
Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 20 

 

 

 

 

A generic approach of integrating 3D models into  

virtual manufacturing* 
 

Hwa-Jen YAP†1,2, Zahari TAHA3, Siti Zawiah Md DAWAL1,2 
(1Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia) 

(2Centre for Product Design and Manufacturing, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia) 

(3Faculty of Manufacturing Engineering & Technology Management, Universiti Malaysia Pahang, Kuantan26300, Malaysia) 
†E-mail: hjyap737@um.edu.my; jyap737@yahoo.com 

Received Mar. 24, 2011;  Revision accepted July 28, 2011;  Crosschecked Dec. 8, 2011 

 

Abstract:    Various 3D modeling software has been developed for design and manufacturing. Most of the commercially available 
software uses native file formats, which may not be able to be read or understood by other software. This paper deals with the 
development of a generic approach of a 3D model conversion program for virtual manufacturing (VM), using a lexical analyzer 
generator Lex and the Open Graphic Library (OpenGL). The program is able to convert 3D mesh data between four universal file 
formats, i.e., Stereolithography (STL), Virtual Reality Modeling Language (VRML), eXtensible Markup Language (XML), and 
Object (OBJ). Simple assembly functions can be applied to the imported models. The quaternion angle is used for object rotation 
to overcome the problem of gimbal lock or a loss of one degree of rotational freedom. The program has been validated by im-
porting the neutral format models into the program, applying the transformation, saving the new models with a new coordinate 
system, and lastly exporting into other commercial software. The results showed that the program is able to render and re-arrange 
accurately the geometry data from the different universal file formats and that it can be used in VM. Therefore, the output models 
from a VM system can be transferred or imported to another VM system in a universal file format. 
 
Key words:  Virtual manufacturing, Lex, OpenGL, Three-dimensional mesh data, Quaternion, Neutral format 
doi:10.1631/jzus.C11a0077                      Document code:  A                      CLC number:  TP391.9; TH122 
 
 

1  Introduction 
 

The rapid growth of advanced technologies has 
made computer-aided design (CAD) software an 
essential tool in the field of design, simulation, and 
optimization. The development of readily affordable 
desktop based CAD software makes the 3D CAD 
model indispensable in representing a design of an 
item. Many types of CAD modeling software have 
been used in various areas including automotive, 
manufacturing, design, and construction. Either free 
or licensed, most of the CAD software may not be 
able to access native CAD data produced by modeling 
software. 

Three-dimensional model translation software 
can be used to solve the above problems. The soft-
ware is categorized mainly based on the functions and 
supported file types. The typical functions of the 
software are viewing, translating, rotating, assem-
bling, editing, and file format converting. The appli-
cation of the software is mainly for design review and 
model exchange. The software increases the com-
munication efficiency between the designer and 
manufacturers in collaborative engineering environ-
ments. It is able to translate and share 3D models data, 
and is time saving for manufacturers, suppliers, and 
consultants.   

Conversely, virtual reality is the technology of 
generating, visualizing, and interacting with a com-
puter generated environment. Unlike CAD systems, 
there are no standard file formats for virtual reality 
applications, such as virtual manufacturing (VM). 

Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 

ISSN 1869-1951 (Print); ISSN 1869-196X (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

 

* Project (No. RG060/09AET) supported by the University of Malaya 
Research Grant (UMRG) 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012 



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 21

Most of the virtual reality (VR) packages use native 
file formats to create their virtual environments. Also, 
there are no standard methods or algorithms for con-
verting 3D models from CAD modeling software to 
VM. File format conversion can be done by the 
translation of CAD models into native file formats 
using commercial modeling software, a library or 
database approach (Whyte et al., 2000). 

1.1  Problem statements 

Usually, a native file format consists of the al-
gorithms and data structure for that particular soft-
ware, which may not be readable or visualized by 
others. Therefore, most of the CAD software cannot 
access native formats produced by each other. To read 
different types of files, different software needs to be 
used to extract the geometric information before be-
ing exported into a VM system. This greatly increases 
the costs of purchasing the software licenses. 

