we solve the alloca-
tion of CPUs to virtual machines, not the tasks di-
rectly. Because of the increasing complexity of hier-
archies in virtualized systems, the algorithm we
propose is different from task scheduling algorithms.

2.2 CPU scheduling algorithms in virtualization
computing environments

The mainstream VCPU scheduling algorithms
are as follows: (1) BVT algorithm (Duda and Cheri-
ton, 1999): BVT sets a weight to each of the domains

in a system to allocate the time slices of CPUs in
proportion, and the allocation is applied to the occa-
sion oriented real-time demand. (2) SEDF algorithm
(Fu and Xu, 2006): SEDF also allocates the time
slices of CPUs in proportion, but in this case a domain
cannot occupy all the CPU resources at one time, and
we can reserve a portion of them for services in other
domains. SEDF is applied to occasions with the de-
mand of real-time. (3) Credit algorithm (Gupta et al.,
2006): Credit is designed for SMP hosts and each of
their CPUs manages a local queue of VCPUs. Each
VCPU in this queue has one of two priorities: over or
under.

For real-time CPU scheduling algorithms, Ear-
liest Eligible Virtual Deadline First (EEVDF) focuses
on real-time tasks and is also classified as a propor-
tional share real-time algorithm (Lehoczky et al.,
1989). SMART (Nieh and Lam, 1997) dynamically
integrates a real-time scheduler and a conventional
scheduler depending upon priorities and admission
control. Resource reservations and a precomputed
scheduling graph are used for scheduling real-time
applications in the Rialto operating system (Jones et
al., 1997). BERT effectively schedules multimedia
and best-effort jobs, but its implementation depends
on a prediction mechanism that is tied to the Scout
operating system (Bavier et al., 1999).

For non-real-time CPU scheduling algorithms,
studies have been focused on first-come first-served
(FCFS), Shortest Job First (SJF), and PRIORITY (Shi
et al., 2007), in which the FCFS policy is a non-
preemptive scheduling discipline that schedules the
tasks in order of their arrival in the waiting queue. The
earliest arriving task has the highest priority, so the
ready task will get the CPU time slices until this
process completes the task or the task is interrupted
(Rawat and Rajamani, 2009). Many techniques have
been imagined to efficiently manage threads, includ-
ing the Work Stealing (WS) and the Parallel Depth
First (PDF) techniques (Chen et al., 2007). PDF ap-
proaches have been proposed for cache sharing as
well as for WS, a popular scheduling technique that
takes a more traditional approach. The WS policy
maintains a work queue for each processor. When
forking a new thread, the new thread is put on the top
of the local thread. The Critical Path Method, CPM, is
yet another method for scheduling threads. This
approach tries to shorten the longest path in the

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 159

application graph by removing communication re-
quirements and mapping the adjacent tasks into a
cluster (Cerin et al., 2008).

A hierarchical CPU scheduler addresses this
problem by statically partitioning the CPU bandwidth
among various application classes. Hierarchical
scheduling is a scheduling framework that enables the
grouping together of threads, processes, and applica-
tions into service classes (Chandra and Shenoy,
2008). CPU bandwidth is then allocated to these
classes based on the collective requirement of their
constituent entities. In a hierarchical scheduling
framework, the total system CPU bandwidth is di-
vided proportionately among various service classes.
Proportional-share scheduling algorithms (Nieh and
Lam, 1997; Caprita et al., 2005) are a class of sched-
uling algorithms that meet this criterion. Another
requirement for hierarchical scheduling is that the
scheduler should be insensitive to fluctuating CPU
bandwidth available to it. A proportional-share
scheduling algorithm, such as Start-Time Fair Queu-
ing (SFQ) (Goyal et al., 1996), has been shown to
meet all these requirements in unprocessed environ-
ments and has been deployed in a hierarchical
scheduling environment. However, SFQ can result in
unbounded unfairness and starvation when employed
in multiprocessor environments.

Schedulers that deal with performance issues can
be classified as driven by deadlines or by propor-
tionally sharing resources (Rau and Smirni, 1999).
Deadline driven schedulers, such as Earliest-Deadline
First (EDF) and Rate Monotonic (RM), are optimal
under light load conditions but are not well suited to
support best-effort applications. Proportional share
schedulers try to allocate CPU resources to applica-
tions in proportion to their shares (Jin et al., 2005).
The idea was first presented for network packet
scheduling as Weighted Fair Queuing, and later ap-
plied to processor scheduling as stride scheduling.
From then on, many variants such as Virtual Clock,
SFQ, SFS, FFQ, SPFQ, GRRR, and time-shift FQ
have been proposed. GR3 (Chan and Nieh, 2003) also
falls into this group, and provides a more accurate
share with a low scheduling overhead. As propor-
tional share scheduling is based on predefined shares
of applications, it faces the challenge of setting rea-
sonable shares for a set of tasks with dynamically
changing resource requirements. Lottery scheduling

(Waldspurger and Weihl, 1994) also proposes hier-
archical allocation of resources based on the notion of
tickets and lotteries. Lottery scheduling itself is a
randomized algorithm that can meet resource re-
quirements in a probabilistic manner, and extending it
to multiprocessor environments is nontrivial.

There are currently some VCPU schedulers in
the Quest operating system. The HARTIK kernel
(Ghazalie and Baker, 1995) supports the co-existence
of both soft and hard real-time tasks. To ensure tem-
poral isolation between hard and soft real-time tasks,
the soft real-time tasks are serviced using a constant
bandwidth server (CBS). CBS guarantees a total
utilization factor no greater than Qs/Ts, even in
overload, by specifying a maximum budget in a des-
ignated window of time. CBS has bandwidth preser-
vation properties similar to those of the dynamic
sporadic server (DSS) (Abeni and Buttazzo, 1998),
but with better responsiveness. TBS and DSS both
assume the existence of server deadlines. We chose to
assume the existence of deadlines for VCPUs in
Quest, restricting VCPUs to fixed priorities. This
avoided the added complexity of managing the dy-
namic priorities of VCPUs as their deadlines change.
Also, for cases in which there are multiple tasks
sharing a fixed-priority VCPU, the execution of one
task will not change the importance of the VCPU for
the other tasks (Govindan et al., 2009; Danish et al.,
2011).

In addition to these mainstream CPU scheduling
algorithms, a scheduling methodology based on the
priority in accordance with I/O status has been pre-
sented (Aspnes et al., 1997). The I/O performance of
a domain scheduling algorithm in the Xen hypervisor
with more emphasis on resource exchange in VMM
was discussed by Govil et al. (2000). In studies of
resource allocation over multiple virtual machines,
the traditional CPU scheduling algorithms can allo-
cate resources to processes with fairness. But in vir-
tualization environments, the scheduler should adopt
other flexible scheduling policies (Volkmar et al.,
2004), such as that of guest OS, to avoid preemptive
blocking (Rosenblum and Garfinkel, 2005). Three
CPU scheduling algorithms in Xen were evaluated by
Hiroshi and Kenji (2007) by analyzing the effects of
parameter settings. Dynamic configurations of CPUs
are also a vital research area. Dynamic configuration
policies orienting the virtual machines’ status (Pfoh et

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 160

al., 2009) and applied requirements (Fumio, 2009)
have been presented. These methodologies have two
characteristics: first, they stress the effect that the I/O
has on real time scheduling. Second, the open-source
virtualization software is used to perform experiments
to test I/O overheads and CPU multithreading abili-
ties in the file, Web, and high performance computing
servers.

There have been fewer studies on application-
driven virtual machine schedulers oriented for paral-
lel computing in clusters. Some researchers have
presented scheduling algorithms with sense percep-
tion (Cota-Robles and Flautner, 2008). The virtual
machine scheduling mechanism with sense percep-
tion was used to infer the I/O roundedness of
user-level tasks combined with an event in I/O bind-
ing tasks. A scheduling algorithm based on the prior-
ity of tasks was designed to ensure the fairness of
CPU for dynamic requirements of applications in
symmetrical multi-processing (SMP) hosts (Shi et al.,
2009). Some scholars proposed that a modified VMM
can perceive an implicit guest OS by inferring the
information of guest OS (Laslo et al., 2008). A CPU
scheduling algorithm for communication perception
with a better cost and performance was presented by
Huai et al. (2007). Researchers have implemented
sense perception to task load, but they have not solved
the problem of allocating CPU resource based on the
progress of tasks. In general, virtual machine moni-
tors tend to lack the knowledge in virtual machines,
and virtual machines lack knowledge of tasks in the
workload, especially their progress (percentage of
completed task assignment and percentage of re-
maining task assignment). Therefore, unexpected
assignments make it difficult to allocate resources
accurately according to the progress status of tasks.
When faced with virtual machines with collaborative
computing tasks, it is impossible to satisfy these re-
quirements. In our study we aim to solve these prob-
lems in a virtualized parallel computing environment.

3 TPCM: a mapper for assigning tasks to
virtual machines

In this section, we present a mapper, TPCM, to
deploy tasks and virtual machines. The TPCM map-
per is a tool which makes a plan for mapping tasks

using the virtual machines mapping algorithm
(VMMA). In this plan, the quantity of physical ma-
chines and the quantity of virtual machines in each
physical machine are determined. After this work has
been completed, TPCM collects the information from
physical machines, and creates virtual machines
based on such a plan. Then, the tasks are mapped into
the virtual machines. Although the creation of virtual
machines is part of the work of task mapping, it is not
dealt with in VMMA. Therefore, it is not considered
in the time measuring of VMMA, but it is considered
in the time measuring of task mapping for TPCM. The
mapper requires the inputting of the set of tasks and
their relationships. First, we describe a method ori-
ented for parallel computing tasks based on the
workflow.

3.1 Description of tasks

In parallel computing, the division of tasks pro-
duces a set of subtasks with parallel and serial struc-
tures. We call the set of subtasks the taskSet. Thus,
each pair of subtasks in the taskSet would be one of
the seven relationships whose data flows are shown in
Fig. 1.

1. Serial relation
The serial relation has two instances, the first

shown as I in Fig. 1: for taska, taskbtaskSet, taskb can
begin only after taska is completed. That is, if a data
flow from taska to taskb exists, then it is a strict serial
relation between taska and taskb, denoted by taska→
taskb. The second instance, shown as II in Fig. 1, is:
for taska, taskb, taskctaskSet, if taska→taskbtaskb→
taskc, then it is a loose serial relation between taska
and taskc, denoted by taskataskc.