Some users may try to make it easier by trans-
lating the native file to universal files that can be 
loaded and opened by most of the CAD software. 
However, the imported universal files cannot be ed-
ited when they are opened in the native system. For 
example, 3D models in Stereolithography (STL) 
format can be opened with ProEngineer but cannot be 
edited using it. Moreover, although multiple universal 
files can be loaded, the assembly of the universal files 
cannot be saved in a universal format in a native 
system. For example, ProEngineer can assemble parts 
for STL files and Object (OBJ) files, but the assembly 
file can be saved in a native format only.  

There is a different approach to integrating CAD 
with VR, without undertaking any file conversion. 
The VR hardware can be connected directly to the 
commercial CAD software, which was accomplished 
by the collaboration between Fakespace and Dassault 
Systèmes for the immersive visualization display 
devices within the CATIA application (Berta, 1999). 
In contrast, Schilling et al. (2006) introduced a mid-
dleware framework to synchronize the geometry and 
metadata between the VR and CAD system. However, 
it is applicable to dedicated hardware and software 
only.  

Many researches in VM are using the Virtual 
Reality Modeling Language (VRML) format and are 
published on the World Wide Web (Ong et al., 2002; 
Jezernik and Hren, 2003; Wang and Tian, 2007). 
However, these researches support only a single 

format. Multiple formats need to be supported and 
exchanged, including Stereolithography (STL) from 
rapid prototyping, eXtensible Markup Language 
(XML) from arbitrary data structure, and Object (OBJ) 
files from animation. 

Although solid modeling can be performed 
within the virtual environment (VE), the compatibil-
ity and transferability of one VE to another (a dif-
ferent platform) were not discussed (Zhong et al., 
2005). Also, it takes a long time to build a new VE 
from scratch, for CAD modeling, and not import 
directly from the existing VE (Peng, 2007). 

1.2  Objectives 

In a previous work a design visualization and 
manipulation concept has been implemented for a 
universal file format. Furthermore, the CAD native 
database can be translated to and from the STL, AS-
CII, VRML, and XML formats with an anaglyph 
imaging technique to create stereo 3D with red-blue 
glasses (Yap et al., 2008).   

In this paper, a generic algorithm has been used 
to read and extract data from STL, VRML, XML, and 
OBJ files using a lexical analyzer generator. At the 
same time, the Open Graphic Library (OpenGL) is 
used to re-generate a 3D model that can be used in 
VM. The system also supports the assembly function 
for the universal file format. Models can be loaded, 
translated, and rotated. Extracted data, in part or as-
sembly format, can be saved into different universal 
file formats. Therefore, the output models from one 
VM system can be transferred or imported to another 
VM system in a universal file format. 
 
 

2  Standard file formats 
 
File formats can be categorized into standard file 

formats and native file formats. The native file format 
of an application is proprietary and these types of files 
are not meant to be transferred to another format, 
which is the default file format used by a specific 
software. The data can be viewed after they have been 
translated into a universal file or in a neutral format, 
such as STL, STEP, IGES, OBJ, and VRML. The 
CAD native database can be translated into a uni-
versal CAD geometry file format, which can be 
opened and read by most of the CAD modeling 
software (Rule, 1996). Four universal file formats 
were studied and converted in this work: STL, VRML, 



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 22 

XML, and OBJ. 
STL is supported by most of today’s CAD 

software packages and has been widely used for rapid 
prototyping and computer-aided manufacturing (Ja-
cobs, 1995). It can be divided into two standard data 
formats, ASCII and binary. The ASCII file is readable 
and can be modified by a text editor, which makes it 
easier to spot errors.  

VRML is designed to be used on the Internet 
according to ISO/IEC 14772-1:1997 and 14772-2: 
2004, and is intended to be a universal interchange 
format for integrated 3D graphics and multimedia. It 
is a file format for describing interactive 3D objects 
and worlds, containing vertices and edges for a 3D 
polygon, which can be specified together with the 
surface color, UV mapped textures, shininess, trans-
parency, etc. (Hartman and Wernecke, 1996). 

XML is very famous and popular nowadays. It is 
a combination of text and extra information including 
structure, layout, etc. It is categorized as a general- 
purpose markup language with the primary purpose 
of facilitating the sharing of structured data across 
different information systems. The structured data 
that can be written in XML format include vector 
graphics, mathematical equations, and server appli-
cation programming interfaces (APIs). Due to its 
simplicity and flexibility, XML is widely used for 
communicating data between applications, especially 
via the Internet (Williamson, 2008).  

The OBJ file is used to transfer geometric data 
back and forth between the Advanced Visualizer and 
other applications. OBJ defines the geometry and 
other properties for objects in Wavefront’s Advanced 
Visualizer. Object files can also be used to transfer 
geometric data back and forth between the Advanced 
Visualizer and other applications. Object files can be 
in ASCII format (*.obj) or binary format (*.mod). 
The later release of the OBJ file format supports both 
polygonal objects and free-form objects. Polygonal 
geometry uses points, lines, and faces to define ob-
jects while free-form geometry uses curves and sur-
faces (Bourke, 2010). In general, there are four types 
of OBJ file formats. The difference among the for-
mats is the data format in polygon surfaces, where the 
numbers are indexes into the arrays of vertex posi-
tions, texture coordinates, and normal. A number may 
be omitted if, for example, texture coordinates are not 
being defined in the model. Table 1 shows the dif-
ferent types of OBJ file formats. 

Table 1  Different types of OBJ file formats 

Data  OBJ file format 
Vertices/Texture/

Normal 
f  64/64/64    1/1/1    49/49/49 
f  64/64/64    62/62/62    1/1/1 

Vertices/Texture f  21/21     10/10     20/20 
f  10/10     21/21     13/13 

Vertices/Normal f  16/ /16   17/ /15   18/ /14 
f  22/ /22   23/ /21   24/ /20 

Vertices f  5  1  3 
f  5  3  4 

or 
f  5  7  8  6 
f  1  5  6  2 

 
 
3  Software development 

 
The file conversion software is able to read four 

types of 3D models, which are STL, VRML, XML, 
and OBJ formats. First, the input file is scanned using 
a lexical analyzer generator. The data extracted from 
the input file are processed and stored in a container. 
Then, the model is rendered using the developed 
algorithms. The user can manipulate the 3D model 
using the keyboard and the mouse. Lastly, the im-
ported 3D model is converted and saved into a new 
array. The architecture of the developed software is 
shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Basically, the development of the software is 

categorized into four stages (Fig. 2). First, a generic 
algorithm is developed to read the 3D models. Second, 
a graphic rendering algorithm is developed to 
re-render the imported models. Third, an object 
transformation algorithm is constructed. Lastly, a 
generic method is used to convert models into a uni-
versal file format. 

INPUT 

 

STL/VRML/
XML/OBJ

File  

Scan file

 yylex

CONVERTER 

 

Model 
display 

Data (vertices 
and/or normal 
vectors and/or 

faces references) 
stored in array 

Convert data 
stored in array 

Write file 

  Keyboard

 Mouse 

OUTPUT 

 

STL/VRML/
XML/OBJ

New file 

Fig. 1  The architecture of the developed software 



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 23

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

4  Data extraction using Lex 
 
The lexical analyzer generator Lex is a program 

generator designed for lexical processing of charac-
teristic input streams. Lex turns the rules into a pro-
gram, and any source not intercepted by Lex is copied 
into the generated program (Levine et al., 1992). 
There are two steps in compiling a Lex source pro-
gram. First, turn the generated program into the host 
general-purpose language. Then, the rule is compiled 
and loaded with a library of Lex subroutines. Lex is 
easy to use because the user who wants to analyze an 
input using a string manipulation language will need 
only to define the string expressions to be matched 
and the corresponding actions. The user does not need 
to write an input analyzing program or an often in-
appropriate string handling language. 

Lex is used to obtain the mesh data from 3D 
model rendering. The data of meshes consist of ver-
tices, textures, and normal. When writing a Lex 
specification, a set of patterns that Lex matches 
against the input needs to be created. Lex itself does 
not produce an executable program; instead, it trans-
lates the Lex specification into a file containing a C 
routine.  