2. Parallel relation
The parallel relation has two instances, the first

taska taskb

taska taskctaskb

a btask task

a ctask task

taska

taskc

taskb

a btask task

taska

taskc

taskb

b ctask task

taska ...

taskb

taska

...

...

...

taskc

taskb

taskc

b ctask task
a btask task

taska ...

taskb...

a btask task

(I)

(II) (III) (IV)

(V) (VI) (VII)

Fig. 1 The relationships among tasks

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 161

shown as III in Fig. 1: for taska, taskb, taskctaskSet,
only after taska and taskb are both completed, can
taskc begin. That is, if taska→taskctaskb→taskc, then
it is a frontier strict parallel relation between taska and
taskb, denoted by taska taskb. The second instance is

shown as IV in Fig. 1: for taska, taskb, taskctaskSet,
taskb and taskc can begin only after taska is completed.
That is, if taska→taskbtaska→taskc, then it is a latter
strict parallel relation between taskb and taskc, de-
noted by taskb taskc.

3. Indirect relation
The indirect relation has two instances. The first

is shown as V in Fig. 1: for taska, taskb, taskctaskSet,
if taskataskbtaskataskc, then it is the latter indi-
rect relation between taskb and taskc, denoted by
taskbtaskc. The second instance is shown as VI in
Fig. 1: for taska, taskb, taskctaskSet, if taskataskc
taskbtaskc, then it is a frontier indirect relation
between taska and taskb, denoted by taskataskb.

4. Connectionless relation
In Fig.1 (VII), for taska, taskbtaskSet, if there

are no serial, parallel, or indirect relations between
taska and taskb, then there is a connectionless relation
because no data flow exists between any pair of tasks,
denoted by taska taskb.

The task information can be created manually or
automatically. Some studies show that automatic
decomposition might lead to irrational task sets, so we
suggest manual decomposition. After we construct
the relationship between tasks, the task information is
enveloped as a data structure taskSet and inputted into
virtual computing systems. The mapper TEVM in
virtual computing systems completes the mapping
from tasks to virtual machines.

3.2 The algorithm for mapping tasks to virtual
machines

In general, there are two methods to make par-
allel computing for tasks with the same configuration
requirement. In Method 1, the tasks are placed into a
virtual machine and then run to make parallel com-
puting as processes or threads (Katz et al., 2005). In
Method 2, the tasks are placed into multiple virtual
machines and then run to make parallel computing as
multiple virtual machines (Bansal et al., 2003; Qi et
al., 2006). Method 2 has at least two advantages:

1. In a multiple virtual machine environment, a

task occupies an operation system. Because of the
isolation characteristics among virtual machines,
there are fewer pending, deadlock, and synchroniza-
tion phenomena than in multiple processes or threads.

2. Processes or threads are found in many data
interactions among applications and operation sys-
tems, such as library calling in kernels, hardware
reading and writing, and network transmission, not
only in their own execution. The multiple virtual
machines refer to multiple applications interacting
with multiple guest OS. In the condition of power
computing resources, the speed of this method is
faster than that of a single operation interacting with
many applications in a virtual machine.

As existing machines generally contain multiple
CPUs and a CPU contains multiple cores, task col-
laboration over multiple virtual machines has the two
advantages described above. Therefore, we adopt
Method 2.

In our algorithm design, the quantity of virtual
machines is determined by the relationships among
subtasks in taskSet to mine the parallelism of subtasks
and keep the assignments of tasks consistent with the
resources allocated (Hamidzadeh et al., 2000). The
mapping of tasks to virtual machines determines the
performances of systems and affects the total running
time of tasks. Also, we should maintain the load
balance among virtual machines (Cherkasova et al.,
2007) by considering the density of data flows in
communication and synchronization (James and Ravi,
2007; Kim and Lim, 2009). Furthermore, the de-
ployment of virtual machines to physical machines
should be based on the load status of the virtual ma-
chines.

The key for mapping tasks to virtual machines is
to estimate the workload of the tasks. In this section,
the workload is decided by the quantity of codes from
tasks and the communication with other tasks, and is
ultimately determined by the estimated execution
time in a certain hardware configuration. There are
several techniques to estimate such information (Wu
and Dajski, 1990). The distributed system is repre-
sented by a set P of m processors that have diverse
capabilities. The n×m computation cost matrix C
stores the execution costs of tasks. Each element
ci,jC represents the estimated execution time of task
ti on processor pj. Precise calculation of the running
time of the tasks on the processors is unfeasible

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 162

before running the application (Phinjaroenphan et al.,
2005). One approach to estimating the execution time
of task ti on processor pj is to use profiling informa-
tion of ti and pj (Dail et al., 2002; Zhang et al., 2004).
Another approach is to analyze past observations of
the running times of similar tasks on pj (Iverson et al.,
1999; Govindan et al., 2007). Having determined the
workload, the algorithm implementing the mapping
from tasks to virtual machines (VMMA) is shown in
Fig. 2.

The input parameters of VMMA are taskSet,

PMS, ε, ξ, ς, and Ф. Besides taskSet, as defined above,
PMS is a set of physical machines in a cluster, ε is the

maximum quantity of virtual machines deployed in a
physical machine, and ξ, ς, Ф are three parameters
describing the boundary of load, where ξ is the
minimum deviation among virtual machines, ς is the
maximum load that a virtual machine can afford, and
Ф is the maximum load that a physical machine can
afford. To process the data easily, the assignments of
tasks are normalized to (0, 1] to measure their load, so
ξ, ς, Ф(0, 1]. In algorithm VMMA, the set of the
maximum parallel quantity of subtasks MPtaskSet is
collected from taskSet to create a virtual machine
array VMS with the length of MPtaskSet as its initial
length. The subtasks in MPtaskSet are mapped into
the elements of VMS one by one, and then the other
unmapped tasks in taskSet are mapped into VMS
based on the serial relation among tasks. We decide
whether the virtual machines need to be combined
according to the relationship between the quantity of
virtual machines and the quantity of physical ma-
chines. VMS.count/PMS.count>ε shows that too
many virtual machines deployed in a physical ma-
chine would lead to inconvenience in their deploy-
ment, so the virtual machines are required to be com-
bined. The function workload() computes the load of
tasks deployed. If the load of a task in a virtual ma-
chine is less than ς, this virtual machine should be
combined with other virtual machines. In the last part,
the algorithm deploys the virtual machines into
physical machines. The average number of virtual
machines deployed in a physical machine is com-
puted as index, and then Ф is taken as the reference to
deploy the virtual machines with a balanced load.

The output of the VMMA algorithm is PMS, a
set of physical machines in a cluster. We define the
elements in PMS as PM=(VMs[]), where VMs is the
set of virtual machines deployed in this physical
machine, VMs=VM[]. The element in VMs is VM=
(tasks[], PM), in which tasks[] is a set of tasks in this
virtual machine, and PM is the physical machine that
VM hosts. Based on the construction of elements in
PMS, taskSet is allocated to virtual machines and the
virtual machines are deployed to physical machines.

4 TPCS: an application-driven virtual ma-
chine scheduler

On the basis of tasks mapped, we propose a
virtual machine scheduler which can perceive the

 Input taskSet and PMS,

Sum workload of VMS as SWL

Determine the set of maximum parallel tasks as
MPtaskSet from taskSet using and  

Determine the set of maximum virtual
machines as VMS from MPtaskSet

Map tasks in MPtaskSet into VMS
(the set of virtual machines)

Map tasks in taskSet, but not in
MPtaskSet into VMS using and 

VMS.count/PMS.count>

Foreach vm2 in VMS

SWL/VMS.count Workload(vm1)>

Workload(vm1)+Workload(vm2)<

Foreach vm1 in VMS

Combine vm1 and vm2

Compute index=int(VMS.count/PMS.count)

Foreach vm in VMS

|Workload(pm) SWL/PMS.count|< *index

Foreach pm in PMS

pm.Add(vm)

Return PMS

Whether vm is not null

Y

Y

Y

Y

Y

N

N

N

N

N

, , , 













Fig. 2 Virtual machine mapping algorithm (VMMA)

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 163

progress of tasks. When the system performs parallel
computing, the scheduler can use the progress of tasks
to decide the CPU allocation of virtual machines.

In a system virtualization environment, a highly
efficient scheduling algorithm can improve not only
hardware usage, but also the efficiency of parallel
computing tasks in multiple virtual machines. In the
Xen hypervisor, the Xen kernel neither knows the
workload of tasks in guest OS, nor perceives the
progress of tasks packaged in virtual machines. Thus,
it cannot make an efficient and accurate scheduling
based on the status of tasks in virtual machines and is
unable to reduce the time spent on pending, synchro-
nization, communication, and switching among con-
current tasks. We propose an improvement to the
Credit algorithm in Xen in which the progress statuses
of applications are transmitted to the Xen kernel in an
active way so that the scheduling algorithm can al-
locate the CPU resource to virtual machines with
optimization according to the progress status.

We take Xen hypervisor 3.4.2 as the virtualized
platform to achieve the goal of perceiving the pro-
gress of tasks in virtual machines. The tasks placed in
virtual machines are allocated CPU resources based
on their present statuses. TPCS, an application-driven
virtual machine scheduler, integrates the virtual ma-
chines into a coherent whole. TPCS has three com-
ponents: a middleware supporting parallel computing,
a device driver, and a virtual machine scheduling
algorithm (Fig. 3). To implement the application-ware
in the Xen hypervisor, TPCS is designed from the top
down using a hierarchical approach. Take X86 ar-
chitecture as an example. Three components run at
different CPU right levels: a virtual machine sched-
uling algorithm runs in CPU-ring0 in the Xen hyper-
visor, a device driver runs in CPU-ring 1 of the VM
guest OS kernel, and a middleware runs in CPU-ring
3 of the application layer.

In Fig. 3, middleware calls the interface pro-
vided by the guest OS to transmit the percentage of
completed task information to the guest OS, and then
to the CPU virtualization subsystem of the Xen hy-
pervisor. The Xen hypervisor analyzes the percentage
of completed task information to decide the virtual
machine scheduling policy. The scheduling is based
on the amount of uncompleted assignments and the
urgency of some tasks. Xen allocates or adjusts the
CPU time slices for virtual machines to change their
resource utilization, thus changing the speed of tasks
and keeping the concurrent tasks in a simultaneous
status. The synchronization of tasks can reduce
the time spent in pending, communication, and
switching.