Basically, the required data to be extracted for 
graphic rendering of VRML, XML, and OBJ are the 
same, i.e., coordinates and point references. However, 
as discussed in the previous section, OBJ may have a 
different file format. In contrast, the STL file format 
has a different data structure, where the data are 

stored in terms of facet normal and vertices. Fig. 3 
shows examples of Lex specification codes for 
VRML and XML file formats.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Object rendering using OpenGL 
 
OpenGL is an API, but not a programming lan-

guage like C or C++. OpenGL allows programmers to 
write applications that access graphics hardware; i.e., 
OpenGL is the software interface to graphics hard-
ware. The interface consists of about 150 distinct 
commands, which are used to specify the object and 
operations needed to produce interactive 3D applica-
tions (Shreiner et al., 2007). OpenGL’s structure is 
similar to those of most modern APIs, including the 
Programmer’s Hierarchical Interactive Graphics 
System (PHIGS) and Graphical Kernel System 
(GKS). In this research, the model is in a mesh form 
and is rendered using the triangle form/loop. Lighting 
and texture mapping can be added through the normal 
and texture information. 

5.1  Displaying STL model 

In the STL file format, the polygon’s normal and 
vertices are organized in a triangle loop. The data are 

Fig. 2  Four stages for software development 

Data extraction algorithm 
Develop a generic algorithm (Lex) to read and 

extract geometry information 

Object rendering algorithm 
Develop a graphics rendering algorithm for 

the imported model 

Object transformation algorithm 
Develop an object rotation algorithm using 

the quaternion method 

File converting & saving algorithms 
Develop a generic method to convert and 
save the new model (part or assembly) 

Fig. 3  Examples of Lex specification codes for VRML (a) 
and XML (b) 

(a) (b) 

"#VRML" { 
v=0; 
t=0; } 
 
"point [" { 
point=1; 
i=0; 
v++; } 
 
"," { 
if (point==1) { 
i=0; 
v++; } 
}  
 
"coordIndex [" { 
point=0; 
coordIndex=1; 
j=0; 
t++; } 
  
"-1]" { 
coordIndex=0; 
} 

"<mesh>" { 
v=0; 
t=0; } 
 
"<vertex id=\"v-" { 
v++; 
i=0; } 
 
"<length units=\"cm\">" { 
Length=1; 
Factor=0.01; } 
 
"<length units=\"m\">" { 
Length=1; 
Factor=1.0; } 
 
"</length>" { 
Length=0; } 
 
"<triangle" { 
t++; 
j=0; } 
 
"<vertex-ref ref=\"v-" { 
Ref=1; } 
 
"\"/>" { 
Ref=0; } 



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 24 

taken directly from the container and extracted using 
the lexical analyzer. Fig. 4 shows the general function 
that is used to render the STL mesh model in the 
system. 
 
 
 
 
 
 
 
 
 
 
 

5.2  Displaying VRML, XML, or OBJ model 

The OBJ file does not contain the polygon’s 
normal vectors, and the cloud data are organized 
vertex by vertex followed by the polygon’s point 
references. To use the OpenGL command, the vertices 
need to be arranged in triangular form. Hence, the 
coordinates have to be taken according to the point 
references.  

The cross product of two vectors gives a vector 
perpendicular to the two vectors, with the orientation 
given by the right-hand rule. To calculate the normal 
vector of a plane, two directional vectors in the same 
plane are described. In this case, the plane is a poly-
gon triangle. Given the three vertices of the polygon 
p1=(x1, y1, z1), p2=(x2, y2, z2), and p3=(x3, y3, z3), two 
possible directional vectors representing the triangle 
are 

 

1 1 2 1 2 1 2= ( , , )x x y y z z  d ,             (1) 

2 1 3 1 3 1 3= ( , , )x x y y z z  d .              (2) 

 
The normal to the triangle can be determined by the 
cross product of the two possible directional vectors: 
 

1 2 1 2 1 2

1 3 1 3 1 3

i j k

.x x y y z z

x x y y z z

   
  

N               (3) 

Let 
N=(xn, yn, zn). 

Then 

n 1 2 1 3 1 2 1 3= ( )( ) ( )( ), x y y z z z z y y      

n 1 2 1 3 1 2 1 3= ( )( ) ( )( ),y z z x x x x z z      

n 1 2 1 3 1 2 1 3= ( )( ) ( )( ).z x x y y y y x x      

 
Fig. 5 shows the functions that are used to render 

the models in the system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Modeling transformation 
 
The OpenGL transformations are used to produce 

a desired scene for viewing. All transformations are 
represented as 4×4 matrices. A vertex is always rep-
resented as a homogeneous coordinate. The modeling 
transformation is used to position and orientate the 
model. It converts the object coordinate systems to a 
common world coordinate system.  

6.1  Rotation in arbitrary axis using quaternion 

The total rotation can be calculated by multi-
plying together the representation of the individual 
rotations, but the order of operands is important and 
multiplication has to use the same consistent defini-
tions. Hence, in this research, the quaternion method 
is used to perform the rotating of the object. Quater-
nions have four dimensions (each quaternion consists 
of four scalar numbers), one real dimension and three 
imaginary dimensions, and can be represented as 

 
i j k.= w + x  + y  + zQ                    (4) 

Fig. 4  General function to render the STL mesh model

for (int i=0; i<stl.size(); i++) {  // Draw STL file 
 Nor[0]=stl[i].xNormal; 
 Nor[1]=stl[i].yNormal; 
 Nor[2]=stl[i].zNormal; 
 
glBegin(GL_TRIANGLES); 
 glColor3f(1.0, 0.0, 0.0); 
 glNormal3fv(Nor); 
 glVertex3f(stl[i].x1, stl[i].y1. stl[i].z1); 
 glVertex3f(stl[i].x2, stl[i].y2. stl[i].z2); 
 glVertex3f(stl[i].x3, stl[i].y3. stl[i].z3); 
glEnd(); 
} 

Vertices to form a 
basic triangle 

Fig. 5  Functions used to render the models in the system

for (int k=0; k<PointRef.size(); k++) { // Draw OBJ file 
  
 float x1=(Points[(PointRef[k].p1)-1].x); 
 float y1=(Points[(PointRef[k].p1)-1].y);  
 float z1=(Points[(PointRef[k].p1)-1].z); 
  
 float x2=(Points[(PointRef[k].p2)-1].x); 
 float y2=(Points[(PointRef[k].p2)-1].y);  
 float z2=(Points[(PointRef[k].p2)-1].z); 
  
 float x3=(Points[(PointRef[k].p3)-1].x); 
 float y3=(Points[(PointRef[k].p3)-1].y); 
 float z3=(Points[(PointRef[k].p3)-1].z);     
 

Nor[0]=(y1-y2)*(z1-z3)-(z1-z2)*(y1-y3); 
Nor[1]=(z1-z2)*(x1-x3)-(x1-x2)*(z1-z3); 
Nor[2]=(x1-x2)*(y1-y3)-(y1-y2)*(x1-x3);  
 

glBegin(GL_TRIANGLES); 
glColor3f(0.9,0.3,0.6); 
glNormal3fv(Nor); 
glVertex3f(x1,y1,z1);    
glVertex3f(x2,y2,z2);    
glVertex3f(x3,y3,z3);     

glEnd(); 
} 

Coordinate had 
been taken 
according to 

point references

Calculation of the 
normal vector

Formation of the 
basic triangle 



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 25

The default rotation angle is the Euler angle. 
Therefore, conversion is required to change the angle 
into a quaternion angle before multiplying the trans-
formation matrices. Table 2 shows the conversion of 
the Euler angle to quaternion with a related rotation 
angle.  

 
 
 
 
 
 
 
 
Let the order of rotation be about the z-, y-, and 

then x-axis. Hence, the cross product of quaternion is 
 

( ) .h a b =    Q Q Q Q                      (5) 
 

As given in Table 2, 
 

c1=cos(h/2), c2=cos(a/2), c3=cos(b/2),  
s1=sin(h/2), s2=sin(a/2), s3=sin(b/2). 

 

Using Eq. (5) and Table 2, it is found that 
 

  1 2 3 1 2 3 1 2 3 1 2 3( ) i( )= c c c s s s + s s c +c c sQ   

1 2 3 1 2 3 1 2 3 1 2 3       j ( ) k( ).+  s c c +c s s + c s c s c s        (6) 
 

As stated in Eq. (4),  
 

w=c1c2c3–s1s2s3,  x=s1s2c3+c1c2s3, 
y=s1c2c3+c1s2s3,  z=c1s2c3–s1c2s3. 

 
The multiplication of two unit quaternions (Q1 

and Q2) will result in another unit quaternion (Q3) that 
represents the combined rotation. When modeling the 
rotation of an object, the algorithm orientation is 

 

3 1 2 =   Q Q Q ,                           (7) 

where 
Q1=(w1, x1, y1, z1), 
Q2=(w2, x2, y2, z2), 
Q3=(w3, x3, y3, z3). 