The design components of TPCS are described
in detail in the following subsection.

4.1 Middleware supporting application-driven
scheduling

In existing virtual machine scheduling algo-
rithms, CPU schedulers implement scheduling based
on a static policy, not on the status of current tasks.
Some researchers propose that the system software
can perceive the workload of the application. For
example, performance counters are known to be able
to extract the characteristics of application behaviors
at lower software layers, enabling estimation of the
workload of the application. However, the system
software cannot perceive the progress of an applica-
tion because the workload has no relationship with the
progress of the application. The percentage of com-
pleted tasks can be known only by the tasks them-
selves. As a result, we adopt a notification approach,
application-driven scheduling, in which the top
module in TPCS reports the progress of tasks to the
underlying module in an active way.

Fig. 3 The architecture of the TPCS scheduler

Middleware

...

...
VM

VMM
Physical machine

taskbtaska taskc

Middleware

...

VM

taskbtaska taskc

Middleware

...

VM

taskbtaska taskc

Signal is transmitted from
task to middleware

VMSignal is transmitted from
virtual machine to hypervisor

VMSignal is transmitted from
middleware to virtual machine

 Hypervisor schedules
virtual machines

Information is fed back to
middleware from virtual machine

The markers are inputted into
the tasks by middleware

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 164

We have developed a middleware supporting
application-driven scheduling in guest OS to perceive
the progress of an application. The middleware has
three functions:

1. Inputting progress markers into threads of
tasks

The middleware inputs the progress markers of
scheduling information into the threads of tasks to
obtain the progress status from the threads of tasks at
some key time points. Progress markers are collected
via signals. Each signal is a tuple with two elements,
signal=(taskid, mark), in which taskid, the identifier
of a subtask, can be taken to compute the present
location of parallel computing, and mark is labeled
as the progress of this subtask. The signals are
constructed in subtasks scanned by middleware
periodically.

2. Progress information management for tasks
The middleware, as a daemon in guest OS with

the task information, runs when its hosted virtual
machine starts. After the tasks in taskSet are mapped
into the virtual machines, the middleware describes
the task information of taskSet as a tuple with two
elements, Taskinfo=(tasks, relationship), in which,
tasks is the set of subtasks in parallel computing, and
relationship reflects the relation among these subtasks.
For all tasktasks, task=(taskID, workload, Mark-
quantity, dynamicinfo), taskid is the identifier of a
subtask, workload is an estimation of the assignments
for this subtask, and Markquantity is the quantity of
markers, that is the number of times of inputting
progress marks. Dynamicinfo, a group of dynamic
data for subtasks, can be described as dynamicinfo=
(loadtime, previoustime, finishworkload, state), where
loadtime is the time loading the subtask, previoustime
is the time receiving the last signal, and finishwork-
load is the assignment completed in the last signal,
and state describes the status of subtasks, such as
preparing, completed, or running state.

3. Transmitting the progress signals to guest OS
To implement the signal transmission of pro-

gress marks, we define two concepts for progress
status: first, the percentage of tasks completed de-
noted by Rate, and second, the time to complete a unit
task denoted by TimeRate.
Definition 1 (Rate) The proportion of tasks com-
pleted, Rate, is the ratio of the number of completed
assignments to the number of all assignments for

tasks. The Rate is divided into the rate for the current
task and the rate for the concurrent task set, denoted
by thisRate and allRate, respectively. The current task
refers to the recent task scanned by the middleware,
and the concurrent task set refers to the set of tasks
run concurrently with the current task in taskSet. In
our design, allRate can be computed according to the
properties of finishworkload in task.Dynamicinfo and
the workload of task in Taskinfo, but thisRate needs
only the location of the progress mark for the current
task:

thisRate Currenttask.workload signal.mark/

 Currenttask.Markquantity.

 
 (1)

Definition 2 (TimeRate) The time to complete a unit
task, TimeRate, is the ratio of the time to complete
assignments for each task. It is also divided into the
TimeRate for the current task and the TimeRate for
the concurrent task set, denoted by thisTimeRate and
allTimeRate, respectively.

In determining the task progress, we compare
allTimeRate with thisTimeRate to determine the
speed of the current task relative to the concurrent
task set, thereby deciding the urgency of the current
task in the progress of the synchronization process,
and providing a reference for the Xen system to
schedule the virtual machines.

The middleware scans the statuses of tasks pe-
riodically, and if it does not receive a signal for a long
time, it judges whether a deadlock exists in the system
(Govindan et al., 2007). Otherwise, the signal is col-
lected and processed by algorithm VSTA (Fig. 4).

The time points to execute VSTA are as follows:
(1) the time before the running of the first subtask, (2)
the time after the running of the last subtask, (3) the
time before the running of each subtask, (4) the time
after the running of each subtask, and (5) the period of
time in the interval between the running of subtasks.

The input values of the VSTA algorithm are
Taskinfo and signal, where Taskinfo is created auto-
matically after the tasks are mapped into virtual ma-
chines in TPCM. The signal is obtained via the com-
munication among threads when the middleware
scans threads of tasks. The output value of this algo-
rithm is a tuple VMsignal=(leftWorkload, allTimeR-
ate, thisLeftWorkload, thisTimeRate), in which left-
Workload is the average uncompleted assignment for
all tasks paralleling with the current task, allTimeRate

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 165

is the time rate of all completed tasks in the whole
process, thisLeftWorkload is the uncompleted as-
signments for the current task, and thisTimeRate is
the time rate of a completed assignment for the cur-
rent task in recent time.

Besides the two parameters of timeRate and
thisTimeRate (which reflect the synchronization re-
quirement based on the urgency of tasks discussed
above), the output of algorithm VSTA includes two
other parameters, thisLeftWorkload and leftWorkload,
which are the remaining assignments of the current
task and the average remaining assignments of the
concurrent tasks set, respectively. The value of
thisLeftWorkload is the total assignment minus com-

pleted assignments for the current task. The left-
Workload is the mean value of thisLeftWorkload for
all tasks in concurrent status. These two parameters
reflect the general conditions based on the uncom-
pleted assignments. We compute these values, be-
cause the relativities between thisLeftWorkload and
leftWorkload provide another reference for the Xen
system scheduling the virtual machines.

The essential points of VSTA: based on col-
lecting the concurrent task set for the current task, the
progress of the current task is compared to that of the
concurrent task set. VSTA computes the total as-
signments of tasks in the concurrent task set, com-
pleted assignments of tasks, and the time consump-
tion, to enable calculation of the remaining assign-
ment of tasks (thisLeftWorkload and leftWorkload),
the percentage of assignments completed (thisRate
and allRate), and the completion time of a unit task
(allTimeRate and thisTimeRate). They are packaged
into a VMsignal transmitting into the guest OS.

In row 1 of VSTA (Fig. 4), the function get-
TaskbySignaltaskID gets the current task named Cur-
renttask from taskid. In rows 2–8, the concurrent
subtasks are identified by traversing the tasks in
Taskinfo and are named coTaskset from the current
task (Fig. 5). In row 9, the function saveDynamicInfo
saves the dynamicinfo of the current task. In rows
10–17, coTaskset is taken to compute the time con-
sumption of the whole process. In rows 18–21, the
completed and uncompleted assignments are com-
puted, and then, in rows 22–23, allTimeRate and
thisTimeRate are determined. In row 24, the average
remaining assignments of coTaskset is computed. In
row 25, VMsignal is constructed and the system-call
provided by guest OS transmits the VMsignal into the
kernel of guest OS, and then passes it to the Xen
hypervisor.

For several tasks, task1, task2, ..., taskn, we can

input mark1, mark2, …, markn because of their dif-
ferent workloads (Fig. 5). Thus, when the middleware

Input: Taskinfo, signal
Output: VMsignal
1

2

3
4
5
6
7
8
9

10
11
12
13
14
15

16

17
18
19

20
21

22
23

24
25

Currenttask←getTaskbySignaltaskID(Taskinfo,
Signal.taskID);

Define coTaskset as the set of tasks paralleling
with Currenttask;

coTaskset.add(Currenttask);
Foreach (task in Taskinfo.tasks)

If (Currenttasktask or Currenttasktask)
coTaskset.add(task);

Endif
Endfor
saveDynamicInfo(Currenttask);
// for use in next scanning time
finishtime←0;
allworkload←0;
finishworkload←0;
Foreach (task in coTaskset) {

allworkload+←task.workload;
finishworkload+←task.dynamicinfo.

finishworkload;
finishtime+←sytemtime–task.dynamicinfo.

loadtime;
Endfor
leftWorkload←allworkload–finishworkload;
thisLeftworkload←Currenttask.workload–

Currenttask.Dynamicinfo.finishworkload;
allRate←finishworkload/allworkload;
thisRate←Currenttask.workload×signal.mark/

Currenttask.markquantity;
allTimeRate←finishtime/allRate;
thisTimeRate←(systemtime–Currenttask.

dynamicinfo.loadtime)/thisRate;
leftWorkload←leftWorkload/coTaskset.count;
VMsignal←VMsignal(leftWorkload, allTimeRate,

thisLeftworkload, thisTimeRate);

Fig. 4 Virtual machine signal transmitting algorithm
(VSTA)

...

...

...

task1

task2

taskn

mark1 mark2 markn
task1.workload

task2.workload

taskn.workload
...

...

Fig. 5 coTaskset in the concurrent state of a virtual
machine

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 166

scans the tasks, we can determine the progress of the
current task via the mark of signal. Therefore, VSTA
implements the perception of task progress.

4.2 Device driver in the guest OS kernel

Virtual machine scheduling is carried out by a
CPU virtualization subsystem in the Xen hypervisor
based on progress signals. VMsignal must be trans-
mitted to the CPU virtualization subsystem through
hyper-call, because hyper-call is the only way to
switch to the Xen kernel from top layers. But mid-
dleware in CPU-ring 3 is not entitled to request the
hyper-call in X86 architecture. We cannot submit
VMsignal into the Xen hypervisor in CPU-ring 0
directly, but we can use the hyper-call indirectly. In
our design, VMsignal is transmitted into guest OS in
CPU-ring 1 first, and then a hyper-call is called in
guest OS to switch to the Xen hypervisor in CPU-
ring 0.

We have designed a special device driver named
vmscmd in the guest OS kernel to complete this work
in the same way as a device driver in a Linux opera-
tion system. We complete this operation with the help
of system-call ioctl(), and the service routine of ioctl()
in the Linux kernel is sys_ioctl() provided by
file_operation in vmscmd. The function vmscmd_
ioctl is completed as shown in Fig. 6.