Therefore,  
w3=w1w2–x1x2–y1y2–z1z2, 

  x3=w1x2+x1w2+y1z2–z1y2, 
  y3=w1y2+y1w2+z1x2–x1z2, 
  z3=w1z2+z1w2+x1y2–y1x2. 

6.2  Final position and orientation 

The final position of the object can be obtained 
by the calculated combined transformations. The 
combined transformation consists of a number of 
successive translations and rotations about a fixed 
reference frame axis or a moving current frame axis. 
These translations involve the data stored in the va-
riables of Pxyz(new). Once the function is called, the 
data need to be recalculated to a new set of data by 
using translation and rotational matrix formulae. Let 
Pxyz be the original position, Trans(xLoc, yLoc, zLoc) the 
amount of translation, and Quat(x, y, z, ) the angle 
and axis rotation (quaternion method). We have 

 

(new) Loc Loc Loc= ( , , ) ( , , , ) .xyz xyzx  y z x y z Trans Quat P P  

(8) 
Therefore, 
 

Loc

Loc
(new)

Loc

2 2
0

2 2
0

2 2
0

1 0 0

0 1 0

0 0 1

0 0 0 1

1 2 2 2 2 2 2 0

2 2 1 2 2 2 2 0
.

2 2 2 1 2 2 0

10 0 0 1

xyz

x

y

z

xy z xy wz xz + wy

yxy + wz x z yz wx

zxz  wy yz wx x y

 
 
 
 
 
 

     
        
      
   
    

P

 

Since 
Pxyz(new)=(xnew, ynew, znew), 

we have 
2 2

new 0 0

0 Loc

(1 2 2 ) (2 2 )

          (2 2 ) ,

x = y z x + xy wz y

+ xz + wy z + x

  
 

2 2
new 0 0

0 Loc

(2 2 ) (1 2 2 )  

(2 2 ) ,

y = xy + wz x + x z y

           + yz wx z + y

 


  

new 0 0

2 2
0 Loc

(2 2 ) (2 2 )

(1 2 2 ) . 

z = xz wy x + yz wx y

          + x y z + z

 

 
 

6.3  Rotation in the virtual environment 

The positions and rotations of the virtual object 
are controlled by a six-degree-of-freedom (6-DOF) 
digitizer. It is a pen-shaped input device with no 
mechanical arm or optical marker. The data (positions 
and orientations) are triggered and activated through 
the push button switch mounted on the handle. Fig. 6 
shows the figures of the virtual object being rotated in 
an arbitrary axis. 

Table 2  Conversion of an Euler angle to a quaternion 

Rotation 
about 

Rotation  
angle 

Quaternion pure attitude  
rotation 

z Attitude angle a Qa=cos(a/2)+ksin(a/2)=c2+ks2

y Heading angle h Qh=cos(h/2)+jsin(h/2)=c1+js1

x Bank angle b Qb=cos(b/2)+isin(b/2)=c3+is3



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 26 

 
 
 
 
 
 
 
 
 
 
 

       
 
 
 

 
 
 

7  Format converting and saving 
 
The data arrangements are different for the STL 

format and the other three formats. The data structure 
of the STL format allows numerous repeated vertices. 
This is because most of the vertices are shared by a 
number of polygons in mesh, which does not occur 
for VRML/XML/OBJ. A smaller file size can be ob-
tained and decreases the loading time. Therefore, the 
repeated points in the original data have to be elimi-
nated by creating the corresponding point references. 
The following are the steps: 

1. Two point lists (PointReference and Corrected 
PointReference) are created in which the data are taken 
from the STL file. Both contain the same data. 

2. According to the point lists created, the first 
triangle contains vertices (1, 2, 3), the second triangle 
contains vertices (4, 5, 6), and so on (Fig. 7). 

 
 
 

 
 
 
 

 
 
 

 
3. All the repeated points are erased from one of 

the point lists. A new point reference list of the model 
based on the summarized point list (Corrected Point- 
Reference) is generated by comparing the points in 

the original point list (PointReferenc) based on point 
reference with all points in the summarized point list. 
If the points being compared are the same, that par-
ticular point reference will be changed to the location 
of the point in the new point list. Fig. 8 shows the 
corrected triangle loops with no repeated points. 
 

 
 
 

 
 
 
 

 
 
 
Another feature of the system is importing sev-

eral files together and exporting the data into a single 
file—the assembly file becomes a part file. As an 
example, the software is able to combine up to four 
OBJ files into a single part file. Fig. 9 shows an ex-
ample of assembling two OBJ files using a simple 
algorithm as follows: 

1. Start a loop function and write in the data that 
had been stored in the array when reading the file.  

2. Add the data of vertices extracted from the 
second file below the data of vertices from the first 
file. Then, recalculate the total number of vertices. 

3. The data of faces depend on the number of 
vertices. Hence, the data of vertices extracted from 
the second file will add to the total number of vertices 
in the first file, and are added below the data of faces 
from the first file. Then, recalculate the total number 
of triangles. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

STL file 
normal ni nj nk  
vertex v1x v1y v1z 
vertex v2x v2y v2z 
vertex v3x v3y v3z 
normal ni nj nk  
vertex v4x v4y v4z 
vertex v5x v5y v5z 
vertex v6x v6y v6z 
… 

PointReference
Triangle 1 
    1 
    2 
    3 
Triangle 2 
    4 
    5 
    6 
… 

Fig. 7  Data arrangement for the STL format—triangle 
loops meshing 

Fig. 9  Example of assembling two OBJ files 

v  v1x v1y v1z 
v  v2x v2y v2z File-1: Vertices 
v  v3x v3y v3z 
… 
v  v1x v1y v1z 
v  v2x v2y v2z  File-2: Vertices 
v  v3x v3y v3z 
… 
#[p1+p2] vertices 
 
f  v1 v2 v3 
f  v4 v5 v6                     File-1: Facet 
f  v7 v8 v9 
..  
f  [v1+p1] [v2+p1] [v3+p1] 
f  [v4+p1] [v5+p1] [v6+p1]       File-2: Facet 
f  [v7+p1] [v8+p1] [v9+p1] 
… 
#[t1+t2] triangles 

Fig. 8  Data correction for repeated points 

Corrected 
PointReference

 

Triangle 1 
1, 2, 3 

Triangle 2 
2, 5, 6  

Triangle 3 
7, 8, 2 
… 

Original 
PointReference

 

Triangle 1 
    1, 2, 3 
Triangle 2 

4, 5, 6  
Triangle 3 
    7, 8, 9  
… 

Vertices 2, 4 & 
9 happen to 
be the same 
vertex 

Fig. 6  Arbitrary axis rotation in a virtual environment
(a) Default position; (b) Rotation about z-axis; (c) Rotation 
about an arbitrary axis 

(a) (b) 

(c) 



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 27

8  Validations 
 

Software validation is essential to ensure that the 
developed algorithm and programming codes are 
being executed properly. The functionality of the 
developed software in this project has been tested and 
validated. The software validation is divided into four 
sections: data extracting, 3D model rendering, mod-
eling transformation, and file conversion/saving.  
Fig. 10 shows the flow of program validation using 
commercial CAD modeling software. Fig. 11 shows 
the example 3D assembly model in VRML format, in 
which the 3D models are being imported and/or ro-
tated, and then being saved and viewed through the 
Internet browser. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
9  Conclusions 
 

This paper deals with the design and develop-
ment of a generic approach of integrating various 3D 
models into virtual reality including conversion, 
modeling, and data exchange. This approach has been 
validated using commercial software. An input file 
has been scanned and the geometric information is 
extracted using a lexical analyzer generator.  

Rendering algorithms for a universal 3D model 
are also implemented. These algorithms use the 
OpenGL API. The system allows model viewing and 
transformations such as translation, rotation, and 
scaling. The 3D model can be viewed from different 
angles and positions. The system can also perform 
simple assembly of parts and save into one universal 
part file.  

 
 
 

 
 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
References 
Berta, J., 1999. Integrating VR and CAD. IEEE Comput. 

Graph. Appl., 19(5):14-19.  [doi:10.1109/38.788793] 
Bourke, P., 2010. Object Files (.obj). Available from 

http://local.wasp.uwa.edu.au/~pbourke/dataformats/obj 
[Accessed on Dec. 20, 2010]. 