The function vmscmd_ioctl is the pointer of
ioctl() in file_operation. The input parameters of
vmscmd_ioctl are *inode, *file, cmd, and data, which
have been determined by VZlinux 2.6.48 source files.

The essential points of vmscmd_ioctl: We define
a new command code in ioctl, IOCTL_VMSCMD_
VMscheduling. In this code, the function copy_from_
user() obtains VMsignal from middleware and saves
it into a variable hypercall. The data type of hypercall
is a struct of vmscmd_hypercall including two ele-
ments: op, the command line of hyper-call, and arg[4],
four parameters of hyper-call.

In rows 1–20, a new branch IOCTL_VMSCMD_
VMscheduling is added to the function of hyper-call
_HYPERVISOR_VCPU_OP, a hyper-call designed
for a CPU virtualization subsystem. In this new
branch, the function copy_from_guest() is called to
transmit the value of hypercall into the CPU virtual-
ization subsystem of the Xen hypervisor, as the input
of the virtual machine scheduling algorithm discussed
in Section 4.3. In row 14, vmscmd completes the
work of calling the hyper-call through a jump in-
struction ‘call *%%eax’.

We implement vmscmd in the guest OS kernel
via system-call based on VZlinux 2.6.48 for Xen 3.3.
In our design, vmscmd is loaded by the function
module_init() after the guest OS kernel starts.

4.3 Virtual machine scheduling algorithm

4.3.1 Algorithm design

The virtual machine scheduling algorithm first
receives VMsignal from guest OS, and then allocates
the CPUs based on task progress information. Related
work shows that, if virtual machines have the same
right to use the space of CPUs, CPUs would be allo-
cated via time slices. A virtual machine scheduling
algorithm requires the determination of the time slices
of CPUs based on round-robin to decide the credit
values of VCPUs in the next execution cycle. The
execution cycle, as a fixed value in systems and
named ∆t in our study, is the time that the Xen hy-
pervisor takes to traverse all virtual machines.

Here we discuss mainly the determination of the
time slices. When a CPU clock interrupt occurs in
systems, the CPU scheduler decides the time slices of
virtual machines in the next execution cycle. If the
time slices do not need to change, the virtual ma-
chines are scheduled in the next execution cycle

Function vmscmd_ioctl(*inode ,*file, cmd, data)
1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

{ switch(cmd){
case IOCTL_VMSCMD_VMscheduling:{

 vmscmd_hypercall hypercall;
If (copy_from_user(&hypercall, data,

sizeof(hypercall)))
 return –EFAULT;

_asm__volatile_(
“pushl %%ebx; pushl %%ecx; pushl %%edx;”
“Movl 8(%%eax), %%ebx;”
“Movl 16(%%eax), %%ecx;”
“Movl 24(%%eax), %%edx;”
“Movl (%%eax), %%eax;”
“shll $5, %%eax;”
“addl $hypercall_page, %%eax;”
“call *%%eax;”
“popl %%ebx; popl %%ecx; popl %%edx;”
: “=a” (ret): “0”(&hypercall): “memory”;
)
break; }
… }

}

Fig. 6 Function: vmscmd_ioctl

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 167

according to the current distribution of time slices.
Otherwise, the virtual machine scheduling algorithm
(VSA) (Fig. 7) is called immediately. The CPU vir-
tualization subsystem summarizes and stores the
VMsignal into a special data structure to determine
the time slices in the next execution cycle. We define
VMinfo as this structure for managing the static and
dynamic information for all currently active virtual
machines, as the base of time slices for Xen in dif-
ferent execution cycles.

VMinfo is a tuple with three elements, VMinfo=
(vms, lwl, tr), where vms is the set of virtual machines
in the Xen hypervisor, lwl is the maximum limited
load of this system, and tr is the maximum assignment
allowed in this system. For all vmvms, vm={signal,
schedulerate, timeslice}, signal is the structure used to
save VMsignals received from guest OS, schedulerate
describes the proportion of time slices in the Xen
hypervisor (schedulerate[0, 1]), and timeslice is the
proportion of the time slices for virtual machine vm in
the next execution cycle.

Timeslices, as an element of VMinfo, is re-
freshed by VSA continuously. The latest value is
taken as the basis to calculate the credits for VCPUs
in virtual machines. In the Credit algorithm of the Xen
hypervisor, the credit value of a VCPU decides the
occupied frequency that this VCPU takes to the CPU.
The CPU virtualization subsystem implements dy-
namic scheduling based on the progress of tasks in
virtual machines by refreshing the values of VMinfo
and credit.

We now discuss VSA in detail. The input pa-
rameters of VSA are the execution cycle ∆t and
VMinfo. The output of VSA is virtual machine
scheduling information named VMinfo′ in the next
execution cycle.

The essential points of VSA: VSA analyzes
VMinfo to decide the virtual machine scheduling
policy. There are two policies to calculate the time
slices. Policy 1 is virtual machine scheduling in gen-
eral conditions based on the uncompleted assign-
ments. Policy 2 is virtual machine scheduling with a
synchronization requirement based on the urgency of
tasks. TimeRate represents the time to complete a unit
task, which can embody the total progress of con-
current tasks in virtual machines. Thus, it can decide
the virtual machine scheduling policy that Xen adopts.
The policy is determined by the deviation between the

Input: ∆t, VMinfo
Output: VMinfo′
1

2

3
4

5

6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

currentvm←VMinfo.vms.currentvm;
// obtain current virtual machines
Policy←1; // the default value is virtual machine

// scheduling based on the urgency of tasks
Foreach (vm in VMinfo.vms)

If (abs(vm.signal.timerate−getAvgTasksTimeRates
(VMinfo))>VMinfo.tr)
Policy←2; // virtual machine scheduling

// based on the assignment uncompleted
Endif

Endfor
If (Policy=1) // virtual machine scheduling based

// on the urgency of tasks
 If (currentVm.signal.thisLeftWorkload>

currentVm.signal.leftWorkload
&¤tVm.signal.thisLeftWorkload>=

VMinfo.lwl)
 currentvm.schedulerate←100%;
 Foreach (vm in VMinfo.vms)

If (vm<>currentvm)
Vm.schedulerate←0%;

Endif
 Endfor
 Else

sum←0;
Foreach (vm in VMinfo.vms)

Sum+←Vm.signal.leftWorkload;
Endfor
Foreach (vm in VMinfo.vms)

 vm.schedulerate←vm.signal.
leftWorkload/sum;

Endfor
 Endif
Else

sum←0;
Foreach (vm in VMinfo.vms)
 sum+←vm.signal.timerate;

Endfor
Foreach (vm in VMinfo.vms)

vm.schedulerate←schedulerate computed
 using Eq. (2);

Endfor
Endif
Foreach (vm in VMinfo.vms)

vm.timeslice←vm.schedulerate*∆t;
Endfor
Sort VMinfo.vms order by vm.timeslice desc;
Determine the credit value for all VCPUs based on

their vm.timeslice;

Fig. 7 Virtual machine scheduling algorithm (VSA)

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 168

TimeRate of tasks in the current virtual machine and
the average TimeRate of tasks in this physical ma-
chine. In our design, different virtual machine
scheduling policies lead to different occupied fre-
quencies (schedulerate and credit) in the next execu-
tion cycle.

We divide Policy 1 into two conditions: firstly,
schedulerate is determined by the comparison be-
tween the remaining assignments of the current vir-
tual machine and the average remaining assignments
of virtual machines in the host. If the former is greater
than the latter and also greater than the maximum
limited load of the system (VMinfo.lwl), then the
current virtual machine will be scheduled to run in the
next executable cycle and others must stop running,
because the remaining assignment of the current vir-
tual machine is so great that it has exceeded the limit
of the system and is far behind the tasks in parallel
status. Otherwise, the second method is adopted; that
is, the proportion of the remaining assignments of the
current virtual machine in all assignments of virtual
machines is taken as schedulerate. These two methods
can ensure the system proceeds synchronously with
the tasks in virtual machines.

With Policy 2, schedulerate is decided by the
TimeRate in all virtual machines. We define it as

  1

schdulerate [max(Vm.signal.TimeRate)

 min(Vm.signal.TimeRate)

 Vm .signal.TimeRate]

 Vm.signal.TimeRate .

i

i








 

 (2)

Eq. (2) shows that, the greater is the TimeRate in
a virtual machine, the lower is the schedulerate, be-
cause a high TimeRate means the virtual machine is
ahead of schedule. Then, the speed decreases in the
next executable cycle to implement the synchroniza-
tion among tasks.

As the schedulerate is defined as the ratio of time
slices (schedulerate[0, 1]), the timeslice can be de-
termined by multiplying ∆t by the schedulerate after
the schedulerate is calculated.

In rows 1–7 of the VSA (Fig. 7), we set the de-
fault virtual machine scheduling policy as Policy 1.
Then, the function getAvgTasksTimeRates computes
the average progress of tasks. If the deviation between
the TimeRate of tasks in the current virtual machine
and the TimeRate of concurrent tasks in this physical

machine is greater than the maximum assignment
allowed in this system, VSA will adopt Policy 2.

In rows 8–24, the algorithm takes the virtual
machine scheduling in general conditions, in which
the remaining task assignments directly affect the
proportion of the time slices. In row 9, if the re-
maining assignments are greater than VMinfo.lwl,
this virtual machine will be scheduled with the
schedulerate=100% and the other virtual machines
are set at 0% in the next execution cycle. Otherwise,
the ratios among these remaining assignments decide
their schedule-rate in the next execution cycle.

In rows 25–33, the algorithm takes the virtual
machine scheduling with synchronization require-
ments, in which the urgency of tasks directly affects
the proportion of the time slices. We aim to exchange
the completion time of virtual machines with CPU
resources, so more resources will be allocated to ur-
gent tasks so as to reduce the pending time of slower
tasks to implement the balance of all tasks.

In rows 34–35, the proportions of time slices in
the next execution cycles are determined, in which
fewer time slices will be allocated to the virtual ma-
chines with forward progress.

In row 37, the virtual machines are sorted
by their time slices and form a queue for VCPU
scheduling.

In row 38, the algorithm determines the credit
values of VCPUs. We implement this algorithm in the
Xen hypervisor, in which the scheduling unit is the
credit of a VCPU. To ensure fairness and flexibility,
each virtual machine is set the same quantity of
VCPUs and CPUs, and we let each VPCU map to a
different CPU. In this way, each virtual machine has
the same right to occupy CPUs. The VCPUs occupy
CPUs according to their credit values. Thus, the credit
value of each VCPU is adjusted in the VSA algorithm
based on the time slice of virtual machines in their
execution cycles. As a result, the credit value is taken
to determine the usage that a VCPU occupies in a
CPU in an execution cycle.

4.3.2 Algorithm implementation

The VSA is implemented in the Xen CPU virtu-
alization subsystem by changing the source code of
Xen 3.3, and then it is defined as the scheduler
sched_vsa_def. Meanwhile, VSA is set as a default
algorithm saved in the variable opt_sched (Fig. 8).

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 169

The interfaces of sched_vsa_def are composed

of some properties such as ‘char *name’ and 12
functions such as ‘(*init)(void)’, among which the
most important is the function ‘struct task_slice(*do_
schedule)(s_time_t)’ which implements VSA.

When the Xen hypervisor starts, VSA is initial-
ized by the function init_idle_domain. The function
scheduler_init obtains the current scheduler by com-
paring opt_sched and schedulers[]. Then, the macro
SCHED_OP is called to initialize sched_vsa_def.
VMinfo is defined by its initialization function
sched_vsa_def. The vms in VMinfo=(vms, lwl, tr) is
collected and saved in the Xen hypersvisor. lwl and tr
are appointed the constants in the source codes of Xen
3.3, which can be adjusted by the hyper-call
_HYPERVISOR_VCPU_OP. In vm={signal, sched-
ulerate, timeslice} of vms, we change the hyper-call
_HYPERVISOR_VCPU_OP to construct a VMsignal,
and then transmit the VMsignal into the vm.signal in
VSA. The starting values of schedulerate and
timeslice are set as 0 in our experiments.

5 Experimental evaluations

Based on the source codes of Xen 3.3 and
VZlinux 2.6.18, we have developed a prototype sys-
tem in the desktop operation system Fedora core 12.0.
We constructed a development environment in
Eclipse for Linux by using a GCC compiler and C
language. The machine was a PC with Intel Core 2,
2.8 GHz CPU, 2 GB DDR RAM, PAE, and a 160 GB
hard disk.

First, we implemented TPCM, and obtained
three key components of TPCS. Then we developed
source codes which were deployed into a testing en-
vironment to verify their effectiveness. This testing
environment was built on a pair of two-socket servers,

with each socket having four Intel Xeon 1.6 GHz
CPUs. One server had 4 GB DDR RAM and the other
had 2 GB DDR RAM. The two servers were con-
nected by a 1000 Mb/s Ethernet network. We used
Linux 2.6.18 with Xen 3.3 as the operation system.
The storage was exported to a migrated VM from a
file system image, which was accessed via the Net-
work File System (NFS) protocol. We pre-installed
Red Hat Enterprise Linux 5 as the guest OS in VMs.
After determining the reliability of the prototype
system, we built them on a larger cluster to make
system evaluations.

5.1 TPCM evaluation

5.1.1 Mapping efficiency with different parameter
settings

Here we describe an example used to evaluate
the virtual machine mapper TPCM and scheduler
TPCS presented in this paper. We take the simulation
of a cold flow impulsive experiment for a car engine
(CFIE) as the instance. CFIE is a typical coupling
process which considers the relations affecting flow
field and structure. The CFIE project was constructed
by three subprojects with 22 subtasks. Massively
parallel computing was found to exist in these 22
subtasks after analyzing their requirements. The
taskSet is shown in Fig. 9.

Based on the description of the parallel com-

puting tasks, the subtasks in taskSet are described by
their assignments and the relationships between them
are identified as serial, parallel, indirect, or connec-
tionless. To adapt to the threshold of inputting pa-
rameters in algorithm VMMA, the assignments of
tasks are normalized to (0, 1].

// xen/com/schedule.c 55-61
static char opt_sched[10]="vsa";
extern structure scheduler sched_bvt_def;
extern structure scheduler sched_sedf_def;
extern structure scheduler sched_credit_def;
extern structure scheduler sched_vsa_def;
static struct scheduler *schedulers[]={

&sched_bvt_def, &sched_sedf_def,
&sched_credit_def, &sched_vsa_def, Null};

Fig. 8 Definition of the CPU scheduling algorithm

taska

taskctaskb

task2

task1

task6

task5

taske

task4task3

taskd

taskg

task7

taskf

task8

taskA

taskB taskC

taskD

taskF

taskE

taskG

Fig. 9 Construction of parallel computing tasks

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 170

We completed the mapping from tasks to virtual
machines using VMMA. First, we used two hosts to
make an evaluation, so PMS.count was set as 2. Based
on the performances of the hardware, the quantity of
virtual machines was limited to 4. To produce a higher
efficiency, we set ε=3<4. Any group of parameters ξ, ς,
Ф would produce a different value of ‘index’ (an
average number of virtual machines) in algorithm
VMMA. A higher ξ refers to a higher demand in a
virtual machine combination. Therefore, it is very
difficult to combine the virtual machines. A higher ς
refers to a lower demand in a virtual machine com-
bination. Therefore, it is easy to combine the virtual
machines. A higher Ф refers to a lower demand to
load balance in servers. Therefore, it is also easy to
deploy the virtual machines. If we set different in-
putting values of ξ, ς, Ф to VMMA, different outputs
would be shown after CFIE runs.

The values of ‘index’ meet the features of VMMA
in virtual machine combination (Table 1). The data in

the column headed ‘weights of assignments in virtual
machines’ show that VMMA can maintain the load
balance among virtual machines and physical ma-
chines. According to the characteristics of parallel
computing among virtual machines and the quantity
of physical machines in clusters, we set the input
values of parameters in VMMA as PMS.count=2, ε=3,
ξ=0.1, ς=0.9, Ф=0.2. We chose such settings for two
reasons: first, too many virtual machines in a physical
machine would increase the complexity of manage-
ment and lead to a higher overhead in synchronization,
communication, and switching. Therefore, the quan-
tity of virtual machines was set as 6. Second, the
performance of one server is better than the other
because of its greater DDR RAM, so the weights of
their assignments were set as 0.56:0.44. Based on
such parameters, the mapping from tasks to virtual
machines after VMMA runs is shown in Fig. 10. We
conclude that TPCM is very effective for solving the
mapping of tasks to virtual machines.

Table 1 The results of virtual machine mapping with different parameters

ξ ς Ф Index Weights of assignments in virtual machines
Weights of assignments

in physical machines

0.1 10 0.09, 0.13, 0.06, 0.10, 0.14, 0.08, 0.14, 0.08, 0.07, 0.11 0.52, 0.48

0.2 10 0.11, 0.13, 0.09, 0.09, 0.11, 0.09, 0.10, 0.07, 0.11, 0.10 0.53, 0.47 0.7

0.3 10 0.12, 0.08, 0.11, 0.10, 0.09, 0.11, 0.10, 0.12, 0.08, 0.10 0.50, 0.51

0.1 8 0.19, 0.06, 0.11, 0.08, 0.18, 0.08, 0.13, 0.18 0.44, 0.57

0.2 8 0.08, 0.16, 0.16, 0.10, 0.10, 0.08, 0.17, 0.15 0.50, 0.50 0.8

0.3 8 0.14, 0.12, 0.12, 0.13, 0.12, 0.14, 0.12, 0.12 0.51, 0.50

0.1 6 0.15, 0.14, 0.18, 0.22, 0.16, 0.16 0.47, 0.54

0.2 6 0.20, 0.13, 0.23, 0.18, 0.12, 0.15 0.56, 0.44 0.9

0.3 6 0.17, 0.17, 0.17, 0.18, 0.16, 0.14 0.51, 0.48

0.1 4 0.34, 0.19, 0.28, 0.18 0.53, 0.46

0.2 4 0.22, 0.26, 0.26, 0.27 0.48, 0.53

0.1

1.0

0.3 4 0.26, 0.23, 0.26, 0.25 0.49, 0.51

0.1 12 0.11, 0.08, 0.11, 0.10, 0.06, 0.11, 0.09, 0.10, 0.08, 0.05, 0.05, 0.08 0.57, 0.45

0.2 12 0.11, 0.10, 0.11, 0.08, 0.07, 0.05, 0.07, 0.08, 0.08, 0.07, 0.08, 0.11 0.52, 0.49 0.7

0.3 12 0.07, 0.08, 0.07, 0.08, 0.09, 0.09, 0.09, 0.08, 0.09, 0.09, 0.07, 0.10 0.48, 0.52

0.1 10 0.13, 0.11, 0.07, 0.13, 0.13, 0.06, 0.08, 0.08, 0.08, 0.14 0.57, 0.44

0.2 10 0.11, 0.11, 0.11, 0.06, 0.12, 0.12, 0.06, 0.12, 0.11, 0.10 0.51, 0.51 0.8

0.3 10 0.09, 0.12, 0.09, 0.09, 0.10, 0.10, 0.12, 0.10, 0.10, 0.09 0.49, 0.51

0.1 8 0.15, 0.09, 0.20, 0.14, 0.06, 0.09, 0.19, 0.08 0.58, 0.42

0.2 8 0.12, 0.13, 0.08, 0.15, 0.14, 0.11, 0.12, 0.15 0.48, 0.52 0.9

0.3 8 0.11, 0.13, 0.15, 0.13, 0.13, 0.11, 0.10, 0.13 0.52, 0.47

0.1 5 0.24, 0.19, 0.12, 0.19, 0.26 0.55, 0.45

0.2 5 0.31, 0.17, 0.14, 0.23, 0.16 0.62, 0.39

0.2

1.0

0.3 5 0.17, 0.21, 0.22, 0.19, 0.22 0.60, 0.41

ξ: the minimum deviation among virtual machines; ς: the maximum load that a virtual machine can afford; Ф: the maximum load that a
physical machine can afford

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 171

5.1.2 Mapping efficiency with different quantities of
physical machines

We executed the algorithm VMMA in a larger
cluster to verify the efficiency of TPCM. The cluster
belongs to the High Performance Computing Lab,
Xi’an University of Technology, China. This Lab was
established in 2010, and now contains a total of 40
machines, including 38 computing nodes, one I/O
node, and one management node. Each machine was
configured to an IBM x3550 M2 Server, Intel Xeon
(four cores, 5500 serial), three caches, each ≥8 MB,
DDR3 RDIMM memory, 6*4 GB, Disk I/O:2.5″
SAS/SATA/SSD, integrated hardware RAID-0/1/10,
Optional supporting RAID-5, and two 10/100/1000
Mb adaptive Ethernet cards. We set the number of
computing nodes as 2, 8, 16, 26, or 38 to execute the
CFIE. Meanwhile, the quantity of subtasks in CFIE
increased by 21 times: we ran CFIE 21 times, and the
workflow application had up to 462 subtasks. After
the application was submitted to the prototype system,

we recorded and summarized the completion time,
and obtained the trend of changes in algorithm map-
ping efficiency with different quantities of physical
machines (Fig. 11). Completion time increased with
the increase in the quantity of tasks with different
numbers of physical machines (Fig. 11). When there
were only a few physical machines (PMS.count<8),
the completion time changed significantly. But when
there were many physical machines (PMS.count>26),
the variation was relatively stable. For the same as-
signments, the completion time decreased with the
increase in machines. When there were many (>352)
subtasks, the completion time increased with the in-
crease in the number of machines, but when there
were fewer (<264) subtasks, the completion time
changed only slightly. Thus, the algorithm performs
well only when the ratio of the quantity of tasks to the
quantity of machines is controlled within a range of
3–12. Fig. 11 shows that the TPCM showed high
efficiency in our environment.