Hartman, J., Wernecke, J., 1996. The VRML 2.0 Handbook: 
Building Moving Worlds on the Web. Addison-Wesley, 
Redwood City, California. 

ISO/IEC 14772-1:1997. Virtual Reality Modeling Language 
(VRML)–Part 1: Base Functionality and Text Encoding.  

ISO/IEC 14772-2:2004. Virtual Reality Modeling Language 
(VRML)–Part 2: Base Functionality and All Bindings for 
the VRML External Authoring Interface.  

Jacobs, P.F., 1995. StereoLithography and Other RP&M 
Technologies: from Rapid Prototyping to Rapid Tooling. 

Create 

Read/ 
Import 

Input file 

Validate 

Write/ 
Export 

STL/ 
VRML/ 
XML/ 
OBJ 

Conversion 
software 

Commercial CAD  
modeling software 

Output file 
 

STL/ 
VRML/ 
XML/ 
OBJ 

Fig. 10  Program validation flow using commercial CAD 
modeling software 

Fig. 11  Validation of the VRML assembly model 
(a) Import in a virtual environment; (b) Rotation of models; 
(c) View by the Internet browser 

(a)

(b)

(c)



Yap et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(1):20-28 28 

Society of Manufacturing Engineers, Princeton, New 
Jersey, USA. 

Jezernik, A., Hren, G., 2003. A solution to integrate computer- 
aided design (CAD) and virtual reality (VR) databases in 
design and manufacturing processes. Int. J. Adv. Manuf. 
Technol., 22(11-12):768-774.  [doi:10.1007/s00170-003- 
1604-3] 

Levine, J., Tony, M., Brown, D., 1992. Lex & Yacc. O′Reilly 
& Associates, Sebastopol, California. 

Ong, S.K., Jiang, L., Nee, A.Y.C., 2002. An Internet-based 
virtual CNC milling system. Int. J. Adv. Manuf. Technol., 
20(1):20-30.  [doi:10.1007/s001700200119] 

Peng, Q., 2007. Virtual Reality Technology in Product Design 
and Manufacturing—the Design and Implementation of a 
Course for the Graduate Study. The Canadian Design 
Engineering Network (CDEN) and the Canadian Con-
gress on Engineering Education (CCEE). 

Rule, K., 1996. 3D Graphic File Formats: a Programmer’s 
Reference. Addison-Wesley, Redwood City, California. 

Schilling, A., Kim, S., Weissmann, D., Tang, Z., Choi, S., 
2006. CAD-VR geometry and meta data synchronization 
for design review applications. J. Zhejiang Univ.-Sci. A, 
7(9):1482-1491.  [doi:10.1631/jzus.2006.A1482] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shreiner, D., Mason, W., Neider, J., Davis, T., 2007. OpenGL 
Programming Guide, the Official Guide to Learning 
OpenGL. Version 2.1, 6th Edition. Addison-Wesley Pro-
fessional, Boston, Massachusetts. 

Wang, Q.Y., Tian, L., 2007. A systematic approach for 3D 
VRML model-based assembly in Web-based product 
design. Int. J. Adv. Manuf. Technol., 33(7-8):819-836.  
[doi:10.1007/s00170-006-0494-6] 

Whyte, J., Bouchlaghem, N., Thorpe, A., McCaffer, R., 2000. 
From CAD to virtual reality: modelling approaches, data 
exchange and interactive 3D building design tools. Autom. 
Construct., 10(1):43-55.  [doi:10.1016/S0926-5805(99) 
00012-6] 

Williamson, H., 2008. XML: the Complete Reference. 
McGraw-Hill, New York. 

Yap, H.J., Taha, Z., Liew, K.S., Ghazilla, R.A.R., Ahmad, N., 
2008. Development of a 3D CAD Model Conversion and 
Visualization System Using Lexical Analyzer Generator 
and OpenGL. Proc. Asia Pacific Industrial Engineering 
and Management Society, p.2700-2706. 

Zhong, Y., Ma, W., Shirinzadeh, B., 2005. A methodology for 
solid modelling in a virtual reality environment. Robot. 
Comput.-Integr. Manuf., 21(6):528-549.  [doi:10.1016/j. 
rcim.2004.09.003] 

 
 
 
 
 
 