Fig. 11 Running time plotted against task quantity with different numbers of machines

0

10

20

30

40

50

60

70

80

22 44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

PMS.count=38

PMS.count=26

PMS.count=16

PMS.count=8

PMS.count=2T
im

e
(s

)

Task quantity

Fig. 10 The mapping of tasks to virtual machines

taska

taskctaskb

task2

task1

task6

task5

taske

task4task3

taskd

taskg

task7

taskf

task8

taskA

taskB taskC

taskD

taskF

taskE

taskG

VM1 VM5VM2 VM6VM3 VM4

PM1 PM2

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 172

5.2 TPCS evaluation

5.2.1 Efficiency with different parameter settings

We tested the performance of the TPCS with the
parameter configuration shown in Fig. 10 to verify the
feasibility of the three core components. The Credit
algorithm is a CPU scheduling algorithm for SMP
hosts in the Xen hypervisor, so TPCS or Credit was
set as the scheduler and we collected the results to
evaluate their performance in systems. First, we used
TPCS to run CFIE. With different parameters, we
collected the completion times of 22 subtasks and the
CPU utilizations in different execution cycles. We
then used the Credit scheduler to run CFIE to com-
pare with TPCS. In VSTA, vmscmd_ioctl, and VSA,
the factors affecting the efficiency of TPCS are the
two parameters Markquantity and ∆t. Thus, we tested
the performance in the following settings:
Markquantity=1000, 2000, 3000, 4000 and ∆t=0.1,
0.2, 0.3, 0.4.

Fig. 12 shows the performance comparison be-
tween Credit and TPCS with different Markquantity
(∆t=0.1). Markquantity=2000 led to the minimum
completion time (147.279 s) in four settings, and the
completion times in Markquantity=1000, 3000, 4000
were 174.755, 192.230, and 244.657 s respectively, so
the quantity of markers inputted to the tasks had a
vital effect on the performance of the system. We can
determine a value of Markquantity whose completion
time of tasks is the lowest of all. More markers in
tasks result in more scanning time in middleware with
a higher overhead, and the tasks may not be syn-
chronized when meeting fewer markers in the tasks. A
suitable Markquantity would keep the overhead in
systems at the lowest level. We also see that when
Markquantity=1000 or 2000 (∆t=0.1), the completion
time of TPCS was shorter than that of Credit. We
conclude that TPCS can fully utilize the parallelism
among tasks to allocate the CPU resources with

rationality to produce a lower overhead. The Credit
scheduler would also make the completion time
proportional to the number of assignments, but the
TPCS scheduler enables some tasks to complete their
assignments within the same time because of the
synchronization in parallel computing.

Fig. 13 shows the performance comparison of
Credit and TPCS with different ∆t (Markquantity=
2000). The curves of ∆t=0.1, 0.2, 0.3, and 0.4 almost
overlapped. We conclude that if the completion time
of tasks is far greater than ∆t, the execution cycle has
no effect on the completion time of tasks, so all the
curves in Fig. 13 fluctuate over the range 147–154, no
more than 3% of the total time consumption. As long
as we set a reasonable Markquantity, the performance
of the TPCS scheduler should be better than that of
the Credit scheduler.

Here, we summarize the resource utilization of
the two algorithms. The resource utilization of TPCS,
based on seven groups of parameters (Markquantity,
∆t)=(1000, 0.1), (2000, 0.1), (3000, 0.1), (4000, 0.1),
(2000, 0.2), (2000, 0.3), (2000, 0.4), was compared
with that of Credit (Fig. 14).

The eight average CPU utilizations (Fig. 14) for
eight kinds of configuration in frontier 200 execution
cycles show that Markquantity and ∆t greatly affect
the CPU utilization. When Markquantity=2000 and
∆t=0.1, CPU utilization reached 62.25%, and at this

Fig. 12 Completion time comparison between Credit and
TPCS with different Markquantity (∆t=0.1)

0

40

80

120

160

200

240

1 3 5 7 9 11 13 15 17 19 21

Task quantity

C
om

pl
e

tio
n

 ti
m

e
(s

)

Credit

Markquantity=1000

Markquantity=2000

Markquantity=3000

Markquantity=4000

Fig. 13 Completion time comparison between Credit and
TPCS with different ∆t (Markquantity=2000)

0

40

80

120

160

200

240

1 3 5 7 9 11 13 15 17 19 21

Credit
t=0.1
t=0.2
t=0.3
t=0.4

Task quantity

C
om

pl
e

tio
n

 ti
m

e
(s

)







47.15 50.05

62.25 59.01 56.98 54.01
49.61

42.70

0
10
20
30

40
50
60
70

Credit
10

00
,0
.1

20
00

,0
.1

30
00

,0
.1

40
00

,0
.1

20
00

,0
.2

20
00

,0
.3

20
00

,0
.4

R
es

o
ur

ce

u
til

iz
a

tio
n

 (
%

)

TPCS (Markquantity, t)

Fig. 14 CPU utilizations in different configurations

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 173

time point, CFIE had the shortest completion time.
Thus, the TPCS scheduler can achieve a higher per-
formance by improving the resource utilization of
virtual machines. In addition, the larger is ∆t, the
lower is the CPU utilization, because a long execution
cycle in systems would produce fewer times for col-
laboration in TPCS. That is, it would be difficult to
implement the policy of exchanging the completion
time for CPU resources. In our experiment, most of
the CPU utilizations in the TPCS scheduler were
greater than those in the Credit scheduler. Therefore,
the TPCS scheduler can effectively mine the paral-
lelism among tasks and implement a better dynamic
resource scheduling by reducing the overheads from
synchronization, communication, and switching,
thereby accelerating the execution of tasks.

5.2.2 Efficiency with different quantities of machines

The efficiency of TPCS was verified again in the
cluster composed of 38 computing nodes and 462
subtasks. The quantity of machines was set as 2, 8, 16,
26, or 38, and the quantities of tasks were set as 22, 44,
66, …, 462. After the subtasks were submitted to the

prototype system, the completion time was recorded
and summarized. Fig. 15 shows the change in the effi-
ciency of TPCS with different quantities of machines.

The completion time increased with the increase
in task quantity with a fixed quantity of machines. For
the same quantity of tasks, the greater was the quan-
tity of machines, the shorter was the completion time.
Meanwhile, when there were only a few (<8) ma-
chines, the rate of increase was greater than when
there were many (>26). Only if the quantity of tasks
and the quantity of machines reached a certain ratio (a
ratio of 3–12), can the algorithm achieve good per-
formance. We conclude that TPCS maintains a high
efficiency with different numbers of machines.

Fig. 16 shows the speedups with different
numbers of machines and with different tasks. The
speedups showed a trend of a slow increase with the
increase in task quantity. When there were 38 ma-
chines and the quantity of tasks was less than 66
(especially 22), the speedup was much smaller than in
other cases. This is because when the ratio of the
quantity of tasks to the number of machines is far less
than 3, the system cannot achieve a good performance.

0

500

1000

1500

2000

2500

22 44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

PMS.count=2

PMS.count=8
PMS.count=16

PMS.count=26
PMS.count=38

T
im

e
(s

)

Task quantity

Fig. 15 Completion times under different numbers of physical machines using the TPCS scheduler with a cluster
composed of 38 computing nodes and 462 subtasks

Fig. 16 Speedups under different numbers of physical machines using the TPCS scheduler with a cluster composed
of 38 computing nodes and 462 subtasks
In a stand-alone environment, we ran CFIE with from 22 to 462 tasks and then summarized the completion times as
362.228, 652.010, 941.793, 1231.575, 1521.358, 1811.140, 2100.922, 2390.705, 2680.487, 2970.270, 3260.052, 3549.834,
3839.617, 4129.399, 4419.182, 4708.964, 4998.746, 5288.529, 5578.311, 5868.094, and 6157.876 s. These values are
approximately proportional to the quantity of tasks. We took these values as the reference values to compute the speedups

0

2

4

6

8

10

12

14

22 44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

PMS.count=2 PMS.count=8 PMS.count=16

PMS.count=26 PMS.count=38

S
pe

e
du

p

Task quantity

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 174

For the same quantity of tasks, a larger number of
machines would lead to a greater acceleration. When
the ratio of the quantity of tasks to the number of
machines was from 3 to 12, the speedups showed an
equally spaced growth trend with the growth of the
quantity of tasks. Thus, TPCS showed high accelera-
tion efficiency in our experiment.

5.2.3 A comparison among scheduling algorithms

To further verify the performance of TPCS, we
compared it with other CPU scheduling algorithms
from related studies. We ran the CFIE with 462 sub-
tasks in the Xen hypervisor for all kinds of algorithms.
Since BVT and SEDF have been implemented in the
Xen hypervisor, we need only to set the scheduler in
the CPU subsystem as sched_bvt_def or sched_sedf_
def. Other algorithms, SMART, SJF, EEVDF, SFQ,
EDF, DSS, TBS, and CBS, were also created as cor-
responding schedulers. A virtual machine was taken
as a task, a process, or a thread, because these algo-
rithms were designed originally for non-virtualized
environments. After the subtasks were completed, the
completion time was recorded. We ran the CFIE
program five times, and the completion times were
averaged. The results are shown in Fig. 17.

The TPCS scheduler had the minimum comple-
tion time among all the schedulers for 462 subtasks in
CFIE using different numbers of machines (PMS.count
=2, 8, 16, 26, 38), followed by the Credit scheduler.

Unlike in non-parallel computing systems, DSS and
TBS algorithms in parallel computing had the
maximum completion times, exceeding 300 s. We
conclude that TPCS is the best scheduler oriented for
parallel computing virtual machines.

To determine the speedups of all algorithms, we
ran the CFIE program in a stand-alone machine in
Credit and computed the speedups based on the data
in Fig. 17. The results are shown in Fig. 18. The
speedups in TPCS were greater than those in the
other algorithms with the same number of physical
machines.

5.2.4 Discussions

The three experiments above evaluated the per-
formance of TPCS and Credit. We suggest that the
ratio of the quantity of tasks to the number of ma-
chines should be controlled at 3–12 in our design.
Within this scope, different parameter settings and
different numbers of tasks and machines can lead to a
high efficiency. The resource utilization of TPCS is
higher than that of Credit. TPCS can also produce a
shorter completion time and higher speedup com-
pared with other similar algorithms. The experiments
verified the feasibility of the TPCS scheduler. In a
virtualized environment, a virtual machine scheduling
policy that uses resources in exchange for completion
time is feasible under the condition of adequate
physical resources.

Fig. 17 Comparison of completion time among the different scheduling algorithms

0

50

100

150

200

250

300

350

BVT SEDF SMART SJF EEVDF SFQ EDF DSS TBS CBS Credit TPCS

PMS.count=2 PMS.count=8 PMS.count=16 PMS.count=26 PMS.count=38

T
im

e
 (

s)

Scheduler

Fig. 18 Comparison of speedup among the different scheduling algorithms

0

2

4

6

8

10

BVT SEDF SMART SJF EEVDF SFQ EDF DSS TBS CBS Credit TPCS

PMS.count=2 PMS.count=8 PMS.count=16 PMS.count=26 PMS.count=38

S
p

e
e

d
up

Scheduler

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 175

6 Conclusions

In this paper, we studied virtual machine map-
ping and scheduling problems in parallel computing.
For the problem of virtual machine mapping, a new
methodology describing the tasks was presented to
summarize the four relations, serial, parallel, indirect,
and connectionless. We designed a mapper, TPCM,
with the VMMA algorithm to implement load balance
by fully mining the parallelism of tasks and deploying
the virtual machines into balanced physical machines.
For the problem of virtual machine scheduling, we
designed a virtual machine scheduler, TPCS, includ-
ing a middleware supporting application-driven mode,
a device driver in the guest OS kernel, and a virtual
machine scheduling algorithm (VSA). TPCS trans-
mits the progress of tasks from the top layer to the
underlying layer, and the Xen CPU virtualization
subsystem schedules the virtual machines based on
the progress of tasks to keep all subtasks simultaneous.
Thus, we implemented a policy to exchange the
completion time of tasks for CPU resources. This
policy can ensure a higher collaboration among tasks
to reduce the overheads in synchronization, commu-
nication, and switching. Experiments showed that
TPCM can realize the load balance according to the
parameters in clusters. The settings of the inputting
information to tasks make the TPCS scheduler com-
plete its tasks in a shorter time than Credit and other
schedulers. The execution cycle has no effect on the
performance of the virtual machine scheduling algo-
rithm, but it has a great effect on CPU utilization.
Overall, the TPCS scheduler can overcome the short-
comings of Credit and other schedulers in perceiving
the progress of tasks, and thus is better suited to par-
allel computing than Credit and other schedulers.

References
Abeni, L., Buttazzo, G., 1998. Integrating Multimedia Appli-

cations in Hard Real-Time Systems. Proc. 19th IEEE
Real-Time Systems Symp., p.4-13.

Alessandro, R., 2004. Linux Device Drivers (3rd Ed.). Power
Press, Beijing, p.100-152.

Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O., 1997.
On-line routing of virtual circuits with applications to
load balance and machine scheduling. J. ACM, 44(3):486-
504. [doi:10.1145/258128.258201]

Bansal, S., Kumar, P., Singh, K., 2003. An improved duplica-
tion strategy for scheduling precedence constrained
graphs in multiprocessor systems. IEEE Trans. Parall.

Distr. Syst., 14(6):533-544. [doi:10.1109/TPDS.2003.120
6502]

Baskiyar, S., Dickinson, C., 2005. Scheduling directed a-cyclic
task graphs on a bounded set of heterogeneous processors
using task duplication. J. Parall. Distr. Comput., 65(8):
911-921. [doi:10.1016/j.jpdc.2005.01.006]

Bavier, A., Peterson, L.L., Moseberger, D., 1999. BERT: a
Scheduler for Best Effort and Realtime Tasks. Technical
Report, Department of Computer Science, Princeton
University, USA, p.12.

Boyer, W.F., Hura, G.S., 2005. Non-evolutionary algorithm
for scheduling dependent tasks in distributed heteroge-
neous computing environments. J. Parall Distr. Comput.,
65(9):1035-1046. [doi:10.1016/j.jpdc.2005.04.017]

Caprita, B., Chan, W., Nieh, J., Clifford, S., Zheng, H.Q., 2005.
Group Ratio Round-Robin: O(1) Proportional Share
Scheduling for Uniprocessor and Multiprocessor Systems.
Proc. Usenix Annual Technical Conf., p.8-16.

Cerin, C., Fkaier, H., Jemni, M., 2008. Experimental Study of
Thread Scheduling Libraries on Degraded CPU. 14th
IEEE Int. Conf. on Parallel and Distributed Systems,
p.697-704. [doi:10.1109/ICPADS.2008.102]

Chan, W.C., Nieh, J., 2003. Group Ratio Round-Robin: an O(I)
Proportional Share Scheduler. Technical Report, De-
partment of Computer Science, Columbia University,
USA, p.1-5.

Chandra, A., Shenoy, P., 2008. Hierarchical scheduling for
symmetric multiprocessors. IEEE Trans. Parall. Distr.
Syst., 19(3):418-431. [doi:10.1109/TPDS.2007.70755]

Chen, S., Gibbons, P.B., Kozuch, M., Liaskovitis, V.,
Ailamaki, A., Blelloch, G.E., Falsafi, B., Fix, L., Har-
davellas, N., Mowry, T.C., et al., 2007. Scheduling
Threads for Constructive Cache Sharing on CMPS. Proc.
19th Annual ACM Symp. on Parallel Algorithms and
Architectures, p.105-115. [doi:10.1145/1248377.1248396]

Chen, X.J., Zhang, J., Li, J.H., Li, X., 2011a. Resource man-
agement framework for collaborative computing systems
over multiple virtual machines. Serv. Orient. Comput.
Appl., 5(4):225-243. [doi:10.1007/s11761-011-0087-6]

Chen, X.J., Zhang, J., Li, J.H., Li, X., 2011b. Resource virtu-
alization methodology for on-demand allocation in cloud
computing systems. Serv. Orient. Comput. Appl., in press.
[doi:10.1007/s11761-011-0092-9]

Cherkasova, L., Gupta, D., Vahdat, A., 2007. Comparison of
the three CPU schedulers in Xen. ACM SIGMETRICS
Perform. Eval. Rev., 35(2):42-51. [doi:10.1145/1330555.
1330556]

Chuzhoy, C., Naor, J., 2006. New hardness results for con-
gestion minimization and machine scheduling. J. ACM,
53(5):707-721. [doi:10.1145/1183907.1183908]

Cota-Robles, E.C., Flautner, K., 2008. Real-Time Scheduling
of Virtual Machines. U.S. Patent 7356817.

Dail, H., Casanova, H., Berman, F., 2002. A Decoupled
Scheduling Approach for the GrADS Program Devel-
opment Environment. Proc. ACM/IEEE Conf. on Su-
percomputing, p.55-62. [doi:10.1109/SC.2002.10009]

Danish, M., Li, Y., Richard, W., 2011. Virtual-CPU Schedul-

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 176

ing in the Quest Operating System. 17th IEEE Real-Time
and Embedded Technology and Applications Symp.,
p.169-179. [doi:10.1109/RTAS.2011.24]

Daoud, M.I., Kharma, N., 2011. A hybrid heuristic-genetic
algorithm for task scheduling in heterogeneous processor
networks. J. Parall. Distr. Comput., 71(11):1518-1531.
[doi:10.1016/j.jpdc.2011.05.005]

Duda, K.J., Cheriton, D.R., 1999. Borrowed-Virtual-Time
(BVT) Scheduling: Supporting Latency-Sensitive Threads
in a General-Purpose Scheduler. Proc. 17th ACM SOSP,
p.1-16.

El-Rewini, H., Lewis, T.G., 1990. Scheduling parallel program
tasks onto arbitrary target machines. J. Parall. Distr.
Comput., 9(2):138-153. [doi:10.1016/0743-7315(90)900
42-N]

Fu, S., Xu, C.Z., 2006. Stochastic modeling and analysis of
hybrid mobility in reconfigurable distributed virtual ma-
chines. J. Parall. Distr. Comput., 66(11):1442-1454.
[doi:10.1016/j.jpdc.2006.05.006]

Fumio, M., 2009. Optimum Virtual Machine Placement and
Rejuvenation Scheduling for High-Availability Consoli-
dated Server Systems. CISUC, NEC, Japan, p.6-12.

Ghazalie, T., Baker, T., 1995. Aperiodic servers in a deadline
scheduling environment. Real-Time Syst., 9(1):31-67.
[doi:10.1007/BF01094172]

Govil, K., Teodosiu, D., Huang, Y., Rosenblum, M., 2000.
Cellular disco: resource management using virtual clus-
ters on shared-memory multiprocessors. ACM Trans.
Comput. Syst., 18(3):229-262. [doi:10.1145/354871.354
873]

Govindan, S., Nath, A.R., Das, A., Urgaonkar, B., Sivasubra-
maniam, A., 2007. Xen and Co.: Communication-Aware
CPU Scheduling for Consolidated Xen-Based Hosting
Platforms. Proc. 3rd Int. Conf. on Virtual Execution En-
vironments, p.126-136. [doi:10.1145/1254810.1254828]

Govindan, S., Choi, J., Nath, A.R., Das, A., Urgaonkar, B.,
Sivasubramaniam, A., 2009. Xen and Co.: communica-
tion-aware CPU management in consolidated Xen-based
hosting platforms. IEEE Trans. Comput., 58(8):1111-
1125. [doi:10.1109/TC.2009.53]

Goyal, P., Vin, H.M., Cheng, H., 1996. Start-time fair queuing:
a scheduling algorithm for integrated services packet
switching networks. ACM SIGCOMM Comput. Commun.
Rev., 26(4):157-168. [doi:10.1145/248157.248171]

Grefenstette, J., Back, T., Fogel, D.B., Michalewicz, Z., 1997.
Handbook of Evolutionary Computation (1st Ed.). Ox-
ford University Press, Oxford, UK, p.241-246.

Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A., 2006.
Enforcing Performance Isolation across Virtual Machines
in Xen. Proc. 7th Int. Middleware Conf., p.342-362.

Hamidzadeh, B., Kit, L.Y., Lilja, D.J., 2000. Dynamic task
scheduling using online optimization. IEEE Trans. Parall.
Distr. Syst., 11(11):1151-1163. [doi:10.1109/71.888636]

Hiroshi, Y., Kenji, K., 2007. Foxy Technique: Tricking Oper-
ating System Policies with a Virtual Machine Monitor.
Proc. 3rd Int. Conf. on Virtual Execution Environments,
p.55-64.

Huai, J.P., Li, Q., Hu, C.M., 2007. Research and design on
hypervisor based virtual computing environment. J.
Software, 18(8):2016-2026 (in Chinese). [doi:10.1360/jos
182016]

Ilavarasan, E., Thambidurai, P., Mahilmannan, R., 2005. Per-
formance Effective Task Scheduling Algorithm for Het-
erogeneous Computing System. Proc. 4th Int. Symp. on
Parallel and Distributed Computing, p.28-38. [doi:10.
1109/ISPDC.2005.39]

Iosup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L., 2006.
How Are Real Grids Used the Analysis of Four Grid
Traces and Its Implications. Proc. 7th IEEE/ACM Int.
Conf. on Grid Computing, p.262-269. [doi:10.1109/
ICGRID.2006.311024]

Iverson, M.A., Ozguner, F., Potter, L., 1999. Statistical pre-
diction of task execution times through analytic bench-
marking for scheduling in a heterogeneous environment.
IEEE Trans. Comput., 48(12):1374-1379. [doi:10.1109/
12.817403]

James, E.S., Ravi, N., 2007. Virtual Machines: Versatile Plat-
forms for Systems and Processes. Morgan Kaufmann,
p.113-152.

Jin, H., Hu, Q.H., Liao, X.F., Chen, H., Deng, D.F., 2005.
IMAC: an Importance-Level Based Adaptive CPU
Scheduling Scheme for Multimedia and Non-Real Time
Applications. 3rd ACS/IEEE Int. Conf. on Computer
Systems and Applications, p.119-125. [doi:10.1109/
AICCSA.2005.1387108]

Jones, M.B., Rosu, D., Rosu, M.C., 1997. CPU Reservations
and Time Constraints: Efficient, Predictable Scheduling
of Independent Activities. Proc. 16th Symp. on Operating
System Principles, p.198-211. [doi:10.1145/269005.266
689]

Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B.,
Berman, B.P., Maechling, P., 2009. Scientific Workflow
Applications on Amazon EC2. Proc. 5th IEEE Int. Conf.
on E-Science Workshops, p.59-66. [doi:10.1109/ESCIW.
2009.5408002]

Katz, D.S., Jacob, J.C., Deelman, E., Kesselman, C., Singh, G.,
Su, M.H., Berriman, G.B., Good, J., Laity, A.C., Prince,
T.A., 2005. A Comparison of Two Methods for Building
Astronomical Image Mosaics on a Grid. Proc. Int. Conf.
Workshops on Parallel Processing, p.85-94. [doi:10.1109/
ICPPW.2005.6]

Kim, H., Lim, H., 2009. Task-Aware Virtual Machine Sched-
uling for I/O Performance. Proc. ACM SIGPLAN/
SIGOPS Int. Conf. on Virtual Execution Environments,
p.101-110. [doi:10.1145/1508293.1508308]

Kim, J., Rho, J., Lee, J.O., Ko, M.C., 2005. CPOC: effective
static task scheduling for grid computing. LNCS, 3726:
477-486. [doi:10.1007/11557654_56]

Kong, X.Z., Lin, C., Jiang, Y.X., Yan, W., Chu, X.W., 2011.
Efficient dynamic task scheduling in virtualized data
centers with fuzzy prediction. J. Network Comput. Appl.,
34(4):1068-1077. [doi:10.1016/j.jnca.2010.06.001]

Laslo, Z., Golenko-Ginzburg, D., Keren, B., 2008. Optimal
booking of machines in a virtual job-shop with stochastic

Zhang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):155-177 177

processing times to minimize total machine rental and job
tardiness costs. Int. J. Prod. Econ., 111(2):812-821.
[doi:10.1016/j.ijpe.2007.03.018]

Lehoczky, J., Sha, L., Ding, Y., 1989. The Rate Monotonic
Scheduling Algorithm: Exact Characteristics and Aver-
age Case Behavior. Proc. IEEE Real-Time Systems
Symp., p.166-171.

Nesmachnow, S., Cancela, H., Alba, E., 2010. Heterogeneous
computing scheduling with evolutionary algorithms. Soft
Comput. Fus. Found. Methodol. Appl., 15(4):685-701.
[doi:10.1007/s00500-010-0594-y]

Nieh, J., Lam, M.S., 1997. The Design, Implementation, and
Evaluation of SMART: a Scheduler for Multimedia Ap-
plications. Proc. 16th ACM Symp. on Operating System
Principles, p.184-197. [doi:10.1145/268998.266677]

Ogata, K., 2002. Modern Control Engineering. Prentice Hall,
Upper Saddle River, p.52-67.

Pfoh, J., Schneider, C., Eckert, C., 2009. Formal Model for
Virtual Machine Introspection. Proc. 1st ACM Workshop
on Virtual Machine Security, p.1-10. [doi:10.1145/1655
148.1655150]

Phinjaroenphan, P., Bevinakoppa, S., Zeephongsekul, P., 2005.
A method for estimating the execution time of a parallel
task on a grid node. LNCS, 3470:226-236. [doi:10.1007/
11508380_24]

Qi, X.T., Jonathan, F.B., Yu, G., 2006. Disruption manage-
ment for machine scheduling: the case of SPT schedules.
Int. J. Prod. Econ., 103(1):166-184. [doi:10.1016/j.ijpe.
2005.05.021]

Radulescu, A., van Gemund, A.J.C., 2002. Low-cost task
scheduling for distributed memory machines. IEEE Trans.
Parall. Distr. Syst., 13(6):648-658. [doi:10.1109/TPDS.
2002.1011417]

Rau, M.A., Smirni, E., 1999. Adaptive CPU Scheduling Poli-
cies for Mixed Multimedia and Best-Effort Workloads.
Proc. 7th Int. Symp. on Modeling, Analysis, and Simula-
tion of Computer Systems, p.45-52. [doi:10.1109/
MASCOT.1999.805062]

Rawat, S.S., Rajamani, L., 2009. Experiments with CPU
Scheduling Algorithm on a Computational Grid. IEEE Int.
Advance Computing Conf., p.71-75. [doi:10.1109/IADCC.
2009.4808983]

Rosenblum, M., Garfinkel, T., 2005. Virtual machine monitors:
current technology and future trends. Computer, 38(5):
39-47. [doi:10.1109/MC.2005.176]

Shi, L., Sun, Y.Y., Wei, L., 2007. Effect of Scheduling Disci-
pline on CPU-MEM Load Sharing System. 6th Int. Conf.
on Grid and Cooperative Computing, p.242-249. [doi:10.
1109/GCC.2007.64]

Shi, L., Zhou, D.Q., Jin, H., 2009. Xen Virtualization Techo-
nolgy. Huazhong University of Science and Technology
Press, Wuhan, China, p.222-224 (in Chinese).

Sih, G.C., Lee, E.A., 1993. A compile-time scheduling heu-
ristic for interconnection constrained heterogeneous
processor architectures. IEEE Trans. Parall. Distr. Syst.,
4(2):175-187. [doi:10.1109/71.207593]

Topcuoglu, H., Hariri, S., Wu, M.Y., 2002. Performance-
effective and low-complexity task scheduling for het-
erogeneous computing. IEEE Trans. Parall. Distr. Syst.,
13(3):260-274. [doi:10.1109/71.993206]

Volkmar, U., Joshua, L.V., Espen, S., Uwe, D., 2004. Towards
Scalable Multiprocessor Virtual Machines. Proc. 3rd
Conf. on Virtual Machine Research and Technology
Symp., p.4.

Waldspurger, C.A., Weihl, W.E., 1994. Lottery Scheduling:
Flexible Proportional-Share Resource Management. Proc.
1st Usenix Symp. on Operating System Design and Im-
plementation, p.359-368.

Wang, J., Sun, J.L., Wang, X.Y., Yang, X.H., Wang, S.K.,
Chen, J.B., 2009. Efficient scheduling algorithm for hard
real-time tasks in primary-backup based multiprocessor
systems. J. Software, 20(10):2628-2636 (in Chinese).
[doi:10.3724/SP.J.1001.2009.00577]

Wu, M., Dajski, D., 1990. Hypertool: a programming aid for
message passing systems. IEEE Trans. Parall. Distr. Syst.,
1(3):330-343. [doi:10.1109/71.80160]

Zhang, W., Fang, B., He, H., Zhang, H., Hu, M., 2004. Mul-
tisite Resource Selection and Scheduling Algorithm on
Computational Grid. Proc. 18th Int. Parallel and Distrib-
uted Processing Symp., p.105. [doi:10.1109/IPDPS.2004.
1303052]

Zhang, W.Z., Tian, Z.H., Zhang, H.L., He, H., Liu, W.M.,
2007. Multi-cluster co-allocation scheduling algorithms
in virtual computing environment. J. Software, 18(8):
2027-2037 (in Chinese). [doi:10.1360/jos182027]

Zomaya, A.Y., Teh, Y.H., 2001. Observations on using genetic
algorithms for dynamic load balance. IEEE Trans. Parall.
Distr. Syst., 12(9):899-911. [doi:10.1109/71.954620]

